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The N-glycans of mammalian glycoproteins vary greatly in structure, and the biological

importance of these variations is mostly unknown. It is widely acknowledged that the

bisecting N-acetylglucosamine (GlcNAc) structure, a β1,4-linked GlcNAc attached to

the core β-mannose residue, represents a special type of N-glycosylated modification,

and it has been reported to be involved in various biological processes, such as cell

adhesion, fertilization and fetal development, neuritogenesis, and tumor development. In

particular, the occurrence of N-glycans with a bisecting GlcNAc modification on proteins

has been proven, with many implications for immune biology. Due to the essential

functions of bisecting GlcNAc structures, analytical approaches to this modification

are highly required. The traditional approach that has been used for bisecting GlcNAc

determinations is based on the lectin recognition of Phaseolus vulgaris erythroagglutinin

(PHA-E); however, poor binding specificity hinders the application of this method. With

the development of mass spectrometry (MS) with high resolution and improved sensitivity

and accuracy, MS-based glycomic analysis has provided precise characterization and

quantification for glycosylation modification. In this review, we first provide an overview

of the bisecting GlcNAc structure and its biological importance in neurological systems,

immune tolerance, immunoglobulin G (IgG), and tumor metastasis and development and

then summarize approaches to its determination by MS for performing precise functional

studies. This review is valuable for those readers who are interested in the importance of

bisecting GlcNAc in cell biology.

Keywords: bisecting GlcNAc, mass spectrometry, glycosylation, N-glycan, GlcNAc-T III

INTRODUCTION

The monosaccharide-amino acid linkage of N-acetylglucosamine (GlcNAc) β1- asparagine (Asn)
was originally discovered in biochemical analyses of abundant glycoproteins present in serum,
e.g., immunoglobulins (Imperiali and Hendrickson, 1995; Cobb, 2020). Since then, glycans that
covalently attached to proteins at Asn residues by an N-glycosidic bond have been termed N-
glycans. This attachment usually occurs in a conserved sequence Asn-X-Ser/Thr, in which X can
be any amino acid except proline (Pro) (Varki, 2009; Taylor and Drickamer, 2011; Chung et al.,
2017).

A distinctive structural feature of N-glycans is the presence of several GlcNAc antennae
(branches) that are sequentially synthesized by a series of Golgi-resident glycosyltransferases,
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N-acetylglucosaminyltransferases (GlcNAc-Ts) (Figure 1)
(Schachter, 1991; Kizuka and Taniguchi, 2018). N-glycans
can be divided into three categories: high-mannose, hybrid,
and complex. Hybrid and complex N-glycans may carry
a bisecting GlcNAc group, which forms a new subtype of
glycan termed bisecting GlcNAc (Harpaz and Schachter,
1980; Varki, 2009; Nakano et al., 2019). The discovery of this
structure lagged behind the detection of other glycan structures
due to the limitations of the detection approaches and the
peculiarity of its structure. This type of glycan was reported
in the 1970s and was detected by a combination of sequential
exoglycosidase digestion, methylation derivatization, acetolysis,
and Smith degradation from ovalbumin (Yamashita et al.,
1978; Nagae et al., 2020). GlcNAc transferred to the 4-position
of the β-linked core mannose (Man) residue in complex or
hybrid N-glycans by the β1,4-mannosyl-glycoprotein 4-β-N-
acetylglucosaminyltransferase (GlcNAc-T III) is considered as a
bisecting structure that is usually not considered as an antenna
because it cannot be further extended by the proper enzymes
(Narasimhan, 1982; Schachter, 1991; Varki, 2009; Miwa et al.,
2012; Chen et al., 2016). GlcNAc-T III is encoded by the gene
mgat3, which was initially discovered from hen oviducts in 1982
(Narasimhan, 1982; Miwa et al., 2012). It has been reported that
its distribution in human tissues is mainly in the brain, liver,
placenta, bone marrow, and kidney (Nishikawa et al., 1992;
Yoshimura et al., 1995b; Taniguchi et al., 1999; Takamatsu et al.,
2004; Schedin-Weiss et al., 2019). So far, there are no reports
on any tissue specificity that is related to the functions of this
subtype of glycan. The addition of this GlcNAc requires the prior
action of GlcNAc-T I (Schachter, 1991; Nakano et al., 2019).
The existence of a bisecting GlcNAc prevents α-mannosidase
II from trimming and has been proved to inhibit the activities
of GlcNAc-T II, GlcNAc-T IV, and GlcNAc-T V in vitro as well
(Schachter, 1991, 2014; Varki, 2009; Nakano et al., 2019). The

FIGURE 1 | GlcNAc-Man branches catalyzed by GlcNAc-Ts, adapted from

Chen (2015) with permission from Qiushi Chen. The first antenna is initiated via

the enzyme GlcNAc-T I. GlcNAc-T II creates a biantennary glycan, and

GlcNAc-T III yields a bisecting GlcNAc. More branches can be produced via

the action of GlcNAc-T IV, V, and VI. GlcNAc, Man.

addition of bisecting GlcNAc confers unique lectin recognition
properties to this new subtype of glycan (Miwa et al., 2012; Nagae
et al., 2013; Link-Lenczowski et al., 2018). B16 mouse melanoma
transfected by mgat3 that encodes GlcNAc-T III shows weaker
binding to phytohemagglutinin-L (PHA-L) but stronger binding
to Phaseolus vulgaris erythroagglutinin (PHA-E). The lectins
of PHA-L and PHA-E show specific recognition to multiple
antennary glycans and bisecting GlcNAc structures, respectively
(Yoshimura et al., 1995c; Varki, 2009; Liu et al., 2016; Wu et al.,
2019). This suggests that increased expression of GlcNAc-T
III may result in a decrease in multiple branched N-glycan
structures. The balance among different types of glycans may
play an important role in controlling cell functions.

The N-glycans of mammalian glycoproteins vary greatly in
structure, but the biological importance of these variations is
mostly unknown (Bhattacharyya et al., 2002; Reily et al., 2019).
It is widely acknowledged that bisecting GlcNAc represents a
special type of N-glycosylated modification that is involved in
various biological processes, such as cell adhesion, fertilization
and fetal development, neuritogenesis, and tumor metastasis
and development (Bhattacharyya et al., 2002; Kariya et al.,
2008; Akasaka-Manya et al., 2010; Gu et al., 2012; Allam
et al., 2015; Zhang et al., 2015; Kizuka and Taniguchi, 2018).
The clearly altered levels of bisecting GlcNAc on integrin β1
have been reported to be responsible for early spontaneous
miscarriages in humans (Zhang et al., 2015). Tan et al.
found that bisecting GlcNAc is able to inhibit hypoxia-induced
epithelial-mesenchymal transition in breast cancer cells (Li et al.,
2016; Tan et al., 2018). The presence of glycoproteins bearing
complex N-glycans with bisecting GlcNAc, fucose (Fuc) and
N,N-diacetyllactosamine (LacdiNAc) structures was detected
in extracellular vehicles (EVs) from ovarian carcinoma cells;
however, the prevention of N-glycosylation processing from
high mannose to complex glycans by kifunensine resulted in
alterations in the components of EVs and triggered a decrease
in several glycoproteins (Gomes et al., 2015). It has also
been reported that the occurrence of a bisecting GlcNAc on
glycoproteins has many implications in immune biology (el
Ouagari et al., 1995; Yoshimura et al., 1996; Takegawa et al., 2005;
Pang et al., 2007; Clark, 2014; Chen et al., 2016; Shade et al., 2019).
For instance, K562 cells are easily killed by natural killer (NK)
cells; however, after being transfected with mgat3, K562 cells
acquired NK-cell resistance (Yoshimura et al., 1996; Patankar
et al., 1997; Miwa et al., 2012). Therefore, it is very important to
take a step forward and review this type of N-glycan. Although
the method that is usually used in many studies for bisecting
GlcNAc determination is lectin recognition by PHA-E, there are
drawbacks to thismethod. The first disadvantage is low specificity
and sensitivity (Dang et al., 2019). This is quite common in most
of the lectin-glycan recognitionmethods. For instance, Sambucus
nigra (elderberry) agglutinin (SNA) IV prefers to bind with α2,6-
linked sialic acid but also has some binding to α2,3-linked sialic
acid (Chen, 2015; Shang et al., 2015; Lis-Kuberka et al., 2019).
The second drawback is that lectin recognition could not tell
the relative amount of the bisecting GlcNAc structure. Last but
not least, this method is not able to reveal the glycosylation
site or the glycan structure. Instead, approaches based on mass
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spectrometry (MS) have been revealed in recent studies to be
a suitable tool for expeditiously and precisely investigating this
type of glycan.

MS is a technique that measures the mass-to-charge ratios of
ions and has been used for small-molecule analysis since World
War I (Calvete, 2014). It has a history of playing an important
role in glycan or glycan-related studies since the 1960s. In 1968,
electron ionization was used in the structural elucidation of di-
and tri-saccharides (Kochetkov et al., 1968; Chen, 2015). At that
time, it was difficult to detect more complex oligosaccharides
since only the molecules possessing higher volatility were
analyzable; however, more oligosaccharides in the complex
glycans led to decreased volatility. Additionally, the mass range
of MS detection restricted study of the complex oligosaccharides
with higher molecular weights. In the late 1970s, MS was used for
the first time in the study of blood glycoproteins from Antarctic
fish, in which a proline-containing glycopeptide that had a
disaccharide was sequenced; the structure of this disaccharide
was identified as galactosyl-N-acetylgalactosamine (Morris et al.,
1978; Dell and Morris, 2001; Bielik and Zaia, 2010). Several
years later, Dell andMorris performed the first structural analysis
of glycans using a fast-atom-bombardment mass spectrometer
(FABMS) (Dell et al., 1983; Dell andMorris, 2001).With its rapid
development, MS has now significantly improved in its analytical
scope, speed, and depth. For glycopeptide or glycan structure
analysis, the Orbitrap mass spectrometers with higher resolution
and accuracy are a good choice underMSn (n> 2) mode coupled
with or without liquid chromatography (LC). Matrix-assisted
laser desorption ionization time-of-flight (MALDI-TOF/TOF)
MS with higher collision energies is also a valuable choice for
MS1/MS2 analysis of glycans (Chen, 2015; Chen et al., 2016).
Electrospray ionization (ESI)-TOF MS has also been reported
to be efficient for glycosylation analysis of intact IgG molecules
(Wei et al., 2019).

THE FUNCTIONS OF BISECTING GlcNAc
MODIFICATION

In Neurological Systems
Akasaka-Manya et al. discovered that the mRNA levels of mgat3
were elevated in the temporal cortex of the brain in patients with
Alzheimer’s disease (AD) (Akasaka-Manya et al., 2010), which
accelerated studies on the tissue distribution of GlcNAc-T III
expression, with the conclusion that it was most highly expressed
in the nervous system (Shimizu et al., 1993; Kizuka et al., 2016b;
Kizuka and Taniguchi, 2018).

In 1993, Shimizu et al. reported that the main glycan
structures detected in the mouse cerebrum, cerebellum, and
brain stem are bisected, as is proposed in Figure 2 (Shimizu
et al., 1993; Nagae et al., 2016). Later, Shigeta et al. found that
GlcNAc-T III promoted β1 integrin-mediated neuritogenesis
triggered by serum deprivation in Neuro2a cells and that the
neuritogenesis induced byGlcNAc-T III was functionally blocked
by anti-β1 integrin monoclonal antibody (DF5) (Shigeta et al.,
2006). In addition, β1 integrin is found to be regulated as a
target protein by GlcNAc-T III, and this could be supported

FIGURE 2 | The bisecting GlcNAc structure proposed by Shimizu et al., drawn

based on the information obtained from Shimizu et al. (1993). The proposed

linkage between each monosaccharide is labeled. GlcNAc, Man. Fuc.

by a study showing that the amount of β1 integrin in
erythroagglutinating-phytohemagglutinin (E4-PHA)-associated
complexes significantly increased in GlcNAc-T III transfectants
compared with that in mock transfectants (Shigeta et al., 2006).

AD is a progressive, neurodegenerative disease in which
there are deficits in memory and cognitive functions; more
importantly, it is a global health problem (Abbott, 2011; Scheltens
et al., 2016; Kizuka and Taniguchi, 2018; Schedin-Weiss et al.,
2019). However, current treatments are still only symptomatic
(Winblad et al., 2016; Schedin-Weiss et al., 2019). It is necessary
to understand that many solid studies support connections
between AD and aberrant protein glycosylation, considering
the fact that glycoproteins including tau, Aβ-precursor protein
(APP), and β-site APP-cleaving enzyme-1 (BACE-1) are involved
in AD pathogenesis and have been found to show altered
glycosylation patterns (Halim et al., 2011; Schedin-Weiss et al.,
2014, 2019; Kizuka et al., 2015). More importantly, APP
and BACE-1 contain glycosylation modifications with bisecting
GlcNAc structures (Akasaka-Manya et al., 2008, 2010; Schedin-
Weiss et al., 2014; Kizuka et al., 2015, 2016a). Bisecting GlcNAc
modifications have shown the capacity to stabilize BACE1 protein
under conditions of oxidative stress (Kizuka et al., 2016a), and
the increased contents of bisecting GlcNAc in AD brains might
function as an adaptive response, which protects the brains from
the damage caused by additional beta-amyloid yields (Akasaka-
Manya et al., 2010). One study showed that the lack of bisecting
GlcNAc to BACE1 directed the transport of this protein to the
lysosome and accelerated its degradation, which resulted in the
less accumulation of β amyloid in AD (Kizuka et al., 2015;
Kizuka and Taniguchi, 2018). These findings have highlighted
the importance of bisecting GlcNAc modification in the nervous
system. However, the underlying mechanism is still not clear.

AD is a chronic disease and begins to develop decades before
the first symptoms appear, which suggests the importance of
investigating early changes (e.g., glycan alteration) for improving
early diagnosis. We have recently published our findings on
glycosylation changes in AD research. An increase in bisecting
N-GlcNAc modifications was observed in cerebrospinal fluid
(CSF) from AD patients. The further investigation of CSF from
242 patients with subjective cognitive impairment (SCI), mild
cognitive impairment (MCI), or AD revealed more glycoproteins
binding to PHA-E in MCI and AD than in SCI (Schedin-Weiss
et al., 2019). Therefore, these findings could be essential for
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developing early AD diagnosis biomarkers and understanding
the early stages of AD development, which might be additionally
beneficial for designing novel AD treatment strategies. The
challenges in the future will be to perform comprehensive
and detailed glycoproteomic and glycomic analysis of those
glycoproteins with bisecting GlcNAc modification.

In Immune Tolerance
In 1996, Clark et al. proposed the human fetoembryonic
defense system hypothesis (hu-FEDS) (Clark et al., 1996; Pang
et al., 2016). The basic concept of this hypothesis is that
glycoproteins expressed in the reproductive system and gametes
can either inhibit immune responses or prevent rejection. Indeed,
glycoproteins in human seminal plasma and the pregnant uterus
have been shown to suppress immune responses in vitro,
specifically for those glycoproteins containing bisecting GlcNAc
structures (Bolton et al., 1987; Kelly and Critchley, 1997; Clark,
2014; Szczykutowicz et al., 2019).

Bisecting GlcNAc structures have been reported to possess
immune suppression functions. For instance, K562 cells are
easily killed by natural killer (NK) cells; however, after being
transfected with the gene that encodes GlcNAc-T III, K562
cells possessing more bisecting GlcNAc attain NK cell resistance
(Yoshimura et al., 1996; Patankar et al., 1997). Natural killer
(NK) cells are the major type of immune cells found in the
human uterus, which indicates that they potentially target sperm
(King et al., 1991; Clark, 2014). Human sperm were found to
express bisecting GlcNAc structures, which explains why sperm
are not killed by the maternal immune system when entering the
female as a foreign substrate and thus support hu-FEDS (Pang
et al., 2007; Clark, 2014; Szczykutowicz et al., 2019). Additionally,
abundant bisecting GlcNAc glycans were detected in human
syncytiotrophoblasts (STB) and cytotrophoblasts (CTB) (Chen
et al., 2016). It is most likely that the maternal immune system
was suppressed due to the presence of bisecting GlcNAc glycans
and that the fetus benefited from this suppression; the mother
could nourish a fetus (similar to a foreign organ as the father
contributes to its half genome) within her body for several
months without rejection. The possible mechanism underlying
this suppression could be that the glycoconjugates interacted
with lectins that linked to particular signal transduction pathways
modulating immune cell functions. For instance, α-2,3-linked
sialic acid on soluble CD52, a glycoprotein of 12 amino acids
anchored to glycosylphosphatidylinositol, could mediate T-cell
suppression by binding to siglec-10 (Clark, 2014; Shathili et al.,
2019). It is possible that bisecting GlcNAc can function in a
similar way to suppress NK cells.

On Immunoglobulin G (IgG)
IgG is an important molecule in the immune system. IgG
regulates its immune functions through complement and cellular
IgG-Fc gamma receptors (FcγR) (Dekkers et al., 2016). It
contains a highly conserved N-linked glycan at position Asn297
in the Fc region (Arnold et al., 2007; Dekkers et al., 2016; Kiyoshi
et al., 2017). This glycan is composed of variable levels of fucose,
galactose, and sialic acid and bisecting GlcNAc (Le et al., 2016;
Gudelj et al., 2018; Lu and Holland, 2019; Shade et al., 2019). It is

widely acknowledged that the Fc-glycan has an influence on the
biological activities of IgG. For example, a lack of fucose in the
Fc glycan significantly improves binding to the human FcγR III,
and this result is applied to improve the efficacy of therapeutic
monoclonal antibodies. Attachment of bisecting GlcNAc to the
Fc glycan has been described to induce antibody-dependent cell-
mediated cytotoxicity (ADCC) (Shields et al., 2002; Hodoniczky
et al., 2005; Dekkers et al., 2016).

Studies focused on characterizing the IgG- and IgA-linked
glycans have shown that glycans are differentially expressed in
the setting of autoimmunity. For instance, patients <50 years
old with Lambert-Eaton myasthenic syndrome (an autoimmune
disease in which the immune system attacks the body’s own
tissues) show increased levels of bisecting GlcNAc on IgG1 and
IgG2 (Selman et al., 2011; Maverakis et al., 2015). This suggests
that particular glycan types may be potential biomarkers for
certain diseases.

In Tumor Metastasis and Development
It is essential to understand the factors that affect tumor
progression so as to determine how to control tumor growth
and metastasis. It has been reported that more multiple branched
N-glycan modifications occur in tumor cells due to the higher
activity of GlcNAc-T V, which promotes tumor cell metastasis
(Dennis et al., 1987; Gu et al., 2009; Kizuka and Taniguchi,
2016). A possible explanation for this is that β1,6-GlcNAc-
branched N-glycans can be preferentially processed by β1,4 Gal-
T, and β1,3 GlcNAc-T to form poly-N-acetyllacotosamine (poly-
LacNAc) for elongation of N-glycans, which could be further
modified into the motifs involved in cancer metastasis, such as
sialyl Lewis X (Yamadera et al., 2018). As mentioned above, the
increased expression of GlcNAc-T III prevented the formation
of multiple branch glycans, as GlcNAc-T V could not extend
the glycans beyond the bisecting GlcNAc structure and thus
inhibited tumor cell metastasis (Dennis et al., 1987; Gu et al.,
2009; Taniguchi and Korekane, 2011). Two years ago, it was
reported that bisecting GlcNAc structures could inhibit hypoxia-
induced epithelial-mesenchymal transition in breast cancer (Tan
et al., 2018). However, the mechanism underlying is still not
clear. It has been speculated that the addition of bisecting
GlcNAc to the key glycoproteins of signaling transduction, e.g.,
growth factors, integrins, and cytokine receptors, has its special
signaling strength under hypoxia. Actually, observations of non-
solid tumors contradict this explanation. GlcNAc-T III was more
activated in patients with chronicmyelogeneous leukemia in blast
crisis (CML-BC) and in patients with multiple myeloma (MM)
(Yoshimura et al., 1995a).

Alterations in glycosylation are usually considered as a
hallmark of cancer, and the protein with the most extensive
studies of its glycosylation is E-cadherin (de-Freitas-Junior et al.,
2013). In 2019, researchers found that E-cadherin was required
for metastasis in multiple breast cancer models (Padmanaban
et al., 2019) and that it contained bisecting GlcNAcmodifications
(Kitada et al., 2001; de-Freitas-Junior et al., 2013). The addition
of bisecting GlcNAc to E-cadherin was found to negatively
regulate the tyrosine phosphorylation of β-catenin (Kitada et al.,
2001; Takahashi et al., 2009), and GlcNAc T-III knockdown cells
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FIGURE 3 | Annotated MALDI-TOF MS spectra of permethylated N-glycans (A) and permethylated β1,4-galactosyltransferase treated N-glycans (B) from human

cytotrophoblasts (CTB), adapted from Chen et al. (2016) with permission from Qiushi Chen. GlcNAc, Man, Gal, Fuc, NeuAc.

displayed a membrane delocalization of E-cadherin, resulting
in its cytoplasmic accumulation (Pinho et al., 2009). As a
result, the deactivated β-catenin failed to enhance cell growth
or oncogenesis as it formed a tight complex with E-cadherin
and could not be translocated into the nuclei (Gu et al., 2009).
These results suggest that bisecting GlcNAc plays important
roles in tumor metastasis and development. Therefore, it is
reasonable that certain aberrant glycosylation (e.g., bisecting)
patterns could be used as biomarkers for the progression of
particular diseases, including cancer metastasis and development
(Dennis et al., 1999; Tan et al., 2018).

Others
It has been reported there are multiple functions of bisecting
GlcNAc in other cell biology processes. The bisecting GlcNAc
structure in N-glycans of adenylyl cyclase III was proved to
be an enhancer of enzyme activity (Li et al., 2007). The
bisecting GlcNAc structure has been found to inhibit stroma-
dependent hemopoiesis in transgenic mice expressing GlcNAc-T
III (Yoshimura et al., 1998).

THE DETECTION OF BISECTING GlcNAc
STRUCTURES

The approaches reviewed here have been released and proved
as efficient tools for bisecting GlcNAc modification studies.
These bisecting GlcNAc determination approaches are reviewed
based on two detection targets, namely, glycan and glycopeptide
levels. Before the samples are subjected to glycan or glycopeptide
analysis, cell or tissue samples need to be processed as
previously described (North et al., 2010; Chen, 2015; Chen
et al., 2016); the procedure for sample preparation will not be
addressed here.

Approaches for Detecting Glycan Levels
β1,4-Galactosyltransferase Reaction
β1,4-galactosyltransferase is an enzyme that transfers a galactose
(Gal) from UDP-Gal to GlcNAc and forms the disaccharide
unit of Galβ1,4GlcNAc in the antenna of complex and hybrid
glycans (Schwientek et al., 1996; Chen et al., 2016). However, if
a GlcNAc is at the bisected position, it will not be processed by
this enzyme, and there are no changes for glycans containing
a bisecting GlcNAc (Pang et al., 2007; Qasba et al., 2008;
Chen, 2015).

In our previous study, we adopted this method to prove the
presence of a bisecting GlcNAc structure in glycans through
the β1,4-galactosyltransferase reaction, as is shown in Figure 3

(Chen et al., 2016). Using this strategy, the glycan sample was
treated by the enzyme at 37◦C for 24 h to ensure a complete
reaction (Chen, 2015). The glycans at m/z 2,489, 2,850, and
3,212 were chosen as the targets of observation because these
glycans contain a potential substrate (an unmodified GlcNAc) for
β1,4-galactosyltransferase. If the structures included a reactable
GlcNAc group, a Gal residue would be incorporated into the
structure, resulting in the glycans at m/z 2,489, 2,850, and
3,212 undergoing a shift in m/z to 2,693, 3,055, and 3,416,
respectively. Figure 3 displays two typical spectra scanned by
MALDI-TOF MS with or without β1,4-galactosyltransferase
treatment. This figure clearly shows that after the enzyme
treatment, there are no obvious changes in the three glycan
comparison groups at m/z 2,489 and 2,693, 2,850 and 3,055,
and 3,212 and 3,416. This result demonstrates that the GlcNAc
in these three glycan structures cannot be extended by β1,4-
galactosyltransferase and the bisecting GlcNAc present in
these glycans.

The processing performed using this approach is quite simple,
and the interpretation of the results is so direct that there is
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no need for any software for further data analysis. The signal
alteration from glycans is basic and essential for this method.
However, some exceptions have been observed in the application
of this approach in vitro. A research article reported a successful
galactosylation occurring beyond the bisecting GlcNAc in the
structure of GlcNAcMan3GlcNAc2 in vitro (Zou et al., 2011). In
addition, we found that a chemoenzymatically synthesized glycan
structure (Galb1-4GlcNAcb1-2 Mana1-6(Galb1-4GlcNAcb1-
4)(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4(Fuca1-
6)GlcNAc) containing galactosylated bisecting GlcNAc
was clearly labeled for Functional Glycomics (CFG)
array (CFG, 2012).

Therefore, it would be better to combine the approach of
galactosyltransferase reaction with other methods listed in this
review to confirm the presence of a bisecting GlcNAc structure
in glycans. In 2016, we adopted this method together with
gas chromatography-mass spectrometry (GC-MS) to study the
bisecting GlcNAc modification (Chen et al., 2016), which will be
described in the following section.

FIGURE 4 | Characteristic fragment ions of the PMAA derivative of a

3,4,6-linked-D-mannopyranosyl residue; this figure is modified from CCRC

(2020) with permission from CCRC.

Gas Chromatography-Mass Spectrometry (GC-MS)
GC-MS methods adopted to detect bisecting GlcNAc have
been described previously (Ciucanu, 2006; North et al., 2010).
Considering the volatile analytes necessary for GC-MS detection,
the glycan samples must be derivatized into partially methylated
alditol acetates (PMAA) before being subjected to MS, as has
been published in some reports (North et al., 2010; Chen, 2015):
the permethylated glycan sample was treated with a NaBD4

solution and was then dried under nitrogen assistance, followed
by acetylation treatment with acetic anhydride. As shown in
Figure 1, the bisecting GlcNAc is directly attached to the C4
position of the β-linked Man, which possesses a characteristic
component of 3,4,6-linked Man, which is a unique signal for the
identification of bisecting GlcNAc by GC-MS.

Figure 4 shows the structural molecule of the PMAA
derivative of a 3,4,6-linked-D-mannopyranosyl residue. The
fragmentation of this molecule can yield two characteristic ions
with m/z of 118 and 333.

We have adopted this permethylation method and combined
GC-MS detection to prove the presence of bisecting GlcNAc
in human CTB and STB (Chen et al., 2016). As shown in
Table 1, the characteristic fragment ions of m/z 118 and 333 were
simultaneously detected for the group of 3,4,6-linkedMan, which
supported the existence of bisecting GlcNAc.

In this method, GC was used for the separation of analytes
and it thus has higher resolution for complex small molecules;
however, the glycan samples must be derivatized into PMAA
for GC-MS analysis, and the reaction efficiency affects the
quantification of the bisecting GlcNAc structures.

Multi-Stage Mass Spectrometry (MSn)
In principle, this method is quite similar to GC-MS detection
because the detection of bisected glycan structures can be
accomplished by identifying the presence of the 3,4,6-linkedMan
(Allam et al., 2015). In this method, the Obitrap MS was used for
multiple fragmentation (Allam et al., 2015).

TABLE 1 | Summary of the GC-MS linkage analysis of partially methylated alditol acetates derived from N-glycans of cytotrophoblasts (CTB) and syncytiotrophoblasts

(STB), adapted from Chen et al. (2016) with permission from Qiushi Chen.

Elution time,

min (CTB)

Elution time,

min (STB)

Characteristic fragment ions Assignments Relative abundance

(CTB)

Relative abundance

(STB)

16.95 16.90 102, 115, 118, 131, 162, 175 Terminal Fuc 0.16 0.14

18.45 18.40 102, 118, 129, 145, 161, 205 Terminal Man 0.68 0.62

18.71 18.67 102, 118, 129, 145, 161, 205 Terminal Gal 0.15 0.17

19.62 19.56 129, 130, 161, 190, 234 2-linked Man 1 1

19.90 19.85 118, 129, 161, 203, 234 3-linked Gal 0.07 0.10

21.18 21.14 87, 88, 129, 130, 189, 190 2,6-linked Man 0.05 0.05

21.34 21.30 118, 129, 189, 202, 234 3,6-linked Man 0.33 0.34

21.80 21.76 118, 139, 259, 333 3,4,6-linked Man 0.08 0.07

22.27 22.23 117, 129, 145, 205, 247 Terminal GlcNAc 0.04 0.04

23.15 23.12 117, 159, 233 4-linked GlcNAc 0.22 0.39

24.00 23.96 117, 159, 346 3,4-linked GlcNAc 0.03 0.03

24.46 24.42 117, 159, 261 4,6-linked GlcNAc 0.04 0.08

The elution time is indicated in minutes, and the relative abundance of 2-linked mannose (major component) is normalized to 1.
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FIGURE 5 | The MS8 approach for confirming the presence of bisecting GlcNAc structures. The fragment ion at m/z 444.18 in the red frame is the characteristic ion

of the bisecting GlcNAc glycans. GlcNAc, Man, Gal, Fuc.

Figure 5 shows the logical order of theMS8 approach that was
used for detecting bisecting GlcNAc in the glycan at m/z 2489.25,
which is a bitennary, core-fucosylated glycan. Theoretically, the
MS7 spectrum of the glycan at m/z 2489.25 should display the
characteristic ion of the bisected glycan at m/z 444.18, which
would support the presence of 3,4,6-linked Man. Additionally,
MS8 analysis would be further carried out to show that the ion
at m/z 444.18 is truly a glycan fragment ion indeed and is not
noise or a contaminant.

This method is able to target the bisecting GlcNAc structure
of interest. More importantly, it does not require additional
sample processing. However, it is highly dependent on the MS
analyzer, as well as on operator techniques. Usually, only glycans
with higher abundances can provide good signals with multiple
fragmentation under MSn mode.

Approach for Detecting Glycopeptide
Levels
Due to the rapid development of MS techniques, it is possible
to perform analysis of glycopeptides composed of the peptides
together with their glycans. In addition to detecting bisecting
GlcNAc, MS can also confirm the glycosylation sites as well as the
glycan components. The method introduced here for bisecting
GlcNAc detection references the paper published in Analytical
Chemistry in 2019 (Dang et al., 2019), which was designed to
detect bisecting GlcNAc in glycopeptides by their characteristic
ion(s) in fragmentedMS/MS spectra under low-energy collisions.
The characteristic ion(s) are either [Pep+HexNAc3Hex] or
[Pep+FucHexNAc3Hex] or both. In this paper, 25 glycoproteins
(possessing bisecting GlcNAc) were identified from rat kidney
tissue, four of which (Q01129 decorin, P17046 lysosome-
associated membrane glycoprotein 2, P07861 neprilysin, and
B5DFC9 nidogen-2) were found to be protein analogs of those
identified in our human amnion samples. More importantly, one

of these glycoproteins, neprilysin, has the same bisecting GlcNAc
location (site N285) as the human neprilysin (P08473) (data
not shown).

This method can simultaneously obtain precise information
regarding the heterogeneity of glycosylation, including the
modification sites and their linked glycan structures, which
is useful for the functional study of target proteins. More
importantly, this method does not require additional sample
processing. However, as mentioned by Dang et al., the
effectiveness of the method may be impacted by multiple
parameters, such as glycopeptide structures (Dang et al., 2019).
It also places greater requirements on the MS analyzer, and
the profiling coverage of the glycosylation is limited because
sufficient information regarding the peptides and the glycans in
the MS2 spectra must be obtained for identification.

We summarize the advantages and disadvantages of each
method mentioned above in Table 2 to help researchers to make
appropriate choices according to the laboratory instrumentation
and conditions.

SYNTHESIS OF BISECTING GLYCANS

With more studies focusing on the special bisecting glycans,
the importance of this type of glycan in cell biology has
been discovered. Indeed, glycosylation modification plays an
important role in protein functions due to participation in the
functional domain of protein configuration (Luber et al., 2018).
It has been reported that human IgG, an important immune
system molecule, possesses glycans containing bisecting GlcNAc
(Le et al., 2016; Lu and Holland, 2019; Shade et al., 2019).
Thus, only synthesizing the sequence of proteins, but not the
glycan chains, is insufficient for protein function. Syntheses of
glycans or glycoproteins containing bisecting GlcNAc structures
have been reported in many papers (Wang et al., 2009; Castilho
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TABLE 2 | A comparison of different approaches for bisecting GlcNAc characterization based on MS detection.

Detected

target

Method Criteria Advantages Disadvantages

Glycan β1,4-

galactosyltransferase

reaction

The relative abundance ratios of pairs of

glycans varying in composition by a single

GlcNAc unit were not significantly altered

1. Easy to process;

2. Easy to make a comparison.

1. Not easy to quantify;

2. Requires an extra enzymatic treatment.

GC-MS The presence of 3,4,6-linked mannose 1. Easy to quantify; 1. Need to perform PMAA derivatization;

2. Requires GC-MS instrumentation.

MSn (n > 2) The presence of the fragment ion m/z 444 1. Does not require extra

sample processing;

2. Can select target glycans if required.

1. High requirements for the mass

spectrometer;

2. High requirements for the operators

Glycopeptide MS2 The presence of [Pep+HexNAc3Hex] or

[Pep+FucHexNAc3Hex] or both

1. Does not require extra

sample processing;

2. Can select target glycopeptides

if required.

1. High requirements for the mass

spectrometer;

2. The effectiveness may be affected by

multiple parameters, such as

glycopeptide structures.

et al., 2011; Luber et al., 2018; Manabe et al., 2018; Yang et al.,
2018). Synthesis of glycans or glycoproteins containing bisecting
GlcNAc structures is helpful for glycomic and glycoproteomic
research and will improve the development of protein-based
therapeutics and the generation of glycan-engineered therapeutic
antibodies (Castilho et al., 2011, 2015).

In 2007, Unverzagt et al. reported the first chemical synthesis
of highly branched pentaantennary N-glycans and derivatives
with bisecting GlcNAc modifications (Eller et al., 2007). The
chemical synthesis of a bisecting GlcNAc could also be achieved
through [4+2] and [6+2] glycosylations. This synthetic method
reduces the number of reaction steps but faces two difficulties,
namely, low yields and poor synthesis selectivity for key
glycosylations (Manabe et al., 2018). A modular synthesis of
16 cores of mammalian complex-type N-glycans with optional
core fucose and bisecting GlcNAc has been established by
Unverzagt et al., and core fucosylated and bisected N-glycans
could be synthesized with unprecedented efficiency and purity by
integrating a one-pot protocol (Luber et al., 2018).

Biosynthesis of glycoproteins with bisecting GlcNAc glycans
has been performed in glycoengineered Nicotiana benthamiana,
which lacks plant-specific N-glycosylation (Castilho et al., 2011)
but expresses a modified version of human GlcNAc-T III.
However, GlcNAc-T III is sometimes not very active when fused
to the Golgi α-mannosidase II-cytoplasmic tail, transmembrane
domain, and stem (GMII-CTS) region. Therefore, more studies
are required to overcome these difficulties.

CONCLUSIONS

Researchers are now beginning to realize the importance
of bisecting GlcNAc glycans. We reviewed its importance
in neurological systems, immune tolerance, IgG, and tumor
metastasis and development and then introduced a series of MS
approaches for bisecting GlcNAc detection. Compared to the
traditional lectin recognition method, MS-based methods can be
quantifiable, can target the glycan and glycopeptide of interest,
and can provide details of the glycosylation sites and glycan

components. In addition, MS approaches are more sensitive,
and limits on sample amounts are overcome in glycosylation
studies. However, there are bottlenecks in the use of current
MS technology to detect the bisecting GlcNAc. The sensitivity
of MS detection to glycosylation modification is still limited,
and thus specific enrichment of the glycans or glycopeptides is
needed. Especially for the MSn analysis, only glycans with higher
abundance could be interpreted in detail and with accuracy. In
addition, the construction of high-quality MSn spectral databases
as well as an understanding of fragmentation mechanisms are
also vital for developing the in silico fragmentation tools. Precise
prediction of bisecting GlcNAc will be achieved via developing a
probabilistic generative model for the CID/HCD fragmentation
by machine learning techniques. This review will be valuable
for those researchers who are interested in the importance of
bisecting GlcNAc in cell biology and can conduct studies in this
field and will be helpful for advancing our understanding of
bisecting GlcNAc.
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