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A developmental reduction of the excitation:inhibition 
ratio in association cortex during adolescence
Bart Larsen1,2,3*, Zaixu Cui1,2,3,4, Azeez Adebimpe1,2,3, Adam Pines1,2,3, Aaron Alexander-Bloch2,3, 
Max Bertolero1,2,3, Monica E. Calkins2,3, Raquel E. Gur2,3,5, Ruben C. Gur2,3,5, Arun S. Mahadevan6, 
Tyler M. Moore2,3, David R. Roalf2,3, Jakob Seidlitz2,3, Valerie J. Sydnor1,2,3, 
Daniel H. Wolf2,3†, Theodore D. Satterthwaite1,2,3†

Adolescence is hypothesized to be a critical period for the development of association cortex. A reduction of the 
excitation:inhibition (E:I) ratio is a hallmark of critical period development; however, it has been unclear how to 
assess the development of the E:I ratio using noninvasive neuroimaging techniques. Here, we used pharmacological 
fMRI with a GABAergic benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate 
patterns of functional connectivity. In an independent sample of 879 youth (ages 8 to 22 years), this model 
predicted reductions in the E:I ratio during adolescence, which were specific to association cortex and related to 
psychopathology. These findings support hypothesized shifts in E:I balance of association cortices during a 
neurodevelopmental critical period in adolescence.

INTRODUCTION
Adolescent brain development is characterized, in part, by the 
continued structural and functional maturation of the association 
cortices (1–5). The specificity of the developmental timing and 
localization of association cortex maturation as well as the links 
between association cortex development and long-term psychiatric 
outcomes have led to the hypothesis that adolescence functions as a 
critical period of development within association cortex (6). Critical 
periods are windows of development during which experience 
powerfully shapes the development of neural circuits through 
heightened experience-dependent plasticity with long-term impacts 
on behavior (7). These important neurodevelopmental windows are 
theorized to progress hierarchically throughout development, begin-
ning in primary sensory cortices and sequentially advancing to sec-
ondary and higher-order cortical areas (7, 8). The neurobiological 
mechanisms that underlie critical periods are thought to be con-
served across the cortex and have been carefully delineated in 
decades of work on early critical periods in sensory cortex (7–10).

One of the hallmark features of critical period development is 
the maturation of GABAergic (-aminobutyric acid–mediated) 
inhibitory circuitry, particularly parvalbumin (PV)–positive inter-
neurons, leading to a reduction in the excitation:inhibition (E:I) 
ratio (9). The reduction of the E:I ratio leads to an increase in the 
signal-to-noise ratio of local circuit activity as inhibition suppresses 
the effect of spontaneous activity on circuit responses in favor of 
stimulus-evoked activity (11). This essential mechanism has been 
shown to regulate the timing of critical period development across 
visual (10), auditory (12), and sensorimotor cortices (13). As such, 
if the adolescent critical period hypothesis is correct, inhibitory 

maturation should result in a developmental reduction in the E:I 
ratio across adolescence within association cortex.

Evidence for E:I development in association cortex during 
adolescence has been largely limited to animal models. This work 
has suggested that prefrontal GABAergic inhibitory circuitry un-
dergoes substantial modifications. Specifically, PV interneurons, a 
critical component of E:I maturation in sensory system critical 
periods, have been shown to increase in prefrontal cortex during 
adolescence in the rat (14) and nonhuman primate (15). At the 
same time, the expression of GABAA receptor 1 subunits, which 
are primarily expressed on PV cells and support fast synaptic 
inhibition (16) and synaptic plasticity (17), also increase during 
adolescence in the prefrontal cortex of the nonhuman primate 
(18, 19). These neurobiological changes lead to important functional 
increases in inhibitory signaling, effectively reducing the E:I ratio 
(20, 21). Together, these findings are suggestive of critical period 
development and may indicate that similar processes are unfolding 
in the human (22). Translating these findings to human studies of 
development is crucial, as disruptions to the E:I balance are hypothe-
sized to play a significant role in the onset of psychiatric disorders 
(23, 24). However, the extent to which these critical period mecha-
nisms are present in association cortex during adolescence in the 
human remains largely unexplored. Corroborating evidence has 
been found in postmortem studies, which demonstrate increases in 
PV (25) and GABAA 1 expression (26), but it has been unclear 
how to measure developmental changes in the E:I ratio in vivo in 
humans using available neuroimaging techniques. This lack of 
in vivo measures has limited our ability to test the adolescent critical 
period hypothesis.

Here, we leveraged a pharmacological functional magnetic 
resonance imaging (fMRI) (phMRI) experiment using a GABAergic 
benzodiazepine challenge to empirically generate a model for the 
effect of inhibitory modulation of the E:I ratio on patterns of fMRI 
connectivity. Benzodiazepines are positive allosteric modulators of 
the GABAA receptor that increase the effectiveness of postsynaptic 
GABAergic signaling, resulting in an increase in inhibition relative 
to excitation. Benzodiazepines have been used to pharmacologically 
manipulate the E:I ratio by enhancing inhibitory signaling in 
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disease models of E:I imbalance (27, 28) as well as in studies of 
critical period development (9, 17, 29). In the current study, we first 
trained a multivariate model to distinguish benzodiazepine-induced 
change in the E:I ratio and established the neurobiological relevance 
of our empirical model by comparing the model features to known 
aspects of benzodiazepine pharmacology as well as a functional 
gradient that has been shown to reflect patterns of excitatory and 
inhibitory interneuron expression (30, 31). We then applied our 
trained and validated model to a large independent developmental 
dataset to investigate E:I changes occurring in association cortex 
during adolescence. We hypothesized that patterns of functional 
connectivity would develop to reflect a reduction in the E:I ratio 
that is specific to association cortex.

RESULTS
An empirical model of the E:I ratio
Forty-three adult participants completed a double-blind, placebo- 
controlled phMRI study with the benzodiazepine alprazolam 
(86 sessions total). Alprazolam is a classical benzodiazepine that 
enhances the effect of GABA at GABAA receptors through positive 
allosteric modulation, increasing inhibition and effectively reduc-
ing the E:I ratio (32). Participants were orally administered 1 mg of 
alprazolam, which produces an increase in GABAergic inhibition 
that is considered to be clinically effective (33). Functional connec-
tivity matrices were derived for placebo and drug phMRI sessions 
using a top-performing pipeline that minimized the impact of 
motion artifact (34). A linear support vector machine (SVM) classi-
fier was trained to distinguish placebo and drug sessions based on 
the multivariate patterns of functional connectivity (Fig. 1, green 
pathway). Cross-validation and permutation testing revealed that 
the trained SVM identified drug versus placebo sessions in left-out 
data far better than chance [area under the receiver operating curve 
(AUC) = 0.716, ppermutation = 0.002; Fig. 2A]. Classification accuracy 
was not significantly associated with participant age, participant 
sex, drug condition (i.e., accuracy did not differ between drug and 
placebo sessions), session order (day 1 versus day 2), self-reported 
feeling of relaxation, blood concentration of alprazolam following 
the experiment, state anxiety before or after scan, trait anxiety, or 
head motion during the scan (table S1).

Furthermore, sensitivity analyses confirmed that in-scanner head 
motion was not associated with our pharmacological manipulation 
or model performance (fig. S1). The spatial pattern of estimated fea-
ture weights from the SVM model highlighted the contributions of 
subcortical regions, including the thalamus and amygdala, and also 
contributions throughout the cortex (Fig. 2B).

Biological relevance of the E:I model
Next, we established the biological relevance of the trained E:I model. 
First, we compared the spatial pattern of cortical feature weights to 
a widely used functional gradient of macroscale cortical organiza-
tion that places regions on a continuum from unimodal to trans-
modal function (35). This continuum has been shown to capture 
variation in excitatory neuron structure, inhibitory interneuron 
expression, and E:I balance (30, 31). Using a recently developed 
analytic procedure that accounts for spatial autocorrelation struc-
ture (36), we observed a significant relationship between our model 
feature weights and this pattern of macroscale cortical organization 
(r = 0.33, P = 0.003; Fig. 3A). This finding suggests that GABAergic 

modulation of functional connectivity patterns varies along a 
transmodal-to-unimodal gradient that, in part, indexes diversi-
ty in excitatory and inhibitory neurobiological properties. Next, we 
investigated whether the estimated model features corresponded to 
the known pharmacology of benzodiazepines like alprazolam. Of 
the six GABAA subunit receptors, GABAA 1 to 6, only 1, 2, 3, 
and 5 are sensitive to benzodiazepines because of the presence of 
an amino acid residue, histidine (37). We used the Allen Human 
Brain Atlas (38) to evaluate how the feature weights from the classi-
fier model aligned with spatial patterns of gene expression for the six 

Fig. 1. Analysis workflow. Dataset: Two datasets were collected on the same 
scanner using highly similar acquisition parameters: a phMRI dataset using the 
benzodiazepine alprazolam (green) and a developmental fMRI sample from the 
Philadelphia Neurodevelopmental Cohort (PNC) (purple). Preprocessing: Datasets 
were preprocessed using identical pipelines, which included removal of nuisance 
signal with aCompCor, global signal regression, and task regression. Connectivity 
matrix generation: Connectivity matrices were generated from standard atlases 
for placebo and drug sessions from the alprazolam dataset (n = 43; 86 sessions 
total) and for the PNC dataset (n = 879). Train and validate model: The alprazolam 
dataset was used to train a linear SVM classifier to distinguish drug and placebo 
sessions using 10-fold cross-validation. Apply model: The validated alprazolam 
model was applied to the PNC dataset, generating a distance metric that reflected 
each participant’s position on a continuum from “drug-like” (lower E:I) to “place-
bo-like” (higher E:I). Regress model output on age: This metric was then regressed 
on age using a generalized additive model with penalized splines that included co-
variates for sex, head motion, and attentiveness.
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GABAA subunit receptors, GABRA1 to GABRA6 (corresponding to 
GABAA 1 to 6). We found evidence of a clear biological double 
dissociation: Model features were significantly associated with the 
gene expression patterns of the benzodiazepine-sensitive GABAA 
subunits (1, 2, 3, and 5) and not the benzodiazepine-insensitive 
GABAA subunits (4 and 6; Fig. 3B).

Development of the E:I ratio during adolescence
We next used our empirically generated E:I ratio model to test the 
hypothesis that the E:I ratio declines as part of the critical period of 
association cortex development. An independent sample of 879 youth 
(aged 8 to 21.7 years) participated in a highly similar fMRI acquisi-
tion on the same scanner; these data were preprocessed using an 
identical pipeline. We applied our validated E:I model to the devel-
opmental dataset without further tuning and obtained the model- 
estimated distance from the classification hyperplane. This metric 
reflects a participant’s position on the continuum between “drug-like” 
(lower E:I) and “placebo-like” (higher E:I). To capture both linear 
and nonlinear effects in a rigorous statistical framework, we then 
regressed this metric on age using a generalized additive model 
(GAM) with penalized splines (Fig. 1, purple pathway). We found 
that age was positively associated with patterns of GABA-modulated 
functional connectivity, reflecting an age-related reduction in the 
E:I ratio. Significant reductions occurred between ages 12.9 and 

16.7 years [Fs (Age) = 3.11, P = 0.037], after which the slope of the 
effect no longer significantly differed from zero, indicating a period 
of developmental stability (table S2). The age-related reduction in 
the E:I ratio was robust across multiple alternative parcellation 
schemes (table S3 and fig. S2).

Age-related reductions in the E:I ratio are specific 
to association cortex
We hypothesized that age-related reductions in the E:I ratio during 
adolescence were specific to association cortices. To test this 
hypothesis, we trained two additional models that restricted input 
features to connections to the most transmodal (Fig. 4A, blue) or 
unimodal (Fig. 4A, green) parts of the cortex. Both models signifi-
cantly distinguished drug from placebo phMRI sessions (Fig. 4A). 
However, when applied to the developmental dataset, significant 
age-related reductions in the E:I ratio were only observed for the 
model trained on connections with transmodal cortex [transmodal: 
Fs (Age) = 9.96, P = 0.0017; unimodal: Fs (Age) = 3.59, P = 0.058; trans-
modal versus unimodal: Fs (Age) = 5.96, P = 0.015; Fig. 4B]. These 
results suggest that transmodal association cortices undergo a 
reduction in the E:I ratio during adolescence, consistent with a 
critical period of development.

Fig. 2. A multivariate model distinguishes alprazolam and placebo sessions, 
capturing E:I ratio. (A) Classifier performance. The binary SVM classifier identified 
drug and placebo sessions in 10-fold cross-validation with an AUC of 0.716 and an 
accuracy of 69.5% (top). The observed AUC and accuracy were significantly greater 
than a permuted null distribution (bottom). (B) Mean absolute feature weights for 
all nodes from the validated SVM model.

Fig. 3. Model features align with cortical organization and benzodiazepine 
pharmacology. (A) The cortical pattern of nodal SVM weights from the multivariate 
E:I ratio model was significantly associated with transmodality using an estab-
lished measure of macroscale cortical organization (35). (B) Nodal weights were 
also specifically correlated with the spatial patterns of benzodiazepine (BZD)– 
sensitive GABAA receptor subunit expression. Spatial relationships were tested for 
significance against a spatial autocorrelation–preserving null distribution [BrainSMASH 
(36)] and corrected for multiple comparisons using the Bonferroni correction 
(PBonf). n.s., not significant.
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Analysis of dimensions of psychopathology
Last, we investigated whether individual differences in dimensions 
of psychopathology (39, 40) were associated with the E:I ratio of 
association cortex. We found that mood disorder symptomatology, 
but not other psychopathology dimensions, moderated age-related 
differences in the estimated transmodal E:I ratio. Specifically, indi-
viduals with greater lifetime mood disorder symptoms displayed a 
relatively stable E:I ratio over development instead of the normative 
reduction of the E:I ratio (Age*Mood interaction: F = 7.64, P = 0.0058).

DISCUSSION
We used a unique combination of human phMRI and developmen-
tal fMRI data to provide evidence for an essential component of 
critical period development: developmental reductions in the E:I 
ratio. Our approach generated an empirical fMRI model of the E:I 
ratio that showed a high degree of correspondence to known 
GABAergic benzodiazepine neuropharmacology and that could be 
applied to a large independent sample of youth. Consistent with our 
hypothesis, this approach revealed that patterns of functional 
neurodevelopment in adolescence are consistent with developmen-
tal reductions in the E:I ratio that are specific to association cortex. 
Furthermore, we show that individual differences in this process are 
associated with individual differences in lifetime mood symptom 
burden, in alignment with models positing that E:I abnormalities 

underlie the emergence of psychopathology (6, 23, 24, 41). Together, 
these findings support the hypothesis that critical period mecha-
nisms shape association cortices during adolescence.

Critical period development has been predominantly associated 
with early sensory cortex development. Since the first studies of 
critical period development in the visual cortex almost 60 years ago 
(42), a wealth of previous work has elucidated the mechanisms that 
shape critical period plasticity in these areas. These studies have 
identified the maturation of local inhibitory circuitry, particularly 
PV interneurons, and its resulting impact on the E:I balance as an 
essential critical period mechanism (9, 11). This phenomenon is 
necessary for the opening of the critical period window, facilitates 
critical period plasticity, and is present in critical periods across 
sensory modalities (11, 12, 17, 29). For example, modulation of the 
E:I balance using benzodiazepines has been shown to be sufficient 
to accelerate the timing of critical period plasticity (9, 29). The 
results of this study suggest that this phenomenon also occurs in 
association cortex during human adolescence.

Our findings align with a growing literature characterizing in-
hibitory maturation during this developmental stage. Animal 
models and postmortem human studies have shown maturation of 
inhibitory neurobiology in the prefrontal cortex during adolescence, 
including increasing expression of PV interneurons and GABAA 1 
receptor subunits (14, 15, 18, 19). These processes increase functional 
inhibition, reducing the E:I ratio and increasing the signal-to-noise 

Fig. 4. Transmodal areas undergo E:I ratio development during adolescence. (A) Model performance for unimodal and transmodal classifiers. SVM classifiers were 
trained and validated for connections to the most transmodal (green) and most unimodal (blue) areas only. Dashed lines indicate acquisition field of view for the phMRI 
dataset. Both models performed significantly better than a permuted null distribution (middle: receiver operating characteristic curves for each model; right: null distributions 
from 1000 null permutations). (B) Models trained on transmodal and unimodal data were applied to the developmental dataset, generating a distance metric for each 
participant where greater values represent patterns of functional connectivity consistent with a lower E:I ratio. Individuals had a lower estimated E:I ratio with age in 
transmodal cortex (left) but not in unimodal cortex (middle). This pattern was confirmed by a significant effect of age on within-subject change in transmodal versus 
unimodal distance scores (right). *P < 0.05 and **P < 0.01.
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ratio of circuit activity (11, 21, 43). Computational simulations have 
suggested that these maturations also facilitate high-frequency 
oscillatory capability (21). This is consistent with human electro-
encephalography studies showing increased -band oscillatory power 
during adolescence (44). Last, two recent magnetic resonance spec-
troscopy studies have shown increases in GABA levels relative to 
glutamate levels in frontal cortex during adolescence (45, 46). Al-
though it is not possible to examine the functional effect of these 
changes on the E:I ratio using spectroscopy, these findings align 
with a model of developmental reduction in the E:I ratio during 
adolescence. This body of previous work coheres with the findings 
presented here and is consistent with a critical period model of 
adolescent association cortex development. Just as sensory critical 
period plasticity refines neural circuits underlying sensory processing, 
the critical period for association cortex may facilitate the plasticity 
of circuits that underlie the higher-order cognitive processes refined 
during adolescence and are thought to be dependent on association 
cortex (5, 6).

It should be noted that there are two classes of critical period 
mechanisms: facilitating factors, which open the critical period 
window and facilitate plasticity, and braking factors, which stabilize 
neural circuits and physically limit future plasticity (7, 9). The 
maturation of inhibition and the resulting reduction in the E:I ratio 
are critical period facilitators (7). Using GAMs, which can flexibly 
capture linear and nonlinear effects while penalizing overfitting, we 
found that the model fit for age-related reductions in the associa-
tion cortex E:I ratio was linear. It is important to note that this does 
not necessarily mean that critical period plasticity is linearly in-
creasing or that the critical period window is persistently open over 
the entire age range reported here. The developmental reduction in 
the E:I ratio is indicative of critical period opening, but it does not 
provide information about critical period closure. Closure of the 
adolescent critical period would be dependent on the development 
of braking factors, such as myelination and the formation of 
perineuronal nets (PNNs) (47, 48), which may follow distinct 
developmental trajectories. Consistent with a critical period model, 
many studies have provided evidence of myelination of association 
cortex and large white matter (WM) pathways linking association 
cortex to other areas of the brain that continues into adulthood, 
including histological (49), myelin mapping (50, 51), and diffusion 
imaging (52, 53). At present, studies of PNN formation are limited 
to postmortem methods and animal models, which have demon-
strated developmental increases in PNN formation in the prefrontal 
cortex from adolescence to adulthood (54, 55). Together, these 
studies indicate that critical period braking factors are forming 
during the transition from adolescence to adulthood, stabilizing 
neural circuits and closing the critical period window. However, to 
precisely demarcate the opening and closing of critical period plasticity 
during adolescence, future work that jointly investigates the develop-
mental time course of critical period facilitators, such as the E:I ratio 
reported here, and critical period braking factors is needed.

Mood-related psychopathology typically first emerges during 
adolescence, with adolescent onset predicting greater illness 
duration and comorbidity (56). Here, we observed that beginning 
in adolescence, youth with greater burden of mood symptoms 
exhibit an altered pattern of E:I development within the association 
cortex. Previous cross-species research has linked E:I disruptions to 
the manifestation of mood symptomatology, with alterations in both 
GABA and glutamate neurotransmitter systems being implicated 

(24, 57). Animal models of depression exhibit lower expression of 
inhibitory interneuron markers and GABA synthesis enzymes, as 
well as reduced excitatory neuron dendritic spine and synapse 
number (24). Human studies have provided convergent evidence, 
demonstrating reduced GABA levels in the brain in those with 
depression (58). Our study supports E:I-based models of mood 
psychopathology and further places them within a key neuro-
developmental framework—underscoring how E:I disruptions may 
reflect atypical critical period development. As alprazolam modu-
lates the E:I ratio via GABA, our findings suggest that mood symp-
toms in youth may, in part, be linked to impaired development of 
inhibition in transmodal cortex that supports social cognition, 
emotion regulation, and reward processing (5).

Last, we note that the approach used in this study highlights the 
potential for phMRI data to generate insights into independent 
datasets to inform new hypotheses. We combined machine learning 
and phMRI using a GABAergic alprazolam challenge to generate an 
empirical model for the effect of GABAergic modulation on 
patterns of fMRI connectivity. As evidence for the efficacy of this 
approach, the trained model could not only significantly predict 
drug versus placebo sessions in unseen data but also the model 
features demonstrated a significant correspondence with known 
benzodiazepine neuropharmacology. Notably, the model features 
were significantly associated with the GABA receptor most strongly 
implicated in critical period development, the GABAA 1 receptor. 
Although, because of the rarity of phMRI data, we were not able to 
confirm the generalizability of our model with an independent 
alprazolam phMRI dataset, the model performance and underlying 
interpretability of the learned features highlight the biological rele-
vance of this method. Whereas in this study we applied this method 
to an independent developmental dataset to provide insights into 
the critical period mechanisms unfolding during adolescence, 
future work could apply this approach to other datasets to inform 
new research questions.

Despite the strengths of this study, two limitations should be 
noted. First, recent work has demonstrated that functional connec-
tivity estimates become more stable and reliable as the duration of 
the time series increases, suggesting that time series greater than 
30 min may be ideal (59, 60). The datasets used in the current study 
acquired data that were considerably shorter in duration. As such, 
future work could strengthen the results presented here by collecting 
longer functional acquisitions that would improve the stability of 
functional connectivity estimation and potentially improve the 
performance of the classifier. Second, the existing dataset we used 
to generate our empirical E:I model consisted of an adult sample 
that was considerably older than the developmental sample to which 
we applied the validated model. An advantage of our approach is 
that our model was trained in a sample in which inhibitory matura-
tion has completed, allowing us to isolate the effect of the GABAergic 
modulation of functional connectivity patterns irrespective of any 
developmental effects. Although it may also be informative to train 
the model in a sample of comparable age, it would be ethically and 
practically difficult to conduct a pharmacological imaging study in 
a pediatric population. As such, the use of an adult sample is likely 
the best feasible approach.

Together, the findings of this study support the hypothesis that 
critical period mechanisms, such as the inhibition-induced reduc-
tion of the E:I ratio, shape association cortices during adolescence. 
Studying development from a critical period perspective provides a 
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powerful mechanistic framework for understanding how experience 
and neurobiology interact to shape long-term cognitive, social, and 
psychiatric outcomes. A critical period model of adolescent devel-
opment can draw on the history of detailed work on sensory critical 
periods to generate testable hypotheses for the mechanisms unfolding 
during adolescence in association cortex. Understanding these 
mechanisms are a necessary prerequisite to understanding of how 
experience, environment, and neurobiology contribute to differing 
neurodevelopmental trajectories in health and mental illness. This 
work thus lays the groundwork for future studies of the unique 
impact of experience on neurodevelopment and also suggests the 
possibility of targeted interventions during this critical window of 
vulnerability to psychopathology (61).

MATERIALS AND METHODS
Participants and experimental procedures
Alprazolam sample
The alprazolam sample and study procedures have been described 
in detail in our earlier work (62). Briefly, 47 adults participated in a 
double-blind, placebo-controlled pharmacological imaging study 
using the benzodiazepine alprazolam. Exclusion criteria have been 
previously described (62), but we note that participants were excluded 
for current or recent benzodiazepine use, current or recent treat-
ment with drugs known to affect benzodiazepine action, history of 
alcohol abuse or dependence, and history of psychiatric or neuro-
logical disorders. Each participant completed two identical experimen-
tal sessions approximately 1 week apart. In one session, participants 
were given a 1-mg dose of alprazolam, and in the other, they were 
given an identical appearing placebo. One milligram of alprazolam 
produces an increase in GABAergic inhibition that is considered to 
be clinically effective (33). The order of administration was counter-
balanced across participants. Alprazolam or placebo was adminis-
tered 1 hour before the fMRI acquisition so that alprazolam levels 
and effects were near their peak at the time of data collection (33). 
Following the MRI sessions, blood was drawn to measure alprazolam 
plasma levels (high-performance liquid chromatography assay with 
a lower limit of quantitation of 5 ng/ml performed by NMS Labs, 
Willow Grove, PA). During both sessions, participants completed 
an emotion identification task that lasted 10.5 min, while fMRI data 
were collected. Task-related fMRI results have been previously 
reported (62). Four participants were excluded because of excess 
head motion in at least one session (see below) for a final sample of 
43 participants and 86 sessions total (ages 20.9 to 59.4; M = 40.3, 
SD = 13.12, male/female = 24/19). Study procedures were approved 
by the University of Pennsylvania Institutional Review Board, and 
all participants provided written informed consent.
Developmental sample
Neuroimaging data were obtained from a community-based sam-
ple of 1476 youth (ages 8 to 21.9; M = 14.63; SD = 3.43; male/
female = 698/778) that were part of the Philadelphia Neurodevelop-
mental Cohort (PNC). Data collection procedures and sample 
characteristics have been previously described in detail (39, 63). 
fMRI data were collected while participants performed the same 
emotion identification task as the alprazolam sample; this is also 
described in previous work (63). From this original sample, 306 
participants were excluded on the basis of health criteria, including 
psychoactive medication use at the time of study, medical problems that 
could affect brain function, a history of psychiatric hospitalization, 

and gross structural brain abnormalities. A total of 234 participants 
were excluded from further analysis due to head motion (see below), 
and 56 were excluded for poor structural image quality. In sum, 
following health exclusions and rigorous quality assurance, we 
retained 879 participants (ages 8.0 to 21.7 at first visit; M = 14.95; 
SD = 3.24; male/female = 383/496).

Neuroimaging acquisition
Alprazolam sample
All data were collected on a Siemens Trio 3T as previously reported 
(62). Whole-brain structural data were obtained with a 5-min 
magnetization-prepared, rapid acquisition gradient-echo T1- 
weighted (T1w) image (MPRAGE) using the following parameters: 
repetition time (TR) = 1620 ms; echo time (TE) = 3.87 ms; field of 
view (FOV) = 180 × 240 mm; matrix = 192 × 256; effective voxel 
resolution = 1 × 1 × 1 mm3. Blood oxygen level–dependent (BOLD) 
fMRI data were obtained as a slab single-shot gradient-echo echoplanar 
imaging (EPI) sequence using the following parameters: TR = 3000; 
TE = 32 ms; flip angle = 90°; FOV = 240 mm; matrix = 128 × 128; slice 
thickness/gap = 2/0 mm; 30 slices; effective voxel resolution = 1.875 × 
1.875 × 2 mm3; 210 volumes. As previously described (62), data were 
acquired in a FOV that included temporal, inferior frontal, and visual 
cortices as well as subcortical structures (Fig. 3A, gray boxes).
Developmental sample
All neuroimaging data were collected on the same Siemens Trio 3T 
scanner as was used for the alprazolam dataset. The neuroimaging 
procedures and acquisition parameters have been previously de-
scribed in detail (63). Briefly, structural MRI was acquired with a 
5-min MPRAGE T1w image [TR = 1810 ms; TE = 3.51 ms; inver-
sion time (TI) = 1100 ms; FOV = 180 × 240 mm2; matrix = 192 × 256; 
effective voxel resolution = 0.9 × 0.9 × 1 mm3]. BOLD fMRI was 
acquired using similar acquisition parameters to the alprazolam 
dataset. BOLD fMRI scans were acquired as single-shot, interleaved 
multislice, GE-EPI sequence sensitive to BOLD contrast with the 
following parameters: TR = 3000 ms; TE = 32 ms; flip angle = 90°; 
FOV = 192 × 192 mm2 (whole-brain acquisition); matrix = 64 × 64; 
46 slices; slice thickness/gap = 3/0 mm; effective voxel resolution = 
3.0 × 3.0 × 3.0 mm3; 210 volumes.

Preprocessing of neuroimaging data
All preprocessing was performed using fMRIPrep 20.0.7 (RRID: 
SCR_016216) (64), which is based on Nipype 1.4.2 (65) and XCP 
Engine (PennBBL/xcpEngine: atlas in MNI2009 version 1.2.3; 
Zenodo: http://doi.org/10.5281/zenodo.4010846). The neuroimaging 
data from the alprazolam and developmental datasets were processed 
using identical pipelines as described below.
Anatomical data preprocessing
The T1w image was corrected for intensity nonuniformity with 
N4BiasFieldCorrection, distributed with ANTs 2.2.0 (66), and used 
as T1w reference throughout the workflow. The T1w reference 
was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs) using OASIS30ANTs 
as target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), WM, and gray matter was performed on the brain-extracted 
T1w using FAST in FSL 5.0.9 (67). Volume-based spatial normal-
ization to MNI2009c standard space was performed through 
nonlinear registration with antsRegistration (ANTs 2.2.0) using 
brain-extracted versions of both the T1w reference and the T1w  
template.

http://doi.org/10.5281/zenodo.4010846
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Functional data preprocessing
The alprazolam dataset consisted of two BOLD acquisitions per 
participant (drug and placebo session), which were preprocessed 
individually. The developmental dataset consisted of one BOLD 
acquisition per participant. All BOLD acquisitions were processed 
with the following steps. BOLD runs were first slice time–corrected 
using 3dTshift from AFNI 20160207 (68) and then motion-corrected 
using mcflirt (FSL 5.0.9). A field map was estimated on the basis of 
a phase difference map calculated with a dual-echo Gradient-recalled 
echo sequence, processed with a custom workflow of SDCFlows 
inspired by the epidewarp.fsl script and further improvements in 
Human Connectome Project (HCP) Pipelines (69). The field map was 
then co-registered to the target EPI reference run and converted to 
a displacement field map with FSL’s fugue and other SDCflows tools. 
On the basis of the estimated susceptibility distortion, a corrected 
BOLD reference was calculated for a more accurate co-registration 
with the anatomical reference. The BOLD reference was then 
co-registered to the T1w reference using bbregister (FreeSurfer), 
which implements boundary-based registration (70). Co-registration 
was configured with nine degrees of freedom to account for distortions 
remaining in the BOLD reference. Six head motion parameters 
(corresponding rotation and translation parameters) were estimated 
before any spatiotemporal filtering using mcflirt. Last, the motion- 
correcting transformations, field distortion correcting warp, BOLD- 
to-T1w transformation, and T1w-to-template (MNI) warp were 
concatenated and applied to the BOLD time series in a single step 
using antsApplyTransforms (ANTs) with Lanczos interpolation.

Confounding time series were calculated on the basis of the 
preprocessed BOLD data. The global signal was extracted within the 
whole-brain mask. In addition, a set of physiological regressors was 
extracted to allow for component-based noise correction (CompCor) 
(71). Anatomical CompCor (aCompCor) principal components 
were estimated after high-pass filtering the preprocessed BOLD 
time series (using a discrete cosine filter with 128-s cutoff). The 
aCompCor components were calculated within the intersection of 
the aforementioned mask and the union of CSF and WM masks 
calculated in T1w space after their projection to the native space of 
each functional run (using the inverse BOLD-to-T1w transforma-
tion). Components were also calculated separately within the WM 
and CSF masks. In this study, for each aCompCor decomposition, 
the k components with the largest singular values were retained 
such that the retained components’ time series were sufficient to 
explain 50% of variance across the nuisance mask (CSF and WM). 
The remaining components were dropped from consideration. The 
head motion estimates calculated in the correction step were also 
placed within the corresponding confounds file. The confound time 
series derived from head motion estimates and global signals were 
expanded with the inclusion of temporal derivatives and quadratic 
terms for each (34).

Subject-level time series analysis was carried out in XCP Engine 
using FILM (FMRIB’s Improved General Linear Model). All event 
conditions from the emotion identification task were modeled in 
the GLM as 5.5-s boxcars convolved with a canonical hemodynamic 
response function. Each of the five emotions (fear, sad, angry, happy, 
and neutral) was modeled as a separate regressor. The temporal 
derivatives and quadratic terms for each task condition as well as 
the confounding aCompCor, global signal, and motion time series 
described above were included as nuisance regressors. The nuisance 
regression pipeline used here has been shown to be a top-performing 

procedure for mitigating motion artifacts (34). Consistent with our 
previous work, participants in the alprazolam dataset were excluded 
from future analyses if mean framewise displacement exceeded 
0.5 mm in either session. A more stringent threshold of 0.3 mm was 
applied to the developmental dataset; head motion was also included 
as a covariate in all developmental models (see below).

Connectivity matrix generation
Fully preprocessed fMRI data were used to generate mean time 
series within a set of atlas-defined brain regions for each participant. 
Cortical regions were defined according to the Schaefer 400 parcel 
cortical atlas (72). To accommodate the restricted FOV of the 
alprazolam BOLD acquisition, the atlas was masked such that only 
parcels with greater than 95% coverage were included in connectivity 
analyses. Subcortical regions were defined using the Automated 
Anatomical Labeling (AAL) atlas (73). Subcortical areas included 
the left and right caudate, putamen, accumbens, pallidum, thalamus, 
amygdala, hippocampus, and parahippocampal area. These cortical 
and subcortical atlases were combined and used to generate mean 
time series for each region in each dataset. Functional connectivity 
was calculated as the correlation coefficient of the time series for 
each pair of regions (20,503 unique pairs). As part of sensitivity 
analyses, we repeated this process after defining cortical areas using 
Schaefer 200 parcellation (72), the Multi-modal Parcellation atlas 
(74), the Gordon cortical atlas (75), or the AAL (73).

Pharmacological classification analysis
We used a linear SVM to classify drug versus placebo sessions in 
the alprazolam dataset based on multivariate patterns of functional 
connectivity. Linear SVMs find a hyperplane to separate two classes 
of data by maximizing the margin between the closest points (the 
support vectors). SVMs were implemented in R (76) using the e1071 
library and were trained using a linear kernel and the default pa-
rameters. Model performance was evaluated using 10-fold cross- 
validation, iteratively selecting data from 90% of participants as 
training data and testing the trained model on data from the 
remaining 10% of participants. Across testing sets, the prediction 
accuracy and AUC were calculated to evaluate model performance. 
To ensure that our results were not driven by a specific cross-validation 
split, we repeated the entire 10-fold cross-validation procedure 
100 times, drawing the 10-fold subsets at random each time. Perform-
ance metrics were finally averaged across the 100 iterations of the 
cross-validation procedure.

To evaluate whether model performance (i.e., the accuracy and 
the AUC) was significantly better than expected by chance, we per-
formed a permutation test. Specifically, we reapplied the cross- 
validation procedure 1000 times, each time permuting the session 
labels (drug and placebo) across the training samples without re-
placement. Significance was determined by ranking the actual 
prediction accuracy versus the permuted distribution; the P value of 
the accuracy and AUC was calculated as the proportion of permu-
tations that showed a higher value than the observed value in the 
real, unpermuted data. To confirm that correct versus incorrect 
classification of drug and placebo sessions were not influenced 
by demographic or experimental factors, we conducted additional 
analyses. Demographic variables included participant age, participant 
sex, total score on the Structured Interview for Schizotypy (SIS), 
and state (before and after scan) and trait anxiety scores from the 
State Trait Anxiety Inventory (STAI). Experimental factors included 

http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl
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drug condition (whether accuracy differed between alprazolam 
versus placebo sessions), order of testing (whether accuracy differed 
between sessions on day 1 versus day 2), the blood plasma concen-
tration of alprazolam following the experiment, self-reported feel-
ings of relaxation during the experiment, and head motion during 
the fMRI scan (mean framewise displacement). Continuous variables 
were evaluated using independent samples t tests; categorical 
variables were evaluated using 2 tests.
Analysis of feature weights
After cross-validation and significance testing, we trained the model 
on all participants and extracted the feature weights for further 
analysis. First, we calculated the absolute value of the weights and 
summed them across all connections (edges) for a given region 
(node) to compare the overall contribution of each region to the 
model, irrespective of the sign of the feature weights (77). Next, to 
evaluate the spatial pattern of the feature weights, we calculated the 
mean signed feature weight for each node, reflecting the direction-
ality of the effect of the drug manipulation according to the trained 
model. We then used this feature map to assess the biological 
relevance of our trained model. Specifically, we calculated the 
spatial correlation between this pattern of nodal feature weights 
with two sets of cortical features. The first was the widely used 
principal gradient of macroscale cortical organization (35), which 
places each cortical region on a continuum between unimodal (i.e., 
sensorimotor cortices) and transmodal (i.e., association cortices) 
function. The second set of cortical features was selected on the 
basis of the known pharmacology of benzodiazepines like alprazolam. 
Alprazolam is a positive allosteric modulator of the GABAA recep-
tor, and of the six GABAA  subunits (1 to 6), only subunits 1, 
2, 3, and 5 are benzodiazepine sensitive (37). To quantify the 
spatial distribution of the six GABAA  subunits, we extracted the 
microarray gene expression patterns for their corresponding 
GABAA receptor genes (GABRA1 to GABRA6) from the Allen 
Human Brain Atlas (data available at www.meduniwien.ac.at/
neuroimaging/mRNA.html) (38). For each of the six gene expres-
sion maps, we quantified the mean expression value within each 
cortical parcel and calculated the spatial correlation with the pattern 
of nodal SVM weights.

To test the significance of the spatial correlation between our 
pattern of cortical feature weights and each of the biological brain 
maps, we compared the observed correlation value to a null distribution 
generated with BrainSMASH (Brain Surrogate Maps with Autocorrelated 
Spatial Heterogeneity; https://brainsmash.readthedocs.io/) (36). 
The spatial autocorrelation of brain maps can lead to inflated P values 
in spatial correlation analyses and must be accounted for in the 
creation of null models. BrainSMASH addresses this by generating 
permuted null brain maps that match the spatial autocorrelation 
properties of the input data. We used BrainSMASH to generate 
10,000 spatial autocorrelation–preserving null permutations based 
on the input data and the pairwise distance matrix for the cortical 
parcellation, generating a null distribution of spatial correlation 
coefficients. We calculated two-tailed P values by squaring all 
correlation values (i.e., spatial R2) and calculating the proportion of 
times the null distribution exceeded the observed value.
Transmodal and unimodal classification models
Our primary hypothesis was that E:I ratio reductions would be 
specific to association cortices during youth. To test this hypothesis 
directly, we trained two additional models after applying an a priori 
feature selection step. Specifically, we thresholded the top and 

bottom quartiles of cortical parcels based on their position in the 
principal gradient of functional organization (35), with the top 25% 
representing transmodal association cortex and the bottom 25% 
representing unimodal sensory cortex. We then created two new 
feature sets that restricted the input features to connections to these 
transmodal or unimodal areas only. This selection procedure 
ensured that the resulting numbers of features were equal between 
the two feature sets (9541 features per model). We then trained and 
validated the transmodal and unimodal models according to the 
procedures described above.

Developmental analyses
Application of the pharmacological model to the  
developmental dataset
After training and validating the pharmacological benzodiazepine 
models, we applied the models to the functional connectivity data 
for each participant in the developmental sample. For each participant, 
each model yielded the distance from the classification hyperplane 
that separates the two classes (drug versus placebo). Observations 
close to the hyperplane (distance values near zero) are less represent-
ative of the class, and those further from the hyperplane are more 
representative. The distance metric is such that values greater than 
zero indicate more drug-like patterns of functional connectivity, 
and values less than zero indicate more placebo-like patterns of 
connectivity. As the pharmacological effect of alprazolam is to 
increase GABAergic inhibitory signaling, more drug-like patterns 
reflect greater GABAergic inhibitory modulation of functional 
connectivity. As such, more drug-like patterns were interpreted to 
reflect a reduced E:I balance relative to more placebo-like patterns. 
These distance metrics were normally distributed and thus provided 
a continuous measure of E:I balance for use in further analyses. We 
first applied the model trained on all the input features and then 
applied the transmodal- and unimodal-specific models, generating 
three sets of distance values per participant.
Developmental regression models
To assess the developmental trajectory of E:I balance, we modeled 
the classification distance metrics from each model as a function of 
age using penalized splines within a GAM. GAMs allow us to flexibly 
capture linear or nonlinear age effects while penalizing overfitting. 
To test for windows of significant change across the age range, we 
calculated the first derivative of the smooth function of age from the 
GAM model using finite differences and then generated a simulta-
neous 95% confidence interval of the derivative using the gratia 
library (78) in R. Intervals of significant change were identified as 
areas where the simultaneous confidence interval of the derivative 
does not include zero. To test whether the effect of age on classifica-
tion distance differed between the transmodal and unimodal SVM 
models, we calculated the residualized change (79) in transmodal 
versus unimodal distance scores by regressing the unimodal distance 
out of transmodal distance. We then regressed the residualized 
change score on age using a GAM. All models included sex as a 
covariate as well as head motion and attentiveness as covariates of 
no interest. Head motion was quantified as mean framewise dis-
placement during the fMRI acquisition. Attentiveness was quanti-
fied as the number of response omissions during the emotion 
identification task; this covariate was included to control for po-
tential effects of arousal on model performance as alprazolam 
can cause drowsiness. All GAMs were fit using the mgcv library 
(80) in R.

http://www.meduniwien.ac.at/neuroimaging/mRNA.html
http://www.meduniwien.ac.at/neuroimaging/mRNA.html
https://brainsmash.readthedocs.io/
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Analysis of dimensions of psychopathology
As previously described (39, 40), PNC participants underwent a 
clinical assessment of psychopathology. Multiple domains of psy-
chopathology symptoms were evaluated using a structured screening 
interview (GOASSESS); we used these data to investigate whether 
dimensions of psychopathology moderated developmental reduc-
tions in E:I balance. As has been detailed in previous work (39, 40), 
factor scores were derived from the clinical assessments using a 
bifactor confirmatory factor analysis model that included a general 
factor for overall psychopathology as well as four specific factors 
that primarily represent anxious-misery (mood and anxiety) symp-
toms, psychosis spectrum symptoms, behavioral symptoms (conduct 
and attention-deficit hyperactivity disorder), and fear symptoms 
(phobias). All five factors are orthogonal and can be considered 
jointly in analysis of imaging data. To sample a broad range of 
psychopathology, we expanded our inclusion criteria to include 
individuals with a history of psychiatric hospitalization and those 
receiving pharmacological psychiatric treatment (N = 1018; ages 8 
to 21.7; M = 15.0; SD = 3.23; male/female = 462/556). We analyzed 
these data in a GAM that included age-by-factor score interactions 
for each factor from the bifactor model. Interactions were fit as 
bivariate smooth interactions with penalized splines using tensor 
interaction smooths (“ti” in mgcv).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj8750

View/request a protocol for this paper from Bio-protocol.
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