
sensors

Article

A Hierarchical Deep Fusion Framework for
Egocentric Activity Recognition using a Wearable
Hybrid Sensor System

Haibin Yu 1, Guoxiong Pan 1, Mian Pan 1, Chong Li 1, Wenyan Jia 2, Li Zhang 3

and Mingui Sun 4,*
1 College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;

shoreyhb@hdu.edu.cn (H.Y.); pgx@hdu.edu.cn (G.P.); ai@hdu.edu.cn (M.P.); 172040046@hdu.edu.cn (C.L.)
2 Department of Electrical and Computer Engineering, University of Pittsburgh, PA 15261, USA;

wej6@pitt.edu
3 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China;

zhangli@hdu.edu.cn
4 Department of Neurological Surgery, University of Pittsburgh, PA 15213, USA
* Correspondence: drsun@pitt.edu; Tel.: +1-646-725-6687

Received: 28 December 2018; Accepted: 24 January 2019; Published: 28 January 2019
����������
�������

Abstract: Recently, egocentric activity recognition has attracted considerable attention in the pattern
recognition and artificial intelligence communities because of its wide applicability in medical
care, smart homes, and security monitoring. In this study, we developed and implemented a
deep-learning-based hierarchical fusion framework for the recognition of egocentric activities of
daily living (ADLs) in a wearable hybrid sensor system comprising motion sensors and cameras.
Long short-term memory (LSTM) and a convolutional neural network are used to perform
egocentric ADL recognition based on motion sensor data and photo streaming in different layers,
respectively. The motion sensor data are used solely for activity classification according to motion
state, while the photo stream is used for further specific activity recognition in the motion state
groups. Thus, both motion sensor data and photo stream work in their most suitable classification
mode to significantly reduce the negative influence of sensor differences on the fusion results.
Experimental results show that the proposed method not only is more accurate than the existing
direct fusion method (by up to 6%) but also avoids the time-consuming computation of optical flow
in the existing method, which makes the proposed algorithm less complex and more suitable for
practical application.

Keywords: deep learning; egocentric activity recognition; hierarchical fusion framework; wearable
sensor system

1. Introduction

In recent years, wearable smart devices have advanced rapidly, and various smart wearable
devices, such as Google Glass, Microsoft SenseCam, and Apple Watch have become very popular. With
the help of a variety of sensors integrated in wearable devices, such as cameras, inertial measurement
units (IMUs), and global positioning system (GPS), the wearer’s state data (called egocentric or
first-person data) can be automatically collected and recorded over extended periods. Through analysis
of these egocentric data, real-time monitoring and state evaluation of the wearer can be realized, which
results in egocentric data having wide application prospects in medical care [1,2], smart homes and
offices [3], security monitoring [4], and other fields. As egocentric activity recognition is the basis of
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subsequent activity analysis, it has an important research value and has attracted high interests in the
fields of human activity recognition and artificial intelligence [5,6].

For egocentric activity recognition, traditional methods use a wearable sensor, such as an IMU,
to collect motion data and then determine the activity using a machine learning-based classifier [7].
Because the IMU-produced motion data lack environmental contexts, traditional methods are sensitive
to the posture of the body and the location of the sensor, which limit the recognition performance.
Currently, these methods can only produce reasonable recognition results for activities with obvious
differences in motion states, such as sitting, standing, walking, and climbing stairs, under the condition
that the motion sensors are placed at appropriate locations of the body, which are often inconvenient
or obtrusive for the device wearer. Compared with motion sensor data, video/images contain more
contextual and environmental information. Consequently, vision-based activity recognition using a
wearable camera has become a major focus of research in the field of egocentric activity recognition [8,9].

Recently, with the widespread study of artificial intelligence, deep learning-based methods have
been developed to recognize egocentric activities [10–12]. Generally, these methods can be classified
into two categories according to the data recording mode utilized by the wearable camera: video
stream-based methods and photo stream-based methods [13]. In the first category, the video stream
acquired using a short-time acquisition device, such as Google Glass, with a high shooting frame rate
(above 30 frames per second/fps). Due to the availability of large amounts of correlated image data in
a relatively short period of time, it is convenient to obtain the wearer’s motion information by using
motion estimation methods. Thus, video stream-based methods can be used primarily to recognize
transient actions or activities that are short-lived, such as “taking a medical pill” and “dipping a piece
of fry in ketchup.” Conversely, photo streams are usually acquired at a low frame rate (2–3 frames per
minute/fpm) using a long-time acquisition device such as a life logger. Because the wearer’s motion
information cannot be estimated adequately from the low-frame-rate photo streams, this category of
methods is mainly used to recognize some long-lasting high-level activities, such as most activities of
daily living (ADLs) (e.g., “eating dinner” and “watching TV”).

Although the deep learning-based vision egocentric activity recognition approach has made
significant progress, this approach is still subject to many conditions, such as the location of the
wearable camera, imaging quality, lighting condition, and occlusion. In practical applications, no single
sensor can handle all situations, and a common practice for avoiding the risk of misrecognition is
to use multiple sensors. Recently, researchers have begun to fuse vision and other types of sensor
data in egocentric activity recognition [2,14]. For example, an 80.5% average accuracy of 20 distinct
ADLs was achieved whereas the average individual accuracies of video and sensor data only 75%
and 49.5%, respectively. Although the accuracy of the activity recognition after fusion has been
improved, in the hybrid sensor system, all sensors work simultaneously and equally to distinguish
all activities. As different types of sensors have different characteristics and are suitable for different
activity classification modes, when they work in the same classification mode, the recognition effects
of some activities may be very different, which has a negative impact on the fusion results.

In order to solve the problems in existing methods, we propose a deep-learning based hierarchical
fusion framework for ADL recognition in our self-developed hybrid sensor system. The main
contributions of this paper are as follows:

(1) A two-layer hierarchical framework is proposed. These layers are established by mapping or
making correspondence between the ADLs to be recognized and their common motion states.
With this mapping or correspondence, the target ADLs to be recognized can be easily grouped
in the motion state layer using motion sensor data only so that the ADL recognition can be
performed in the group with a significantly reduced number of candidate activities.

(2) A novel method to use hybrid data for egocentric ADL recognition is proposed. The motion
sensor data are used only to distinguish motion states of ADLs instead of distinguishing all the
ADLs to be recognized. This approach enables both motion sensor data and photo streams to be
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used in their most suitable classification modes. This strategy effectively eliminates the negative
influence of sensor differences on data fusion results.

(3) A multimodal hybrid database is created consisting of synchronized egocentric IMU sensor data
and a photo stream acquired by eButton, a self-developed wearable device [15]. This database
can be used to evaluate the egocentric activity recognition methods based on multisensor fusion.

The remainder of this paper is organized as follows. Related work is briefly summarized in
Section 2. The proposed method is described in detail in Section 3. Experimental results are presented
in Section 4. We conclude this paper and suggest future work in Section 5.

2. Related Work

At present, egocentric activity recognition methods reported in the literature can mainly be
divided into three categories according to wearable sensor types [16]: single motion sensor-based,
single camera-based, and hybrid sensor system-based methods.

2.1. Single Motion Sensor-Based Egocentric Activity Recognition

Motion sensors for human activity recognition mainly include accelerometers, gyroscopes, and
magnetic sensors (A/M/G). These three sensors are commonly integrated in a single chip called
the inertial measurement unit (IMU), which is commonly found in a variety of wearable devices.
Currently, the IMU-produced motion data are the most widely used data form for egocentric activity
recognition [7,17–20]. In many systems, the sampling rate of a motion sensor is selected to be very
high so that the motion sensor data can be regarded as a continuous time series. From these data,
motion sensor-based activity recognition methods usually extract a set of statistical features, such as
the mean, variance, correlation, and amplitude area, within an overlapping or non-overlapping time
sliding window. Activity recognition is then performed by a machine learning algorithm, such as a
decision tree, Bayes’ law, or a support vector machine. Recently, with the progress of deep learning
study, long short-term memory (LSTM) based on a recurrent neural network has been widely used in
the field of time domain signal processing. Several reports have also used LSTM for egocentric activity
recognition [21–23] and achieved encouraging results.

2.2. Single Camera-Based Egocentric Activity Recognition

Egocentric activity recognition using a single wearable camera is commonly based on deep
learning. As mentioned previously, the reported recognition methods can be divided into two main
categories: video stream-based and photo stream-based [13]. The photo stream-based methods are
usually applied to life loggers. As the camera in a life logger usually shoots at a very low frame rate
(2–3 fpm)—the temporal correlation between the images in the photo stream is usually very low or
there is no temporal correlation (only key frames are stored)—only high-level activities that last for a
long time can be recognized. In this situation, we can only rely on CNN to learn the environmental
information provided by individual images, and to complete the activity recognition by the similarity
between the environmental information [9,13,24–26]. For example, Oliveira-Barra et al. [26] used a
gradient boosting machine approach to retrieve activities based on their estimated relations with
the recognized objects (by LSDA CNN) in the scene. When there is a certain temporal correlation
between the images of a photo stream, an LSTM network can be added to the CNN for time correlation
modeling. For example, Cartas et al. [13] proposed an end-to-end architecture consisting of LSTM units
on the top of a VGG-16 CNN for each frame trained by processing the photo-streams using batches of
a fixed size. Experimental results over the same dataset used in [26] have shown a 6% improvement in
accuracy with respect to the VGG-16 baseline.
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2.3. Hybrid Sensor System-Based Egocentric Activity Recognition

With the continuous development of sensor technology, the performances of sensors have been
improved, and their sizes and costs have decreased, resulting in hybrid sensor systems’ being easier
to manufacture. In combinations of different types of sensors, as IMUs and cameras are more easily
integrated within the same compact space, research on egocentric activity recognition based on IMU
+ camera hybrid systems have been actively conducted [2,14,27–31]. For example, Ozcan et al. [28]
extracted histogram of gradient (HOG) and gradient local binary pattern (GLBP) features from the
photo stream acquired by a wearable camera and fused them with the three-axis signal magnitude of
an accelerometer to perform fall detection for the wearer. Experimental results show that, compared to
accelerometer-only and camera-only methods, the fusion method not only has higher sensitivity but
also reduces the number of false positives significantly. In [14], egocentric video and IMU data captured
synchronously by Google Glass were used to recognize several egocentric activities. A multistream
CNN and a multistream LSTM were used to learn the spatial and temporal features from videos
and sensor streams, respectively, and the final recognition results were fused by maximum pooling.
The fused data resulted in an average accuracy of 80.5% for 20 distinct activities, whereas the individual
accuracies of video and sensor data were only 75% and 49.5%, respectively. These results show that,
for egocentric activity recognition, it is beneficial to integrate motion sensors and cameras at both the
hardware and algorithm levels.

Inspired by these related works, we propose a new hierarchical deep fusion framework for the
IMU+camera hybrid sensor system, which enables the IMU and camera to work in their most suitable
classification modes, thus achieving better recognition performance than single motion sensor-based
and single camera-based methods.

3. The Proposed Approach

The overall architecture of the proposed hierarchical deep activity recognition framework, which is
applied to the IMU+camera wearable hybrid sensor system, is shown in Figure 1. The wearable device
(eButton) is a hybrid sensor system, and the acquired vision data are a photo stream. The process
of activity recognition is divided into two layers: a motion state layer and an activity layer. Before
the egocentric data are sent to the proposed framework, all the activities to be recognized are first
grouped according to their motion state through the correspondence, C. In all the groups, if a group
contains only one activity to be recognized, it indicates that the activity can be directly recognized by
IMU. In this case, the ADL is recognized directly in the motion state layer using the trained LSTM
network. Conversely, if a group contains more than one activity to be recognized, which means that
these activities are difficult to distinguish using only IMU data, they are further distinguished in the
activity layer by photo stream through the pre-trained CNN (photo stream without time correlation)
or CNN-LSTM (photo stream with time correlation).
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3.1. Hierarchical Structure of the Activities to be Recognized

The results of existing work show that a motion sensor is only suitable for recognizing some
dynamic activities with obvious differences in motion state, such as standing, sitting, walking,
running, and climbing stairs. Motion sensors can achieve more than 90% accuracy in recognizing
these activities [18]. In contrast, when the activities to be recognized include static activities without
significant differences in motion state, such as reading, writing, and computer use, if the motion
sensor data are used to distinguish all the activities to be recognized, the performance is usually poor.
For example, when Sibo et al. [14] used motion sensor data to complete 20 kinds of activities (including
ADLs with little difference in motion state and physical exercise activity with large difference in
motion state, see Table 3) through multistream LSTM, the average recognition accuracy was only
49.5%. Therefore, the appropriate activity classification mode has a very important influence on the
performance of motion sensor-based activity recognition.

In general, the activities of a human in daily life include both dynamic and static activities.
Therefore, in the set of activities to be recognized, there must be some dynamic activities whose
motion state is obviously different from that of other activities. Even if there is no separate dynamic
activity, there must be more than one activity with the same motion state. For example, “writing”
and “computer use” are both sedentary activities, and “cooking” and “sweeping” are both standing
activities. We can group the activities to be recognized by using the similarity between the motion
states of the activities. Even if a certain activity cannot be directly recognized, it can be classified into a
certain activity group, thereby reducing the number of candidate activities for the subsequent photo
stream-based classification process.

Let the set of activities to be recognized contain n activities, i.e., A = {A1, A2, . . . , An}, and let
there be m motion states corresponding to all activities, i.e.,M = {M1, M2, . . . , Mm}. If each activity
in A corresponds to only one motion state, then a mapping ϕA→M from A to M can be defined,
such that

ϕA→M(A) : A →M, A ∈ A. (1)

As the mapping results of multiple activities may be the same, i.e., multiple activities have the
same motion state (n > m), A can also be rewritten into a group form using ϕ−1

A→M, as in Equation (2):
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A = {A1, A2, . . . , An1︸ ︷︷ ︸
ϕ−1
A→M(M1)

, An1+1, An1+2, . . . , An1+n2︸ ︷︷ ︸
ϕ−1
A→M(M2)

, . . .
...

, An1+n2+...+nm−1+1, An1+n2+...+nm−1+2, . . . , An1+n2+...+nm−1+nm︸ ︷︷ ︸
ϕ−1
A→M(Mm)

} (2)

where ni (i = 1, 2, 3, . . . , m) is the number of activities in each group and should satisfy
m
∑

i=1
ni = n.

As each activity corresponds to only one motion state, there is no repetitive activity in each group ofM;

i.e., for ∀i, j = 1, 2, . . . , m and i 6= j, there should be ϕ−1(Mi) ∩ ϕ−1(Mj) = ∅ and
m
∪

k=1
ϕ−1(Mk) = A.

The hierarchical relationship of the mapping ϕA→M is shown in Figure 2.Sensors 2019, 19, x 6 of 27 
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It should be pointed out that, in actual situations, some activities may have multiple motion states.
For example, “reading” can be done while sitting or standing, and “making phone calls” can be done
either by sitting, standing, or by walking. In order to make the above hierarchical structure applicable
to activities that may have multiple motion states, we can add the activity to all groups of possible
motion states corresponding to this activity. Thus, a many-to-one mapping ϕA→M between A and
M is extended to a many-to-many correspondence CA↔M. At this point, ∃i, j = 1, 2, . . . , m and i 6= j,

there should be C−1(Mi) ∩ C−1(Mj) 6= ∅, but
m
∪

k=1
C−1(Mk) = A still holds. Meanwhile, the number of

activities in each group should satisfy
m
∑

i=1
ni > n.

With the hierarchical structure established by ϕA→M or CA↔M, the hierarchical recognition of
the activity to be recognized can be completed, i.e., the activity to be recognized first enters the group
according to its motion state, and the specific activity is then recognized in the group with the narrowed
candidate range. In this paper, for the egocentric data acquired by the self-developed chest-worn life
logger, i.e., eButton, the activity set A is defined as

A = {A1, A2, . . . , A15} =

{”computer use, ” ”eating, ” ”entertainment, ” ”meeting, ” ”nap, ” ”reading, ” ”shopping, ” ”sweeping, ”

”talking, ” ”telephone use, ” ”transportation, ” ”walking outside, ” ”washing up, ” ”watching TV, ” ”writing”} =

{”CU, ” ”ET, ” ”EM, ” ”MT, ” ”NP, ” ”RD, ” ”SP, ” ”SW, ” ”TK, ” ”TU, ” ”TP, ” ”WO, ” ”WU, ” ”TV, ” ”WT”}

(3)

Considering the motion states corresponding to all the activities in A, the motion state set M is
determined as

M = {M1, M2, M3, M4} = {”lying, ” ”sedentary, ” ”standing, ” ”walking”} = {”LY, ” ”SD, ” ”ST, ””WK”}. (4)
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As some of the activities inA have multiple motion states, such as “reading,” “talking,” and “telephone
use,” it is necessary to define the correspondence between A andM by CA↔M, i.e.,
C−1

A↔M(”LY”) = {”NP, ” ”TU”}
C−1

A↔M(”SD”) = {”CU, ” ”ET, ” ”EM, ” ”MT, ” ”RD, ” ”SP, ” ”TK, ” ”TU, ” ”TP, ” ”TV, ” ”WT”}.
C−1

A↔M(”ST”) = {”ET, ” ”EM, ” ”RD, ” ”SP, ” ”SW, ” ”TK, ” ”TU, ” ”TP, ” ”WU”}
C−1

A↔M(” WK”) = {”SP, ” ”WO”}

(5)

According to Equation (5), the hierarchy and correspondence of CA↔M is shown in Figure 3a, and the
activity in the dark square has multiple motion states. Meanwhile, we can convert the corresponding
relation represented in Figure 3a into a group correspondence based on motion state by the activity
repetition. The converted group correspondence is shown in Figure 3b.
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3.2. LSTM in the Motion Sensor Layer

LSTM, originally proposed by Hochreiter et al. [32], is a special type of recurrent neural network
(RNN) that can be used to learn data with long-term correlation. Compared with traditional RNN,
LSTM provides a solution by incorporating memory units that allow the network to learn when
to forget previous hidden states and when to update hidden states given new information. LSTM
has achieved considerable success in many aspects of timing signal processing, including motion
sensor-based activity recognition. In the hierarchical framework proposed in this paper, LSTM is used
to classify the motion state of the motion sensor data in the motion sensor layer, as shown in Figure 1.
Specifically, we use the minor simplified LSTM proposed by Graves et al. [33]. This LSTM network has
been used by many researchers for human activity classification and recognition [34–36].

After the sensor data are classified by LSTM, the pre-trained CNN network is required to further
classify the images (or image sequence) corresponding to the sensor data in each group. Therefore,
there should be a correspondence between the sensor data and the images (or image sequence). In order
to achieve the correspondence between the sensor data and the images/image sequence, we take
the shooting time tc of each frame in the photo stream as the center and take a time window with
a fixed width of tw, as shown in Figure 4a. All the sensor data in the window are the sensor data
corresponding to the image and can be used as the input of the LSTM network to complete the training
and motion state classification. It should be noted that, when the sampling rate of the photo stream is
higher and tw is wider, there may be a time window overlap, as shown in Figure 4b.



Sensors 2019, 19, 546 8 of 28

Sensors 2019, 19, x 7 of 27 

 

3.2. LSTM in the Motion Sensor Layer 

LSTM, originally proposed by Hochreiter et al. [32], is a special type of recurrent neural network 
(RNN) that can be used to learn data with long-term correlation. Compared with traditional RNN, 
LSTM provides a solution by incorporating memory units that allow the network to learn when to 
forget previous hidden states and when to update hidden states given new information. LSTM has 
achieved considerable success in many aspects of timing signal processing, including motion sensor-
based activity recognition. In the hierarchical framework proposed in this paper, LSTM is used to 
classify the motion state of the motion sensor data in the motion sensor layer, as shown in Figure 1. 
Specifically, we use the minor simplified LSTM proposed by Graves et al. [33]. This LSTM network 
has been used by many researchers for human activity classification and recognition [34–36]. 

After the sensor data are classified by LSTM, the pre-trained CNN network is required to further 
classify the images (or image sequence) corresponding to the sensor data in each group. Therefore, 
there should be a correspondence between the sensor data and the images (or image sequence). In 
order to achieve the correspondence between the sensor data and the images/image sequence, we 
take the shooting time tc of each frame in the photo stream as the center and take a time window with 
a fixed width of tw, as shown in Figure 4a. All the sensor data in the window are the sensor data 
corresponding to the image and can be used as the input of the LSTM network to complete the 
training and motion state classification. It should be noted that, when the sampling rate of the photo 
stream is higher and tw is wider, there may be a time window overlap, as shown in Figure 4b. 

(a) (b) 

Figure 4. Schematic diagram of the correspondence between sensor data and images (or image 
sequences): (a) When the sampling rate of images is low, there is no overlap between the time 
windows. (b) When the sampling rate of the images is higher and the time window is wider, overlap 
occurs between the time windows. 

In addition, when the LSTM network is used to classify the input temporal sequence, a fully 
connected layer (FC layer) and a softmax layer need to be added to the LSTM layer. Therefore, if the 
input sequence is set as 1 2( , , , )Tx x x=x   and the output classification result is y, y can be represented 
as 

1 2( ( )) ( ({ , ,..., }))FC FC Ty softmax LSTM softmax LSTM x x x= =x . (6) 

3.3. CNN or CNN-LSTM in the Activity Layer 

In the proposed deep recognition framework, after grouping the activity according to motion 
state using IMU sensor data, if the group contains multiple activities to be recognized, such as the 

Figure 4. Schematic diagram of the correspondence between sensor data and images (or image
sequences): (a) When the sampling rate of images is low, there is no overlap between the time windows.
(b) When the sampling rate of the images is higher and the time window is wider, overlap occurs
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In addition, when the LSTM network is used to classify the input temporal sequence, a fully
connected layer (FC layer) and a softmax layer need to be added to the LSTM layer. Therefore,
if the input sequence is set as x = (x1, x2, . . . , xT) and the output classification result is y, y can be
represented as

y = so f tmaxFC(LSTM(x)) = so f tmaxFC(LSTM({x1, x2, . . . , xT})). (6)

3.3. CNN or CNN-LSTM in the Activity Layer

In the proposed deep recognition framework, after grouping the activity according to motion
state using IMU sensor data, if the group contains multiple activities to be recognized, such as the
grouping result of the eButton Dataset shown in Equation (5), the activities in each group will be
further recognized by the photo stream through the deep CNN network. When the images in the
photo stream are recorded at a low frame rate, the temporal correlation between the images is very
low or there is no temporal correlation, so the features will be directly extracted and classified through
the pre-trained deep CNN to complete the activity recognition. While the images in the photo stream
are recorded at a high frame rate, there is a temporal correlation between the images. In this case,
the spatial features of each frame in the photo stream will be extracted by using a pre-trained deep
CNN, and the spatial features will then be sent to an LSTM network so that the activity recognition
based on spatio-temporal features is accomplished by using the CNN-LSTM deep network framework.

It is well known that the classification performance of deep neural networks depends not only on
the network structure but also on the number of training samples. For egocentric activity recognition,
existing public datasets, such as UCF11 [37], have not only a small number of samples but also a limited
number of activities, so they are difficult to directly use to obtain well-trained CNN models for activity
recognition with good performance. In order to overcome the problem of limited training, motivated
by Simonyan et al. [38], we use the VGG-16 model [39], which was well-trained on ImageNet [40] and
has achieved great success in the field of image classification, to extract the spatial features of each
frame in the photo stream. The architecture of the VGG-16 network is shown in Figure 5.
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It should be pointed out that, when using pre-trained networks such as VGG-16 and AlexNet,
there are problems such as excessive parameter size and easy over-fitting because the concatenated
FC layers are between the convolutional layer and the softmax layer. To solve these problems,
Min et al. [41] proposed a Network In Network (NIN) architecture, which replaces the traditional
fully connected layer with global average pooling (GAP) after the convolutional layer, and takes the
average of each feature map so that the resulting vector is fed directly into the softmax layer. Recently,
the NIN architecture has achieved success in many applications in the fields of image classification
and recognition, video expression, and expression recognition [42–44]. Referring to these successful
applications, based on the VGG-16 network, we use GAP instead of concatenated FC layers to obtain
feature maps for each activity, and then use these features to finetune a single FC layer for subsequent
activity classification.

When the fine-tuned network is used for the low-frame-rate photo stream, the structure of the
network is as shown in Figure 6. In Figure 6, if a certain frame in a low-frame-rate photo stream is set
as It, the deep convolution operation is first performed by using the cascaded convolution layers of the
VGG-16 network, and the output of the last convolutional layer is set as VGGconv(It). Next, GAP is
used to obtain the feature maps for classification, denoted as f S

t = GAP(VGGconv(It)). These feature
maps are then fed into the fine-tuned FC layer, and the final activity classification is completed by the
softmax layer. The classification result yt can be expressed as follows:

yt = so f tmaxFC( f S
t ) = so f tmaxFC(GAP(VGGconv(It))). (7)
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Figure 6. Architecture of the proposed fine-tuned CNN for low-frame-rate photo streams.

When the network is used for high-frame-rate photo streams, the structure is as shown in Figure 7.
Let a certain image sequence It corresponding to a certain activity in the photo stream contain K frames,
i.e., It = {I1, I2, . . . , IK}. First, the deep convolution operation is performed on each frame through
the VGG-16 network, and the convolution result of each frame is then converted into a spatial feature
map by using GAP, which is denoted as f S

t = GAP(VGGconv(It)) = { f1, f2, . . . , fK}. Next, f S
t is fed

into a single-layer LSTM network to obtain the spatio-temporal features of sequence It, denoted as
f S−T

t = LSTM(f S
t ). The spatio-temporal features are then fed into the fine-tuned FC layer so that

activity classification is finally completed by the softmax layer, i.e.,

yt = so f tmaxFC(f S−T
t ) = so f tmaxFC(LSTM(f S

t )) = so f tmaxFC(LSTM({ f1, f2, . . . , fK})). (8)
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3.4. Combination of Motion Sensor Data and Photo Stream

From the above, as the photo stream-based recognition is mainly based on the pre-trained VGG-16
CNN, in practical application of the method proposed in this paper, the networks that require prior
training are as follows (assuming that the activities to be recognized can be divided into m groups
according to the motion state): (1) The LSTM network for IMU sensor data classification, defined as
LSTMx. (2) For low-frame-rate photo streams, the fine-tuned FC layer for single frame classification in
each group, defined as FCI

j , j = 1, 2, . . . , m. (3) For high-frame-rate photo streams, the LSTM and the
corresponding fine-tuned FC layer for extracting spatio-temporal features from the image sequence in
each of the m groups are defined as LSTMI

j , j = 1, 2, . . . , m and FCLSTM
j , j = 1, 2, . . . , m, respectively.

After the training of all networks that require prior training is completed, the recognition results
of IMU sensor data and photo stream can be fused based on the hierarchical deep fusion framework
shown in Figure 1. The specific algorithm flow is presented in Algorithm 1. A specific fusion example
illustrating the application of the proposed hierarchical deep fusion framework to the self-built eButton
hybrid dataset is presented in Figure 8.

Algorithm 1: Algorithm flow of the proposed hierarchical deep fusion framework.

Input: activity sets A = {A1, A2, . . . , An}; motion state setsM = {M1, M2, . . . , Mm}; correspondence CA↔M;

IMU sequence xt; single frame It or image sequence It (corresponding to xt);
pre-trained LSTMx (for xt); pre-trained VGGconv; pre-trained FCI

j , j = 1, 2, . . . , m (for It);

pre-trained LSTMI
j , j = 1, 2, . . . , m (for It); pre-trained FCLSTM

j , j = 1, 2, . . . , m (for LSTMI
j );

indicator of the photo stream Ips (H or L)

Output: activity index k, k ∈ {1, 2, . . . , n}

(1) Input xt into LSTMx

(2) Get the grouping index j of xt with Equation (6)
(3) If Ips==L // Input photo stream is a low-frame-rate photo stream (xt corresponds to single frame It)
(4) Input It into VGGconv with FCI

j //CNN as shown in Figure 6

(5) Get k with Equation (7)
(6) Else // Input photo stream is a high-frame-rate photo stream (xt corresponds to image sequence It)
(7) Input It into VGGconv + LSTMI

j with FCLSTM
j //CNN+LSTM as shown in Figure 7

(8) Get k with Equation (8)
(9) end If
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Figure 8. A specific fusion example of the proposed hierarchical deep fusion framework applied to the
self-built eButton hybrid dataset.

4. Experimental Evaluation

We used two datasets obtained by the hybrid sensor system to evaluate the performance of the
proposed hierarchical deep fusion framework. The two datasets are the eButton egocentric activity
dataset (hereinafter referred to as the eButton Dataset) obtained by the self-developed life logger
eButton, and the multimodal egocentric activity dataset (hereinafter referred to as the Multimodal
Dataset) that Sibo et al. established in [14] with Google Glass. In the evaluation, in addition to the
proposed hierarchical deep fusion framework, the existing direct fusion algorithm was also applied to
the above two datasets to complete the performance comparison.

4.1. Datasets

Although there are many public datasets for egocentric activity recognition, most of them were
constructed using single camera/sensor data. Very few public datasets comprise data collected using
hybrid sensor systems, especially “camera+sensors” systems. In this study, we used a public dataset
and a self-built dataset to complete the algorithm evaluation. Both datasets are “camera+sensors”
hybrid datasets.

4.1.1. The eButton Dataset

Previously, our laboratory developed eButton (as shown in Figure 9), a disc-like wearable
life logger the size of an Oreo cookie, for studying human diet, physical activity, and sedentary
behavior [15,45]. eButton is equipped with a set of sensors, including a camera, an IMU, and other
sensors that were not used in the current study, for measuring the temperature, lighting, and
atmospheric pressure. The camera has a resolution of 1280 × 720 pixels. To save power, the camera
acquires one image every four or more seconds. The built-in IMU contains a three-axis accelerometer
and a three-axis gyroscope, both of which have a sampling frequency of 90 Hz.
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Figure 9. Appearance and two possible ways to wear the eButton device.

Two volunteers with regular daily routines and relatively invariant living environments were
selected for our experiments. The volunteers wore eButton for relatively long periods (~10 h/day for
around three months). To form a gold standard for performance comparison, the resulting egocentric
data were manually reviewed and annotated. Specifically, (1) for the photo stream, activity set A is
first determined according to the application requirement and the activity pattern of the wearer. Each
frame in the photo stream is then manually inserted into its corresponding activity group in A. Thus,
each frame in the photo stream has a unique group number as its label. Considering that the frequency
and duration of the different activities vary widely, there will be a large imbalance among the number
of frames in different activity groups. A key frame extraction method proposed in [46,47] is used in
groups with an excessive number of frames to make the groups relatively balanced. (2) For the IMU
data, the IMU time segment corresponding to each frame in the photo stream can be obtained by using
the corresponding method shown in Figure 4, where tc is the time stamp of each frame, and tw is given
in advance. Thus, these IMU time segments have the same activity group labels as their corresponding
frames. (3) When constructing the training set and test set for motion state setM, after changing A in
Step (1) toM, and then repeating Steps (1) and (2), the motion state group label of each frame and its
corresponding IMU segment can be obtained.

As the two eButton wearers participated in the study for about three months, we had sufficient
data to form two independent datasets, one for training and the other for testing. Table 1 lists the
number of time segments used for the grouping of IMU sensor data. Among them, each time segment
is a six-dimensional vector composed of three-axis accelerometer data and three-axis gyroscope data,
and all the time segments are grouped manually according to the motion state set M defined by
Equation (4). Table 2 lists the number of images in the training and test sets. Among them, all the
images are classified manually according to the activity set A shown in Equation (3). Figure 10 shows
example images for the 15 ADLs in the training set. It should be noted that the correspondence between
the two test sets in Tables 1 and 2 has been established according to CA↔M shown in Equation (5) to
form a hybrid dataset. In the corresponding process, tc of the time segment of each sensor is the time
stamp of the image and tw = 3 s. As the maximum shooting frame rate of the eButton camera is 1/4 s,
there is no overlap in the time window.

Table 1. Number of time segments in the training and test sets.

Dataset LY SD ST WK Total

training set W1 593 607 602 576 2378
W2 626 605 621 523 2375

test set
W1 178 1332 113 146 1769
W2 199 1133 120 98 1550
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Table 2. Number of images in the training and test sets.

Dataset CU ET EM MT NP RD SP SW TK TU TP WO WU TV WT Total

training set
W1 139 115 117 153 153 146 170 127 79 106 185 188 102 84 97 1961

W2 119 149 105 120 107 84 112 123 80 95 106 97 113 101 108 1619

test set
W1 138 155 59 92 178 101 149 113 70 99 184 146 90 70 125 1769

W2 95 159 87 95 197 91 91 120 42 98 79 98 95 94 109 1550
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4.1.2. The Multimodal Dataset

The Multimodal Dataset is publicly available at http://people.sutd.edu.sg/~1000892/dataset.
The dataset contains 20 distinct life-logging activities performed by different human subjects. The data
were captured using Google Glass, which records high-quality synchronized video and sensor streams.
The dataset has 200 sequences in total, and each activity category has 10 sequences of 15 seconds each.
The categories of egocentric activity are presented in Table 3. Furthermore, the categories can also be
grouped into four top-level types: Ambulation, Daily Activities, Office Work, and Exercise. As the
dataset contains both egocentric video and sensor data recorded simultaneously, it can be used to
evaluate the hybrid approaches.

When the proposed framework is applied to the Multimodal Dataset, as the dataset only contains
video stream, whereas the proposed framework is based on photo stream, it was necessary to convert
the video to photo stream and associate the photo stream with the sensor data to construct the hybrid
dataset. In the construction of the hybrid dataset, the composition of the sensor data is consistent
with that in [14], i.e., accelerometer (three-axis), gyroscope (three-axis), magnetic field (three-axis), and
rotation vectors (three-axis and magnitude). In order to make the data structure of the motion sensor
consistent with the eButton Dataset, the window width tw of the time segment was also selected as 3 s,
and the interval of the time segment center tc was chosen to be 1 s. Thus, the sensor data corresponding
to each 15 s video could be divided into 15 overlapping time segments. Accordingly, each video was
also converted into 15 overlapping 3 s photo streams. As the video in the dataset was recorded at
a high frame rate (about 30 fps), there is a strong temporal correlation between the images in each
3 s photo stream (about 90 images). The converted hybrid dataset contains a total of 200 × 15 = 3000
3 s time segments for sensor data and corresponding 3000 3 s photo streams. For each activity to be
recognized, the hybrid data are 150 3 s time segments and corresponding 150 3 s photo streams.

http://people.sutd.edu.sg/~1000892/dataset
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Table 3. The egocentric activities and their corresponding categories in Multimodal Dataset.

Ambulation

1 walking (WK)
2 walking upstairs (WK-US)
3 walking downstairs (WK-DS)
4 riding elevator up (RD-VU)
5 riding elevator down (RD-VD)
6 riding escalator up (RD-SU)
7 riding escalator down (RD-SD)
8 sitting (SI)

Daily Activities

9 eating (ET)
10 drinking (DR)
11 texting (TX)
12 making phone calls (MP)

Office Work

13 working at PC (PC)
14 reading (RD)
15 writing sentences (WT)
16 organizing files (OF)

Exercise

17 running (RN)
18 doing push-ups (DPU)
19 doing sit-ups (DSU)
20 cycling (CY)

In addition, as the activity setA shown in Table 3 changes significantly with respect to the eButton
Dataset, as shown in Equation (3), and the motion states corresponding to the activities are also
different, it is necessary to redefine the motion state setM, as well as ϕA→M or CA↔M. Note that
the data in the Multimodal Dataset are recorded by many different wearers wearing Google Glass,
and different wearers have different activity habits, so the same motion state of different wearers is
difficult to define. Thus, we use fine and coarse methods to first give the initial motion state setMinit
and the initial correspondence C init

A↔M according to the motion states of all the activities in the activity
set A, i.e.,

Minit = {M1, M2, . . . , M10} = {”walking, ” ”walking upstairs, ” ”walking downstairs, ” ”riding, ” ”sedentary, ”

”standing, ” ”running, ” ”doing push-ups, ” ”doing sit-ups, ” ”cycling”}

= {”WK, ” ”WK-US, ” ”WK-DS, ” ”RD, ” ”SD, ” ”ST, ” ”RN, ” ”DPU, ” ”DSU, ” ”CY”}

(9)



. . .
C(init)−1

A↔M(”RD”) = {”RD-VU, ” ”RD-VD, ” ”RD-SU, ” ”RD-SD”}
C(init)−1

A↔M(”SD”) = {”SI,” ”ET, ” ”DR, ” ”TX, ” ”MP, ” ”PC, ” ”RD, ” ”WT, ” ”OF”}.
C(init)−1

A↔M(”ST”) = {”ET, ” ”DR, ” ”TX, ” ”MP, ” ”RD, ” ”OF”}
. . .

(10)

Equation (10) omits the grouping correspondence in which the motion state is consistent with
the corresponding activity (i.e., there is only one activity in the grouping). On the basis ofMinit and
C init
A↔M, the grouping method is adjusted according to the measured results, and the indistinguishable

motion states are merged. During the adjustment of the grouping method, multiple grouping
methods shown in Table 4 were established. In Table 4,M6 is the final adopted grouping method for
detailed performance evaluation and comparison with other algorithms, and the remaining grouping
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methods are used to evaluate the impact of different grouping methods on the performance of the
proposed framework.

Table 4. All grouping methods established during the adjustment of the grouping method when the
proposed algorithm is applied to the Multimodal Dataset.

M5

M {”WK/WK-US/WK-DS, ” ”SD/ST/CY, ” ”RN, ” ”DPU, ” ”DSU”}

CA↔M
C−1(”WK/WK-US/WK-DS”) = {”WK, ” ”WK-US, ” ”WK-DS”},
C−1(”SD/ST/CY”) = {”RD-VU, ” ”RD-VD, ” ”RD-SU, ” ”RD-SD, ” ”SI, ” ”ET, ” ”DR, ” ”TX, ” ”MP, ”

”PC, ” ”RD, ” ”WT, ” ”OF, ” ”CY”},
C−1(”RN”) = {”RN”}, C−1(”DPU”) = {”DPU”}, C−1(”DSU”) = {”DSU”}.

M6

M {”WK/WK-US, ” ”WK-DS, ” ”SD/ST/CY, ” ”RN, ” ”DPU, ” ”DSU”}

CA↔M
C−1(”WK-DS”) = {”WK-DS”},
C−1(”SD/ST/CY”) = {”RD-VU, ” ”RD-VD, ” ”RD-SU, ” ”RD-SD, ” ”SI, ” ”ET, ” ”DR, ” ”TX, ” ”MP, ”

”PC, ” ”RD, ” ”WT, ” ”OF, ” ”CY”},
C−1(”RN”) = {”RN”}, C−1(”DPU”) = {”DPU”}, C−1(”DSU”) = {”DSU”}.

M7

M {”WK/WK-US, ” ”WK-DS, ” ”SD/ST” ”RN, ” ”DPU, ” ”DSU, ” ”CY”}

CA↔M
C−1(”WK/WK-US”) = {”WK, ” ”WK-US”}, C−1(”WK-DS”) = {”WK-DS”},
C−1(”SD/ST”) = {”RD-VU, ” ”RD-VD, ” ”RD-SU, ” ”RD-SD, ” ”SI, ” ”ET, ” ”DR, ” ”TX, ” ”MP, ” ”PC, ”

”RD, ” ”WT, ” ”OF”},
C−1(”RN”) = {”RN”}, C−1(”DPU”) = {”DPU”}, C−1(”DSU”) = {”DSU”}, C−1(”CY”) = {”CY”}.

M8

M {”WK/WK-US, ” ”WK-DS, ” ”SD, ” ”ST, ” ”RN, ” ”DPU, ” ”DSU, ” ”CY”}

CA↔M

C−1(”WK/WK-US”) = {”WK, ” ”WK-US”}, C−1(”WK-DS”) = {”WK-DS”},
C−1(”SD”) = {”SI, ” ”ET, ” ”DR, ” ”TX, ” ”MP, ” ”PC, ” ”RD, ” ”WT, ” ”OF”},
C−1(”ST”) = {”RD-VU, ” ”RD-VD, ” ”RD-SU, ” ”RD-SD, ” ”ET, ” ”DR, ” ”TX, ” ”MP, ” ”RD, ” ”OF”},
C−1(”RN”) = {”RN”}, C−1(”DPU”) = {”DPU”}, C−1(”DSU”) = {”DSU”}, C−1(”CY”) = {”CY”}.

4.2. Experimental Setup

We implemented the proposed hierarchical deep fusion framework on the Keras+Tensor Flow
(tensorflow-gpu==1.6) platform running on Ubantu and a Nvidia TitanX (Pascal) GPU. The definitions
of A, M, and CA↔M used during application of the proposed framework to the eButton Dataset
are shown in Equations (3)–(5). For the proposed framework’s use with the Multimodal Dataset,
A is shown in Table 3, andM and CA↔M are defined as shown in Table 4, whereM6 is used for
detailed performance evaluation and comparison with other algorithms, and the remaining grouping
methods are used to evaluate the impact of different grouping methods on the performance of the
proposed framework. In the eButton Dataset, the training set and the test set are given, respectively
(as shown in Tables 1 and 2), which are the egocentric hybrid data of the same wearer at different times.
In contrast, there is no clear distinction between the training set and the test set in the Multimodal
Dataset. We adopted the same method in [14] to divide the 200 sequences into 10 splits (each split
containing 20 sequences, each of which corresponds to an activity to be recognized). Thus, the training
set and test set were determined by the leave-one-out cross-validation method, and the average
accuracy of 10 tests was taken as the final accuracy. In addition, the F1 measure [48] was selected as
the criterion for evaluating the different classification methods, which is commonly used in the field of
pattern recognition. The F1 measure is defined as

F1 = 2 · PR/(P + R)
P = TP/(TP + FP), R = TP/(TP + FN)

(11)

where P is precision, and R is recall. TP, FP, and FN represent the number of true positive samples,
false positive samples, and false negative samples, respectively, derived from the confusion matrix.
F1 is also called the harmonic mean of recall and precision.

The LSTMx to classify the motion state of the two datasets have an almost identical structure and
parameters: an LSTM layer containing 128 hidden units, followed by an FC layer determined by the
number of elements ofM and a softmax layer to complete the classification prediction. In the network
training, the optimization method selected was adaptive moment estimation (Adam) for 150 epochs
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for all folds and the batch size was set to 30. The learning rate was set as 0.001. The exponential decay
rate of the first moment estimation was 0.9, and the second moment estimation was 0.99.

As the photo streams in the eButton Dataset are captured at a low frame rate, in the process of
classifying the activities in the grouping by using the photo stream, the fine-tuned VGG-16 architecture
shown in Figure 6 was adopted. We froze all layers of base_model so that the bottleneck feature could
be obtained correctly. The optimization method was Adam for 50 epochs for all folds. The batch size
was set to eight, the learning rate to 0.001, the exponential decay rate of the first moment estimation to
0.9, and the second moment estimation to 0.99.

The 3 s photo streams in the Multimodal Dataset are high-frame-rate sequential photo streams.
In the process of classifying the activities in the grouping, the fine-tuned VGG16-LSTM architecture
shown in Figure 7 was adopted. Among them, the structure and parameters of VGG-16 were the same
as those applied to the eButton Dataset. All LSTM networks after VGG-16, i.e., LSTMI

j , j = 1, 2, . . . , m,
contained 512 hidden units and a 512-unit fully connected layer, and their dropout parameters were
all set to 0.7. The other parameters of LSTMI

j were the same as LSTMx.

4.3. Experimental Results

The proposed hierarchical deep fusion framework separately processes the motion sensor data
and the photo stream. This results in the classification result of the motion sensor and the classification
result of the photo stream both having an influence on the final recognition result. Therefore, the
algorithm was evaluated using single-sensor data-based recognition results, single-photo stream-based
recognition results, and fusion results. Further, in order to verify the performance of the hierarchical
fusion, the multistream direct fusion method proposed by Sibo et al. [14] was compared with the
proposed deep fusion framework. The architecture of the multistream direct fusion method proposed
by Sibo et al. [14] is shown in Figure 11. In the part where fusion of motion sensor-based recognition
results and video-based recognition results occurs, the output of the networks (ConvNets and LSTM)
are directly fused in the softmax layer with average pooling or maximum pooling.
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4.3.1. Results on the eButton Dataset

Results on the IMU sensor data: The dataset for the IMU sensor data classification test is shown
in Table 1. As the dataset contains the data of two wearers, the experimental results also distinguish
between the two wearers (W1 and W2). The confusion matrices for the classification results of the test
set in Table 1 are shown in Figure 12. The F1 accuracy is shown in Table 5.
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Table 5. F1 accuracy of the classification results on the IMU sensor data.

LY SD ST WK Avg.

W1 1.0000 0.8482 0.9000 0.9388 0.9217
W2 1.0000 0.9212 0.7168 0.7945 0.8581

Results on the low frame rate photo stream: The dataset for the low frame rate photo stream
classification test is shown in Table 2. As the photo stream is classified in the grouping defined by
Equations (4) and (5) in the proposed hierarchical framework, the dataset should also be adjusted
according to the grouping. The fine-tuned VGG-16 network shown in Figure 6 was set up in each
of the four groups to complete the training and testing. In addition, similar to the IMU sensor data,
the experimental results also distinguish the two wearers W1 and W2. The confusion matrices for the
output of the VGGconv corresponding to each group are shown in Figures 13 and 14. The F1 accuracies
for each group are shown in Tables 6–9.
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Table 6. F1 accuracy of the lying group (LY).

LY NP TU Avg.

W1 0.9899 0.9794 0.9846
W2 0.9493 0.8939 0.9216

Table 7. F1 accuracy of the sedentary group (SD).

SD CU ET EM MT RD SP TK TU TP TV WT Avg.

W1 0.8814 0.9152 0.9212 0.8471 0.8323 0.9727 0.7475 0.7373 0.9375 0.9080 0.9422 0.8766
W2 0.9000 0.8765 0.9483 0.4154 0.5357 0.9732 0.4571 0.5616 0.9946 0.8099 0.7500 0.7475

Table 8. F1 accuracy of the standing group (ST).

ST ET EM RD SP SW TK TU TP WU Avg.

W1 0.8805 0.9202 0.8715 0.9630 0.8988 0.8293 0.8402 0.9202 0.8770 0.8890
W2 0.9067 0.7843 0.5673 0.8916 0.6667 0.4632 0.7344 0.9892 0.9071 0.7678

Table 9. F1 accuracy of the walking group (WK).

WK SP WO Avg.

W1 0.9780 0.9796 0.9788
W2 0.9933 0.9932 0.9932

Results of the hierarchical fusion: After the training of LSTMx and fine-tuned VGGconv is
completed, the sensor-based recognition results and the photo stream-based recognition results can be
fused by the hierarchical framework shown in Figure 8. The confusion matrices after fusion for W1
and W2 are shown in Figure 15. The F1 accuracy is shown in Table 10.
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Table 10. F1 accuracy of the hierarchical fusion results.

CU ET EM MT NP RD SP SW TK TU TP WP WU TV WT Avg.

W1 0.8701 0.7188 0.6250 0.8304 0.9975 0.7630 0.9215 0.8772 0.7423 0.6992 0.9091 0.9000 0.8166 0.8966 0.9375 0.8336
W2 0.9158 0.8057 0.8364 0.6265 0.9972 0.6170 0.8504 0.6061 0.6218 0.5623 0.9865 0.8915 0.7712 0.8000 0.7939 0.7788

Comparison and discussion: In the direct fusion method proposed in [14], the LSTM (for motion
sensor data classification) and the ConvNets (for video classification) operate in the same classification
mode, i.e., both of them are used for classifying all of the 20 activities. Therefore, when the direct
fusion method is applied to the eButton Dataset, the LSTMx (for IMU motion sensor classification)
and the fine-tuned VGGconv (for photo stream classification) are both used to classify all 15 activities.
When both LSTMx and VGGconv work in the same classification mode, the confusion matrices of
the classification results of W1 and W2 are as shown in Figures 16 and 17, respectively. The direct
fusion architecture shown in Figure 11 is then used for fusing the classification results of LSTMx and
VGGconv, and the confusion matrices of the direct fusion results are as shown in Figure 18. The F1

accuracy of direct fusion is shown in Table 11. For comparison, the F1 accuracy of the IMU sensor
data alone for all 15 activities, F1 accuracy of the photo stream alone for all 15 activities, F1 accuracy of
direct fusion, and F1 accuracy of the proposed hierarchical deep fusion framework are all displayed in
the same bar graph, as shown in Figure 19.
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From the comparison results in Figure 19, it can be seen that, when the IMU data are used to
classify all 15 activities, the IMU data only have good recognition results for some activities with
obvious changes in motion state, such as “nap,” “sweeping,” and “walking outside.” For other
activities, especially sedentary activities, the ability to distinguish is very poor, which makes the
recognition results of IMU data very different from that of the photo stream. Therefore, when the
recognition results of IMU data are directly fused with the results of the photo stream, the fusion
results are not only not obviously improved but may even decrease (such as the recognition results
of W2); i.e., the recognition results of IMU data have little or even a negative effect on the fusion
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process. In contrast, in the proposed hierarchical deep fusion framework, the IMU data are only
used to distinguish the motion state so as to function in its best classification mode; thus, it plays
a good role in promoting the fusion result. Compared with direct fusion, the fusion result of the
proposed framework is a significant improvement, and the average accuracy can be increased by
about 6%. Meanwhile, for the activities that are likely to occur in different motion states, such as
“reading,” “talking,” “telephone use,” and “watching TV,” as they are classified into different groups
with fewer candidate activities by IMU data, their recognition accuracy is substantially improved.
In addition, some of the activities, such as “eating,” “walking outside,” the “entertainment” of W1,
and the “sweeping” of W2, can be recognized more accurately by the direct fusion method than with
the proposed hierarchical deep fusion method. The main reason is that the difference between the
accuracies of the IMU data and photo stream for these activities is relatively small; thus, the results
from these two kinds of sensors complement each other when directly fusing. In contrast, the proposed
method uses a single sensor in each layer, which may counteract this complementary result when
the single sensor misrecognizes an activity. Therefore, the direct fusion method is more suitable for
applications with small sensor differences, whereas, when the sensor difference is large, the proposed
method will be more competent.

4.3.2. Results on the Multimodal Dataset

Results on motion sensor data: The 200 sequences in the Multimodal Dataset are divided into 10
splits, and the training and testing are completed by leave-one-out cross-validation, which is equivalent
to 10 groups of one-to-one corresponding training sets and test sets. As a result, the actual number of
training and testing is 10, and there is a total of 10 LSTMx corresponding to each split. For each of the
10 test results, the average accuracy calculating 10 splits is shown in Table 12. Meanwhile, in the test
results of the 10 splits, the confusion matrices corresponding to the two splits with the lowest accuracy
and the highest accuracy are shown in Figure 20.

Table 12. Average F1 accuracy calculating 10 splits on motion sensor data in the Multimodal Dataset.

WK/WK-USWK-DS SD/ST/CY RN DPU DSU Avg.

Average Accuracy
on 10 Splits 0.9082 0.8974 0.9825 0.9322 0.9000 0.9564 0.9294
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Results on high-frame rate photo stream: The photo streams are classified into the groups
defined byM6 in Table 4, so the hybrid data in the Multimodal Dataset were also adjusted according
to the group, and the fine-tuned VGG16-LSTM network shown in Figure 7 was established in each of
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the six groups to complete the training and testing. In addition, similar to the results on motion sensor
data, the VGG16-LSTM network and its test results also needed to distinguish 10 splits. In all splits,
the lowest and highest accuracy confusion matrices for the VGG16-LSTM network corresponding
to each group were as shown in Figure 21. It should be noted that in the groups defined by M6

in Table 4, only C−1
A↔M(”WK/WK-US”) and C−1

A↔M(”SD/ST/CY”) contain multiple activities,
so only these two groups needed to train the VGG16-LSTM network. Thus, Figure 21 contains only the
confusion matrices corresponding to these two groups. The average accuracy of the 10 splits for each
activity in the group is shown in Tables 13 and 14.
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Figure 21. Lowest and highest accuracy confusion matrices for the VGG16-LSTM network
corresponding to each group: (a,b) the WK/WK-US group; (c,d) the “SD/ST/CY group.

Table 13. Average F1 accuracy of the WK/WK-US group.

WK/WK-US WK WK-US Avg.

Average accuracy on 10 splits 0.948 0.945 0.947

Table 14. Average F1 accuracy of the SD/ST/CY group.

SD/ST/CY RD-VU RD-VD RD-SU RD-SD SI ET DR TX MP PC RD WT OF CY Avg.

Average accuracy on 10 splits 0.631 0.705 0.924 0.842 0.880 0.864 0.713 0.843 0.599 0.978 0.835 0.876 0.714 0.866 0.805

Results of the hierarchical combination: After both the recognition results of motion sensor and
the recognition results of photo stream are obtained, the hierarchical fusion results can be completed
by referring to the hierarchical architecture shown in Figure 8. After fusion, among the 10 splits,
the confusion matrices with the lowest and highest accuracy were as shown in Figure 22. The average
accuracy of the 10 splits for each activity to be recognized is shown in Table 15.
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Figure 22. After hierarchical fusion, among the 10 splits, the confusion matrices with the (a) lowest
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Table 15. Average F1 accuracy of the 10 splits for each activity to be recognized.

WK WK-US WK-DS RD-VU RD-VD RD-SU RD-SD SI ET DR TX MP PC RD WT OF RN DPU DSU CY Avg.

Average

0.881 0.832 0.897 0.631 0.698 0.915 0.837 0.880 0.851 0.687 0.843 0.551 0.978 0.747 0.875 0.721 0.932 0.900 0.956 0.823 0.822
precision

on 10
splits

Influence of different grouping methods on fusion accuracy: As different grouping methods
will change the input data and classification mode of the deep neural network classifier (LSTM, CNN,
or CNN-LSTM), the grouping method will also affect the recognition results of both the motion state
layer and the activity layer, which in turn will lead to different fusion accuracies. In order to evaluate
the influence of different grouping methods on the fusion accuracy, the four different grouping methods
shown in Table 4 were used to perform the proposed hierarchical deep fusion framework. All of the
accuracies are shown in Figure 23. To analyze how the accuracy of different layers influences the fusion
results, Figure 23 shows both the accuracy of the motion sensor data (motion state layer) and that of the
photo stream (activity layer) in each grouping method, wherein all accuracies are the average accuracy
of 10 splits. Furthermore, for the photo stream, different grouping methods have different numbers of
photo stream accuracies due to different numbers of groups. Therefore, to compare multiple photo
stream accuracies with the fusion accuracy, only the maximum and minimum accuracies of each photo
stream corresponding to different groups using each grouping method are shown in Figure 23.
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Figure 23. Accuracy comparison of different grouping methods shown in Table 4 used in the proposed
hierarchical deep fusion framework.

Figure 23 reveals the following: (1) The number of groups is closely related to the accuracy of
the grouping. In general, the fewer the groups, the more similar activities are merged, the greater
the difference between the groups, and the higher the accuracy of grouping. (2) When the number of
groups decreases, the number of activities in each group increases, which usually leads to a decrease
in the difference among the activities within the group, thereby reducing the recognition accuracy
of the photo stream. Therefore, the number of groups should not be too large or too small, and a
compromise is needed. Overall, however, the accuracy of sensor data is more closely related to the
fusion accuracy, i.e., the performance of the motion state layer is more important to the fusion result
than the activity layer.

Comparison and discussion: In this part, we directly compare the results of the proposed
hierarchical deep fusion framework with the fusion results given in [14] by using the multistream
direct fusion method. As in the experimental results section in [14], only the average accuracy of each
stream on 10 splits (as shown in Figure 11) and the average accuracy after direct fusion on 10 splits are
given, we also list the accuracy of the corresponding items possible to complete the comparison of the
algorithm results, as shown in Table 16.
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Table 16. The direct fusion proposed in [14] and the proposed hierarchical fusion on the
Multimodal Dataset.

Direct Fusion Proposed in [14] Hierarchical Fusion
Proposed in This PaperAverage Pooling Maximum Pooling

Video/Photo
Stream

68.5% on 20 activities 75% on 20 activities

94.7% on 2 activities in group
C−1

A↔M(”WK/WK-US”)

80.5% on 14 activities in group
C−1

A↔M(”SD/ST/CY”)

Sensor Data 49.5% on 20 activities 92.9% on 6 motion groups

Fusion 76.5% 80.5% 82.2%

Further, we compare the time consumption of the two algorithms. As the actual time consumed
by the algorithm proposed in [14] is not reported, we can only rely on its algorithm flow to sum the
time consumption estimation results of each key algorithm. In the online recognition process, as shown
in Figure 11, the algorithm flow of the algorithm proposed in [14] mainly includes two optical flow
field extraction calculations, three identical CovNets calculations, and four identical LSTM (denoted
by LSTM1) calculations. During the execution of the algorithm, the video and motion sensor data are
not processed synchronously; specifically, for the video, each frame in the video is processed, while for
the motion sensor data, the data within the time segment are processed. Therefore, if the calculation
time of the optical flow field extraction of a single frame is defined as tOF, the calculation time of a
single LSTM1 is tL1, and the calculation time of a single CovNets is tC1, the inferred range of total time
consumption t1 for the single-frame data in [14] is as follows:

2 · tOF + 3 · tC1 ≤ t1 ≤ 4 · tL1 + 2 · tOF + 3 · tC1. (12)

In the online recognition process of the proposed algorithm, the algorithm flow mainly includes
one LSTMx calculation for the motion state grouping and one VGG16-LSTM calculation for the
single-frame image recognition in its corresponding group. Similarly, because the two LSTMs (LSTMx

and LSTMI
j ) and VGG-16 are also not processed synchronously, if the calculation time of LSTMx is tL2,

that of VGG16-LSTM is tC−L, and that of VGG-16 CNN is tC2, then the range of total time consumption
t2 for single-frame data in the proposed algorithm is as follows

tC2 ≤ t2 ≤ tL2 + tC−L. (13)

tC2, tL2 and tC−L in Equation (13) can be directly measured on the experimental platform used in this
paper (described in Section 4.2). The inferred values of tL1 and tC1 in Equation (12) can be measured
by running the same LSTM1 and CovNets (constructed according to the detailed network structure
described in [14]) on our experimental platform. The measured values of the above calculation times
are shown in Table 17. It should be noted that, in the measurement process, the input data frames
of the two algorithms are exactly the same. For LSTM1 and LSTMx, the input data frame is a 3 s
time segment, and for CovNets and VGG16-LSTM, the input frame is a single frame image scaled to
224 × 224 × 3.

Table 17. Measured calculation times in Equations (12) and (13).

tC1 (ms) tL1 (ms) tC2 (ms) tL2 (ms) tC−L (ms)

9.709 0.659 2.395 0.659 4.103

According to the specific real-time optical flow algorithm (TV-L1) used in [14], in Equation
(12) is determined to be tOF ≈ 12.2 ms (with a resolution of 256 × 256 and 25 iterations) based
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on the measured results presented in [49,50], which are cited by [14]. Substituting tOF and the
values of tL1 and tC1 in Table 17 into Equation (12), the inferred range of t1 can be determined to be
53.527 ms ≤ t1 ≤ 56.163 ms. Substituting the values of tC2, tL2, and tC−L in Table 17 into Equation
(13), the range of t2 can be determined to be 2.395 ms ≤ t2 ≤ 4.762 ms. The frame rates corresponding
to t1 and t2 are 18 ≤ f ps1 ≤ 19 and 209 ≤ f ps2 ≤ 418, respectively. Note that t1 of the algorithm
proposed in [14] is much longer than t2 of the proposed algorithm because the optical flow calculation
is very time-consuming.

As can be seen from the comparison in Table 16, when only the motion sensor data are used
to complete the recognition of all 20 activities in the activity set, the recognition accuracy is also
much lower than the video-based recognition accuracy (49.5% vs. 75%). Therefore, when the direct
fusion framework shown in Figure 11 is used for fusion, the promotion of motion sensor-based results
to video-based results is also limited. In contrast, by using the proposed hierarchical deep fusion
framework, the number of candidate activities in the group is greatly reduced after the activities to
be recognized are divided into different groups with the help of motion sensor data. As a result,
the recognition accuracy of each activity is improved to some extent so that the overall average
recognition accuracy after fusion is also improved. In addition, although the average recognition
accuracy after hierarchical fusion is not much higher than that in [14] (82.2% vs. 80.5%), the proposed
framework does not use a time-consuming optical flow field extraction algorithm to extract the optical
flow field between adjacent frames. Meanwhile, in the process of online recognition, only two deep
networks (LSTMx and VGG16-LSTM) are involved in the processing of motion sensor data and photo
stream (the number of online deep networks is seven in the framework proposed in [14]), so the
time complexity of the proposed hierarchical framework is much lower than that of the framework
proposed in [14] (minimum frame rate of 209 vs. 18); thus, it is more suitable for practical applications.

5. Conclusions and Future Work

A deep-learning-based hierarchical fusion framework for egocentric activity recognition using a
wearable hybrid sensor system is proposed in this paper. The proposed framework was applied to
fuse egocentric motion sensor data and a photo stream to complete ADL recognition of the wearer
on a self-developed hybrid wearable life logger (eButton). In the proposed framework, LSTM and
CNN (or CNN-LSTM) networks are used in different layers to obtain the recognition results of motion
sensor data and photo stream, respectively. The motion sensor data are used only to distinguish the
motion states of all the activities and classify them according to their motion states, while the photo
stream is used to further complete the specific activity recognition in the motion state groups. For
the photo stream, based on the temporal correlation among the images determined by the record
frame rate, we perform the activity recognition in the motion state groups by using the pre-trained
CNN or CNN-LSTM, respectively. The experimental results show that the proposed hierarchical deep
fusion framework can make the motion sensor data and the photo stream work in their most suitable
classification mode, so as to effectively eliminate the negative influence of sensor differences on the
fusion results. Further, compared to the existing direct fusion framework, the proposed hierarchical
deep fusion framework increases the average accuracy by up to 6%. In addition, as time-consuming
calculations such as the extraction of the optical flow field are avoided, the time complexity of the
proposed framework is much lower than that of the existing direct fusion framework, making it more
suitable for practical applications.

In the algorithm flow of the proposed framework, the accuracy of the grouping in the motion state
layer is very important, which will directly affect the final recognition accuracy. Therefore, future work
on the proposed framework will focus on further increasing the accuracy of the motion state grouping.
Considering that the current motion state grouping is mainly done by LSTM on the motion sensor data,
the accuracy of the motion state grouping can be improved in the following two ways: (1) From the
network aspect, we can attempt to increase the depth of the LSTM or switch to a bidirectional LSTM
to better describe the temporal characteristics of the motion sensor data. (2) From the data aspect,
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the fusion-based method can also be introduced to combine the motion sensor data and the photo
stream in the motion state layer to overcome the limitations of a single motion sensor.
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