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Abstract

Motivation: Metabolites, small molecules that are involved in cellular reactions, provide a direct

functional signature of cellular state. Untargeted metabolomics experiments usually rely on tan-

dem mass spectrometry to identify the thousands of compounds in a biological sample. Recently,

we presented CSI:FingerID for searching in molecular structure databases using tandem mass

spectrometry data. CSI:FingerID predicts a molecular fingerprint that encodes the structure of the

query compound, then uses this to search a molecular structure database such as PubChem.

Scoring of the predicted query fingerprint and deterministic target fingerprints is carried out

assuming independence between the molecular properties constituting the fingerprint.

Results: We present a scoring that takes into account dependencies between molecular properties.

As before, we predict posterior probabilities of molecular properties using machine learning.

Dependencies between molecular properties are modeled as a Bayesian tree network; the tree

structure is estimated on the fly from the instance data. For each edge, we also estimate the

expected covariance between the two random variables. For fixed marginal probabilities, we then

estimate conditional probabilities using the known covariance. Now, the corrected posterior prob-

ability of each candidate can be computed, and candidates are ranked by this score. Modeling

dependencies improves identification rates of CSI:FingerID by 2.85 percentage points.

Availability and implementation: The new scoring Bayesian (fixed tree) is integrated into SIRIUS

4.0 (https://bio.informatik.uni-jena.de/software/sirius/).

Contact: sebastian.boecker@uni-jena.de

1 Introduction

Liquid chromatography mass spectrometry (LC-MS) is one of the

predominant experimental platforms for the characterization of

small molecules in metabolomics and natural products research, and

can detect thousands of small molecules simultaneously from a bio-

logical sample. Metabolomics, in turn, has been termed ‘apogee of

the omics trilogy’ (Patti et al., 2012), as metabolites can serve as a

direct signature of biochemical activity. To identify a compound,

tandem mass spectrometry is utilized, where a particular molecule is

isolated, fragmented by collision with a noble gas or nitrogen, and

masses of its fragments are recorded. Until recently, interpretation

of corresponding tandem MS spectra was mainly limited to search-

ing in spectral libraries of reference compounds. Unfortunately,

spectral libraries are vastly incomplete, containing spectra from less

than 20 000 small molecules (Vinaixa et al., 2016); in comparison,

the molecular structure database PubChem holds more than 100

million entries (Kim et al., 2016). This gap will presumably further

widen in the future, as ‘low-hanging fruit’ (commercial standards)

have already been added to spectral libraries. To this end, a large

fraction of the compounds in a metabolomics LC-MS run remain

unidentified; depending on the organism, this can be the case for up

to 98% of the compounds (da Silva et al., 2015). Hence, it is not sur-

prising that ‘compound identification’ is consistently named as one

of the biggest challenges in MS-based metabolomics.

Starting in 2008 (Hill et al., 2008), methods have been developed

to search tandem MS data in molecular structure databases (Allen

et al., 2015, 2016; Heinonen et al., 2012; Ridder et al., 2013;

Ruttkies et al., 2016; Shen et al., 2014; Tsugawa et al., 2016;

Verdegem et al., 2016; Wang et al., 2014), see Hufsky et al. (2014)

and Hufsky and Böcker (2017) for reviews. It must be understood

that small molecule identification via tandem MS is a much more

challenging problem than, say, peptide identification. At present,

CSI:FingerID (Dührkop et al., 2015) and its Input Output Kernel

Regression variant (Brouard et al., 2016) are the best-performing
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methods for this task (Dührkop et al., 2015; Schymanski et al., 2017).

CSI:FingerID is frequently used in the scientific community, with

more than 700 000 query compounds processed in 2017.

CSI:FingerID uses the query’s tandem MS data to estimate a fragmen-

tation tree, then uses machine learning to predict the query’s molecu-

lar fingerprint (a binary vector encoding the presence or absence of a

fixed set of molecular structures) from fragmentation spectrum and

tree. As the last step of the CSI:FingerID pipeline, one compares the

predicted query fingerprint with the target fingerprints from the mo-

lecular structure database. Dührkop et al. (2015) suggested two statis-

tical scores which perform best in evaluations; both scores implicitly

assume independence between molecular properties.

Here, we focus on the last step of the CSI:FingerID pipeline, and

present a scoring which no longer assumes independence. We model

dependencies between molecular properties using a Bayesian network;

to ease calculations, we assume that this network is a tree. Our scor-

ing uses Bayesian networks in a non-standard fashion: The previous

step of the CSI:FingerID pipeline estimates the probability of each mo-

lecular probability to be present via machine learning; we use these as

marginal probabilities of the random variables in the Bayesian net-

work. Second, we estimate the tree topology of the Bayesian network

using the mutual information of molecular properties for instance can-

didates. Third, we estimate ‘desired’ covariances between random var-

iables connected in the tree. Finally, for each edge we estimate joint

probabilities that simultaneously satisfy the marginal probability con-

straints and the estimated covariance values. Now, the joint probabil-

ity of the complete evidence is used as a score. Our model takes into

account both dependencies of molecular properties from deterministic

fingerprints, and dependencies from fingerprint prediction: For ex-

ample, an overly optimistic estimate for one property may result in an

overly optimistic estimate for another property. We find that the

resulting score performs significantly better than all previous scores.

2 Preliminaries

Elucidation of stereochemistry is currently beyond the power of auto-

mated search engines (or even beyond the power of tandem MS), so

CSI:FingerID tries to recover the correct constitution of the query

molecule: that is, the identity and connectivity of the atoms including

bond multiplicities, but no spacial (stereochemistry) information.

Here, we refer to the constitution of a molecule as its structure.

We start by describing the basic mechanisms behind fingerprint-

based structure search (Dührkop et al., 2015). Molecular finger-

prints encode the structure of a molecule: Most commonly, these are

binary vectors of fixed length where each bit describes the presence

or absence of a particular, fixed molecular property, usually the

existence of a certain substructure. Numerous fingerprint types have

been proposed during the last years, such as PubChem CACTVS fin-

gerprints (881 molecular properties) or MACCS fingerprints (166

molecular properties). Given the molecular structure of a com-

pound, we can deterministically compute its molecular fingerprint

(Willighagen et al., 2017). See Figure 1 for an example. Molecular

fingerprints have been extensively used for virtual screening and

related tasks. Formally, let 1; . . . ; n be the molecular properties;

then, a (binary) fingerprint is a vector from f0; 1gn. Each molecular

structure has a (not necessarily unique) fingerprint assigned to it.

Clearly, molecular properties do not have to be independent; this is

particularly the case if the substructure of one molecular property is

contained in the substructure of another molecular property (Fig. 1).

When searching in a structure database such as PubChem, we

first extract a set of molecular structure candidates; this is done

using the mass, or one or more molecular formula candidates of the

query compound (Dührkop et al., 2015). Each candidate structure is

deterministically transformed to a binary candidate fingerprint. The

tandem MS data and fragmentation tree of the query compound is

used to predict the fingerprint of the query compound, using an

array of Support Vector Machines (Dührkop et al., 2015; Heinonen

et al., 2012; Shen et al., 2014).

As the last step of CSI:FingerID, we compare the predicted finger-

print with the deterministic, binary candidate fingerprints. Unit scores

simply count the number of differences between the predicted finger-

print and each candidate fingerprint. Heinonen et al. (2012) used the

accuracy of individual SVMs to weight the scoring, but this does not

perform better than unit scoring (Dührkop et al., 2015). Dührkop

et al. (2015) suggested and evaluated different scoring variants, and

found that two variants consistently outperformed all others in evalu-

ation: Namely, the ‘Platt’ score and the ‘modified Platt’ score.

Both scores use Platt probabilities (Platt, 2000) for fine-grained

predictions: Instead of a binary prediction of a SVM, we use a sig-

moid function to predict the posterior probability for the presence

of the molecular property, with parameter estimated from the train-

ing data to predict this probability. Let D ¼ p1; . . . ; pnð Þ 2 0; 1½ �n be

the Platt probability estimates, and let M¼ x1; . . . ; xnð Þ 2 f0; 1gn

be a candidate fingerprint; assuming independence between all mo-

lecular property pairs, we can estimate the posterior probability of

the fingerprint candidateM as

P MjDð Þ ¼
Y

i¼1;...;n

pi if xi ¼ 1;

1� pi if xi ¼ 0:

(
(1)

This has been referred to as ‘Platt score’ in (Dührkop et al., 2015);

maximizing this score corresponds to a Maximum A Posteriori

Fig. 1. Molecular fingerprint of a molecular structure. From the molecular structure (a) the molecular fingerprint (b) can be deterministically computed. Each pos-

ition of the fingerprint corresponds to a molecular property specified as SMARTS string (c) and exemplified by a structure matching each SMARTS. The pyrimi-

dine ring property (rightmost illustrated structure) is a substructure of the heterocyclic purine to its left; every structure containing heterocyclic purine must also

contain a pyrimidine ring
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Estimator, and results in about 3.5 percentage points more correct

identifications than unit scores. In contrast, the ‘modified Platt’

score from (Dührkop et al., 2015) was found by trial and error,

combines Platt probabilities and sensitivity/specificity estimates of

the binary predictors in a counterintuitive fashion: Namely,

Yn
i¼1

p0:75
i � 1� sensið Þ0:25 if pi � 0:5 and xi ¼ 1

1� pið Þ0:75 if pi � 0:5 and xi ¼ 0

p0:75
i if pi < 0:5 and xi ¼ 1

1� pið Þ0:75 � 1� specið Þ0:25 if pi < 0:5 and xi ¼ 0

8>>>>>>>>><
>>>>>>>>>:

(2)

where sensi is the sensitivity and speci the specificity of the ith binary

predictor. While this score has no statistical interpretation, modified

Platt (2) consistently outperforms the Platt score (1) by a margin of

about 1.5 percentage points.

3 Tree-based posterior probability estimation

For the presentation of our method, we rewrite (1) using binary ran-

dom variables: Assume that Xi is a binary random variable such that

P Xi ¼ 1ð Þ ¼ pi. Then, P X ¼ xð Þ with X ¼ X1; . . . ;Xnð Þ is the pos-

terior probability of the model x :¼M; and P X ¼ xð Þ ¼
Q

i P

Xi ¼ xið Þ if all random variables are independent.

We want to modify the posterior probability estimate to take

into account dependencies between molecular properties. We model

dependencies between random variables Xi, Xj (molecular properties

i, j) as a rooted tree T ¼ V;Eð Þ with V ¼ f1; . . . ; ng and E � V � V,

such that edges i; jð Þ 2 E describe conditional dependencies between

random variables Xi and Xj; this is the simplest case of a Bayesian

network. Let r be the root of T; all edges in T point away from r,

which is also called ‘arborescence’. Then, the joint distribution can

be written as

P X1; . . . ;Xnð Þ ¼ P Xrð Þ �
Y
i;jð Þ2E

P XjjXi

� �

¼ P Xrð Þ �
Y
i;jð Þ2E

P Xi;Xj

� �
P Xið Þ

(3)

where P Xi;Xj

� �
is the joint distribution of Xi and Xj. In Bayesian

network analysis, relationships between adjacent nodes would usu-

ally be specified via conditional probability tables for P XjjXi

� �
. But

for the problem at hand, we cannot estimate these conditional prob-

abilities directly; to this end, we use the indirect estimation proced-

ure via the joint distribution P Xi;Xj

� �
.

How do we estimate P Xi ¼ xi;Xj ¼ xj

� �
? We know the marginal

probabilities P Xi ¼ 1ð Þ ¼ pi and P Xj ¼ 1
� �

¼ pj (Platt estimates of

posterior probabilities) from the data D. As Xi and Xj are binary, we

have to consider exactly four cases: Set q11 :¼ P Xi ¼ 1;Xj ¼ 1
� �

;

q10 :¼ P Xi ¼ 1;Xj ¼ 0
� �

; q01 :¼ P Xi ¼ 0;Xj ¼ 1
� �

and q00 :¼
P Xi ¼ 0;Xj ¼ 0
� �

. As the marginal probabilities are known, q11þ
q10 ¼ pi and q11 þ q01 ¼ pj must hold. We also know

q11 þ q10 þ q01 þ q00 ¼ 1. This means that we have one degree of

freedom for choosing q11; q10;q01; q00.

We decided to use this degree of freedom, to ensure that the co-

variance of Xi, Xj equals some predetermined value covi;j 2 R. This

models our observation that certain molecular properties are corre-

lated. The covariance of the binary random variables Xi, Xj is

cov Xi;Xj

� �
¼ E XiXj

� �
� E Xið ÞE Xj

� �
¼ q11 � pipj;

since clearly E Xið Þ ¼ pi and E Xj

� �
¼ pj. In total, we have reached

four linear equations for the four unknowns q11; q10; q01;q00,

namely:

q11 þ q10 ¼ pi; q11 þ q01 ¼ pj;

q11 þ q10 þ q01 þ q00 ¼ 1
(4)

q11 ¼ covi;j þ pipj (5)

Unfortunately, solving (4) and (5) may result in a solution that does

not satisfy the obvious requirement q11; q10; q01; q00 2 0; 1½ �.
Whereas we think of Equation (4) as inevitable requirements, (5) is

a somewhat more subjective choice; to this end, we modify (5)

accordingly:

q11 ¼ maxf0; pi þ pj � 1;minfpi;pj; covi;j þ pipjgg (6)

It is straightforward but cumbersome to check that choosing

q11; q10;q01; q00 according to (4) and (6) does indeed satisfy

q11; q10;q01; q00 2 0;1½ �, and that the established bounds are tight:

For example, choosing q11 < pi þ pj � 1 will violate q00 � 0. The

covariance cov Xi;Xj

� �
of the resulting random variables does not

necessarily equal covi;j, but if not, it is chosen ‘as large’ or ‘as small’

as possible. See the Lemmas below for details.

We can now determine joint probabilities P Xi ¼ xi;Xj ¼ xj

� �
for

every edge (i, j), and use (3) to estimate the probability of evidence

X¼x, that is, the joint probability P X1 ¼ x1; . . . ;Xn ¼ xnð Þ; we use

this estimate as the new score. To avoid numerical instabilities, we

apply Laplace (additive) smoothing to probabilities P Xið Þ and

P Xi;Xj

� �
when computing (3). Computing P Xi ¼ xi;Xj ¼ xj

� �
can

be carried out in constant time, so computing P X ¼ xð Þ requires

O(n) time.

We now give formal proofs that choosing q11;q10;q01; q00 as

described above results in probabilities from 0;1½ � (Lemma 1); and

that choosing a larger (Lemma 2) or smaller q11 (Lemma 3) is not

possible in case we deviate from the target value covi;j þ pipj.

Lemma 1. Given pi; pj 2 0; 1½ � and covi;j 2 R. Then, q11 :¼ max

f0;pi þ pj � 1;minfpi; pj; covi;j þ pipjgg from (6), q10 :¼ pi � q11;

q01 :¼ pj � q11 and q00 :¼ 1� q11 þ q10 þ q01ð Þ all satisfy q11; q10;

q01; q00 2 0; 1½ �.

Proof. Assume q11; q10;q01;q00 have been chosen as described.

We first infer q11 � maxfpi þ pj � 1;pig � maxfpi; pig ¼ pi, and

analogously q11 � maxfpi þ pj � 1; pjg � pj. This implies q11

2 0; 1½ � as q11 � 0 is clear, and q11 � pi � 1. Now, q11 � pi

implies q10 ¼ pi � q11 � pi � pi ¼ 0, and q11 � pj implies q01 ¼
pj � q11 � pj � pj ¼ 0. Furthermore, q11 � pi þ pj � 1 implies

q10 ¼ pi � q11 � pi � pi þ pj � 1
� �

¼ 1� pj � 1 and q01 ¼ pj�
q11 � 1� pi � 1. Hence, we have established q10; q01 2 0; 1½ �.
Finally, q11 � pi þ pj � 1 implies q11 þ q10 þ q01 ¼ pi þ pj � q11 �
pi þ pj � pi þ pj � 1

� �
¼ 1 and, hence, q00 � 0. With q00 ¼ 1�

q11 þ q10 þ q01ð Þ � 1 we infer q00 2 0; 1½ �. h

Lemma 2. Given pi;pj 2 0;1½ �; covi;j 2 R, and q11 from (6) such

that q11 < covi;j þ pipj. Then, any �q11 > q11 with �q10 :¼ pi � �q11,

�q01 :¼ pj � �q11 and �q00 :¼ 1� �q11 þ �q10 þ �q01ð Þ cannot simultan-

eously satisfy �q11; �q10; �q01; �q00 2 0; 1½ �.

Proof. We do a case distinction, based on the maximum calcula-

tion of q11: (i) If q11 ¼ 0 then pi;pj � 0 implies covi;jþ
pipj � 0 ¼ q11, in contradiction to our assumptions. (ii) If q11 ¼ piþ
pj � 1 then q11 < covi;j þ pipj implies minfpi;pjg � pi þ pj � 1.

Assume w.l.o.g. that pi � pj, then pi � pi þ pj � 1 and, hence,

pj¼1. We infer �q11 > q11 ¼ pi þ pj � 1 ¼ pi and, hence,

�q10 ¼ pi � �q11 < 0. (iii) If q11 ¼ minfpi; pj; covi;j þ pipjg then
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q11 ¼ minfpi;pjg < covi;j þ pipj. Hence, �q11 > minfpi; pjg, and ei-

ther �q10 ¼ pi � �q11 < 0 or �q01 ¼ pj � �q11 < 0 must hold. h

Lemma 3. Given pi;pj 2 0;1½ �; covi;j 2 R, and q11 from (6) such

that q11 > covi;j þ pipj. Then, any �q11 < q11 with �q10 :¼ pi � �q11,

�q01 :¼ pj � �q11 and �q00 :¼ 1� �q11 þ �q10 þ �q01ð Þ cannot simultan-

eously satisfy �q11; �q10; �q01; �q00 2 0; 1½ �.

Proof. We again do a case distinction: (i) If q11 ¼ 0 then

�q11 < 0. (ii) If q11 ¼ pi þ pj � 1 then �q11 < pi þ pj � 1 and, hence,

�q11 þ �q10 þ �q01 ¼ pi þ pj � �q11 > pi þ pj � pi þ pj � 1
� �

¼ 1, so

�q00 < 0. (iii) If q11 ¼ minfpi;pj; covi;j þ pipjg then q11 � covi;jþ
pipj in contradiction to our assumptions. h

4 Finding the tree and estimating covariances

It must be understood that in principle, every tree can be used for

our computations, and there are no ‘incorrect’ trees; our obvious

goal is to reach an improved identification rate. In view of the super-

exponential number of trees with n nodes, we restrict our evaluation

to trees that ‘turn up naturally’ from the data. We show how to esti-

mate the tree structure, and the desired covariance values for every

edge of the tree. The tree structure is estimated solely from molecu-

lar structure data; for covariance estimation, we take into account

the training data and, in particular, dependencies between predic-

tions between molecular properties. We distinguish two cases: In the

first case, we estimate one ‘global’ fixed tree structure and desired

covariance values, which is then used to score candidates for any

query. In the second case, we take into account that for each query,

only candidates with a particular molecular formula are considered.

We compute an individual tree for this molecular formula, and also

consider the molecular formula when estimating covariances. Note

that molecular structure candidates of the same molecular formula

are also structurally similar. As a consequence, molecular properties

can be non-informative, as all structure candidates either do or do

not have the property. Computing individual trees prevents that

non-informative properties can ‘block’ the path between informative

properties in the Bayesian scoring tree: Non-informative properties

will have mutual information zero, and will be inserted as leaves in

the individual tree.

4.1 Fixed tree structure
To prevent overfitting, we do not search for a tree that maximizes

identification rates. Instead, we estimate the tree structure using all

molecular structures from some structure database. Mutual infor-

mation is a natural choice to measure how much information we

gain from one molecular property about another molecular prop-

erty. We use mutual information between molecular properties from

a molecular structure database as a proxy for the interdependence

between random variables (predictions). For each structure in the

database, we (deterministically) compute the corresponding molecu-

lar fingerprint, resulting in a multiset F of fingerprints. For any two

molecular properties i, j we consider the corresponding binary ran-

dom variables I, J; estimation of (joint) probabilities for I, J is

straightforward by counting in F . We then compute the mutual in-

formation between I and J, quantifying the ‘amount of information’

obtained about I through J. This results in a complete graph G with

nodes f1; . . . ; ng, where every pair of nodes (molecular properties) is

connected by an edge with weight equal to the mutual information.

The tree structure is computed as a maximum spanning tree in this

graph, in O jVj2 � log jVj
� �

time using Prim’s algorithm (with a bin-

ary heap) or Kruskal’s algorithm. Finally, we arbitrarily root this

tree, as the choice of the root does not influence our computations.

Some edges of the tree may have weight (mutual information) zero;

this is an artifact of computing a spanning tree which connects all

nodes.

Let T ¼ V;Eð Þ be the tree; we now estimate desired covariance

values. Here, we consider all compounds in the training data; only

for these, we can estimate if wrong predictions of one molecular

property, result in wrong predictions of another property.

Each compound from the training data consists of a true fingerprint

y1; . . . ; ynð Þ 2 f0; 1gn and a predicted (Platt) fingerprint p1; . . . ;pnð Þ
2 0; 1½ �n.

Consider edge i; jð Þ 2 E from molecular property i to j. We parti-

tion compounds from the training data into four batches (0, 0),

(0, 1), (1, 0) and (1, 1), such that a training compound with true fin-

gerprint y1; . . . ; ynð Þ is sorted into batch yi; yj

� �
2 f0; 1g2:

P s;tð Þ
i;j :¼ f pi; pj

� �
: yi; yj

� �
¼ s; tð Þg

We compute four covariance estimates cov
s;tð Þ

i;j , one for each batch

P s;tð Þ
i;j with s; tð Þ 2 f0; 1g2. Set P :¼ P s;tð Þ

i;j for brevity; these are our

observations used to estimate the covariance. To avoid empty

batches and prevent overfitting, we add four pseudo-observations

(0, 0), (0, 1), (1, 0) and (1, 1) to the observations P. We again inter-

pret Platt probabilities pi as the probability that a binary random

variable Xi satisfies Xi¼1. The normalized number of observations

N a; b½ � 2 0;1ð Þ for a; b 2 f0; 1g is

N 1; 1½ � ¼ 1

jPj �
X

p;p0ð Þ2Ppp0;

. . .

N 0; 0½ � ¼ 1

jPj �
X

p;p0ð Þ2P 1� pð Þ 1� p0ð Þ

(7)

We then estimate the desired covariance as

cov
s;tð Þ

i;j :¼ N 1; 1½ � � N 1;1½ � þ N 1; 0½ �ð Þ � N 1;1½ � þ N 0;1½ �ð Þ:

Given a candidate fingerprint x1; . . . ; xnð Þ 2 f0;1gn, we want to

compute its joint probability P X1 ¼ x1; . . . ;Xn ¼ xnð Þ according to

(3). For every edge i; jð Þ 2 E, we set covi;j ¼ cov
s;tð Þ

i;j for s :¼ xi and

t :¼ xj, and proceed to estimate P Xi;Xj

� �
as described in the previ-

ous section. Hence, every candidate fingerprint has individual co-

variance estimates; in the previous section, we omitted this technical

detail for the sake of readability.

Finally, for artifact edges with mutual information zero, we also

assume covariance cov
s;tð Þ

i;j ¼ 0.

4.2 Individual trees
Next, we want to compute the tree and desired covariances for each

query individually. Regarding the tree, we use all fingerprints from

PubChem that have the molecular formula of the query when com-

puting the mutual information. For the covariance, we proceed as

described above, but again only consider those compounds from the

training data that have the molecular formula of the query. But there

are potentially only few such training compounds, so the method is

prone to overfitting. We use the following two modifications to

overcome this issue: First, when estimating the observation matrix

for the query molecular formula, we add the normalized observation

matrix (7) estimated from all training data as ‘pseudocounts’. We

give this global ‘pseudocounts’ a weight of 14 if there are at least 10

global observations (and the 4 pseudo instances); for fewer global

observations, we use the number of global observations (plus pseudo

instances) as weight. Second, we do not only use compounds from
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the training data with identical molecular formula as the query; in-

stead, we allow that training compound and query molecular for-

mula differ by some biotransformation, such as the addition of a

water H2O.

5 Data

Next to spectra from MassBank (Horai et al., 2010) and GNPS

(Wang et al., 2016) we trained CSI:FingerID on data from the NIST

2017 database (National Institute of Standards and Technology,

v17). As evaluated here, CSI:FingerID 1.12 is trained is trained on

13 766 structures and 16 865 measurements in positive ion mode.

For one compound, a library may contain several tandem MS spec-

tra, which are merged by SIRIUS 3.6 into a single spectrum (Böcker

and Dührkop, 2016). As described in previous publications (Böcker

and Dührkop, 2016; Dührkop et al., 2015, 2018), we discard cer-

tain instances based on strong deviation of the precursor mass etc.;

we leave out the tedious details, as these are not important here. As

an independent dataset, we use the commercial ‘MassHunter

Forensics/Toxicology PCDL’ library (Agilent Technologies, Inc.)

with 3451 spectra.

Tree structures are computed from molecular structures, without

taking into account tandem MS data. To compute the fixed tree

structure we use 236 656 molecular structures from databases of

biological interest, namely KNApSAcK (Shinbo et al., 2006),

HMDB (Wishart et al., 2012), ChEBI (Hastings et al., 2012), KEGG

(Kanehisa et al., 2016), BioCyc (Caspi et al., 2014), UNPD (Gu

et al., 2013) and MeSH-annotated compounds from PubChem (Kim

et al., 2016). In contrast, the individual tree structures specific for

one query are computed from all PubChem structures with the same

molecular formula (or the molecular formula plus corresponding

biotransformation). We use a local copy of PubChem from August

13, 2017 containing 93 859 798 compounds and 73 444 774

structures.

6 Results and discussion

CSI:FingerID and its Input Output Kernel Regression variant

(Brouard et al., 2016) are currently the best-performing methods for

searching with tandem MS data in molecular structure databases.

This has been demonstrated in two blind competitions, namely the

Critical Assessment for Small Molecule Identification (CASMI) con-

tests 2016 and 2017 (http://casmi-contest.org/). CASMI 2016 (cat-

egory 2) provided data for 127 compounds in positive ion mode, of

which CSI:FingerID correctly identified 70 (Schymanski et al.,

2017), more than twice the number of the best non-CSI:FingerID

method: In detail, MS-FINDER (Tsugawa et al., 2016), CFM-ID

(Allen et al., 2015), MAGMAþ (Verdegem et al., 2016) and

MetFrag2.3 (Ruttkies et al., 2016; Wolf et al., 2010) had 32, 27, 16

and 15 correct identifications, respectively. In CASMI 2017 (cat-

egory 4), CSI:FingerID identified sixfold the number of compounds

of the best non-CSI: FingerID method. This is in agreement with

finding by Dührkop et al. (2015) who found that CSI:FingerID out-

performs the runner-up 2.5-fold. To this end, we refrain from evalu-

ating against other methods.

We follow the evaluation setup of Dührkop et al. (2015). In our

evaluation, we make sure that all evaluated structures are novel:

That is, no tandem MS data from a compound with the same struc-

ture is present in the training data. For example, for D-threonine to

be novel, the training data must not contain any tandem mass spec-

tra for D-threonine, L-threonine, or (D or L)-allo-threonine. We use

10-fold cross validation when predicting fingerprints for the training

data; no two folds contain the same structure. For the independent

dataset, we ensure novel structure evaluation by using, for each

query, the cross-validation model which does not contain the query

structure; in case the query structure is not preset in the training

data, we use a model trained on all training data.

We extracted 91 molecular formulas of biotransformations from

Rogers et al. (2009) and Li et al. (2013); we excluded large modifi-

cations above 100 Da and modifications not composed from

CHNO, resulting in 29 modifications used here: namely, C2H2,

C2H2O, C2H3NO, C2H3O2, C2H4, C2O2, C3H2O3, C3H5NO,

C3H5NO2, C3H5O, C4H2N2O, C4H3N3, C4H4O2, C5H7, C5H7NO,

C5H9NO, CH2, CH2ON, CH3N2O, CHO2, CO, CO2, H2, H2O, N,

NH, NH2, NH3 and O. These biotransformations are used to in-

crease the number of specific compounds used to compute the cova-

riances for individual trees.

CSI:FingerID reached 31.8% correct identifications in cross-

validation on the GNPS dataset (Dührkop et al., 2015), which was

2.6-fold higher than the runner-up method. Since then, numerous

methodical improvements (for example, novel kernels) as well as add-

itional training data have further improved the performance of

CSI:FingerID. On the other hand, PubChem, the database we search

in, has greatly increased in size which, in turn, makes is harder to

identify the correct molecular structure. We evaluate on 16 865 cross-

validation compounds and the independent dataset from Agilent. For

each method, we report the ratio of instances where a method ranked

the correct structure in its top k output, for k ¼ 1; . . . ; 10. We evalu-

ate the new scores—termed ‘Bayesian (fixed tree)’, ‘Bayesian (individ-

ual tree)’ and ‘Bayesian (biotransformations)’—in addition to the

Platt and modified Platt scores from (Dührkop et al., 2015). All new

scores are derived from the standard Platt score, which makes it

the baseline method. Still, ‘modified Platt’ is the currently best-

performing score to beat.

We find that all new scores outperform Platt and modified Platt

in cross-validation, see Figure 2 and Table 1. Bayesian (individual

tree and biotransformations) achieve highest identification rates of

43.62 and 42.92%, respectively. This is an improvement of 3.20–

3.89 percentage points to the baseline, and improves modified Platt

by 2.85 percentage points.

Identification rates on Agilent are all slightly lower than on

cross-validation. Bayesian (biotransformations) achieves the best

top 1 rate with 39.86% (Fig. 3). Both Bayesian (biotransformations)

and Bayesian (individual tree) improve on the modified Platt’s iden-

tification rate by more than 1.28 percentage points.

Predicting fingerprints of Agilent compounds, we ensured to use

CSI:FingerID models not trained on this specific structure.

Nevertheless, we used all cross-validation compounds to compute

covariances for the three Bayesian scores. We want to asses how this

Table 1. Identification rates with standard deviations using differ-

ent CSI: FingerID scores on 10-fold cross-validation

Method Top 1 Top 5 Top 10

Bayesian (individual tree) 43.62 6 1.53 77.67 6 0.90 85.23 6 1.05

Bayesian

(biotransformations)

42.92 6 1.52 76.68 6 0.82 84.39 6 0.97

Bayesian (fixed tree) 41.51 6 1.10 74.91 6 0.88 83.19 6 1.18

Modified Platt 40.77 6 0.92 74.91 6 1.35 83.02 6 1.35

Platt 39.72 6 1.44 73.62 6 1.33 82.19 6 1.34

Note: We report the percentage where the correct structure was identified

in the top k.
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influences the performance on the Agilent dataset. To this end, we

split the dataset in two groups: Agilent (known structure) with 1868

compounds and Agilent (unknown structure) with 1583 com-

pounds. The first group contains those compounds with structure

contained in the cross-validation dataset; the second contains com-

pletely novel compounds not even used for estimating covariance.

See Figure 4: On Agilent with known structure, Bayesian (biotrans-

formations) and Bayesian (individual tree) clearly outperform all

Fig. 2. Left: Identification rates using different CSI:FingerID scores, for cross-validation. We report the percentage of instances where the correct structure

was identified in the top k, for varying k. Scores are Platt, modified Platt, Bayesian (fixed tree), Bayesian (individual tree) and Bayesian (biotransformations). Note

the zoomed y-axis. Right: Percentage point differences in identification rates against the Platt score, for cross-validation

Fig. 3. Left: Identification rates using different CSI:FingerID scores, for Agilent. We report the percentage of instances where the correct structure was identified in

the top k, for varying k. Scores are Platt, modified Platt, Bayesian (fixed tree), Bayesian (individual tree) and Bayesian (biotransformations). Note the zoomed y-

axis. Right: Percentage point differences in identification rates against Platt score, for Agilent

Fig. 4. Left: Identification rates and differences using different CSI:FingerID scores, for Agilent (known structures). Right: Identification rates and differences using

different CSI:FingerID scores, for Agilent (unknown structures). For legend and further details see Figure 3
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other methods. On Agilent with unknown structure, Bayesian (indi-

vidual tree) loses its performance edge over modified Platt, but still

clearly outperforms Platt. Bayesian (biotransformations) consistent-

ly outperforms both, Platt and modified Platt, on all datasets, even

on completely novel compounds. We stress that all three new scores

improve on their baseline method in every case. We argue that all

three Bayesian scores only have minor tendencies to overfit, as they

still beat their baseline method on novel structures. Actually,

Bayesian (biotransformations) generalizes good enough to beat

modified Platt on all datasets.

Finally, we evaluated the 127 instances in positive ion mode

from CASMI 2016 (Schymanski et al., 2017), again ensuring that all

structures are novel when predicting fingerprints. All Bayesian

scores outperform Platt and modified Platt: Bayesian (biotransfor-

mations) and Bayesian (individual tree) reach 36.61%, Bayesian

(fixed tree) reaches 35.04% correct identifications. In comparison,

Platt and modified Platt identify 26.38 and 30.31% correctly.

Are the reported improvements statistically significant? We eval-

uated significance using the one-tailed Welch’s t-test for cross valid-

ation, and the one-tailed sign test for wins (one method reaches a

better rank than the other method) for all datasets. We test Bayesian

(biotransformations) against Platt and modified Platt. Against Platt,

all P-values are highly significant (below 6:4� 10�5). Against modi-

fied Platt, all P-values except for ‘wins on Agilent dataset’ are sig-

nificant (below 0.0017). See Table 2 for details.

7 Conclusion

We have introduced a new score for CSI:FingerID that does not only

outperform previous scores for searching in molecular structure

databases, but also allows for a statistical interpretation. The score

interprets the problem as computing the probability of evidence in a

Bayesian network. We apply Bayesian networks in a novel and un-

expected way; estimating the conditional probabilities from cova-

riances and marginal probabilities has, to the best of our knowledge,

not been suggested before in the literature. To create a scoring

adapted to the compound at hand, we compute many individual

trees, one for each molecular formula. We have observed a slight

tendency for overfitting in our method; we conjecture that this is

due to estimating the covariance from prediction dependencies on

the training data. We included biotransformations to overcome this

effect. We stress that 2 percentage points additional correct identifi-

cations represent a significant advancement: As a back-of-the-

envelope calculation, we estimate that CSI:FingerID would require

1400–3000 novel reference compounds (with structures currently

not contained in the training data) to reach this improvement via

additional training data. Few, if any, reference datasets of this size

have been made publicly available during the last decade.

Different from the scoring presented here, the ‘modified Platt’

score from Dührkop et al. (2015) has no statistical interpretation

and is in fact slightly counter-intuitive; it is noteworthy that this

score consistently performs this well. It remains an open question

why this is the case, and how we can formalize this effect. We have

modeled dependencies between molecular properties as a tree; for

the future, this naturally raises the question if we can do the same

with a more complex graph structure, and if this will result in

improved identification rates. Finally, we hope that simultaneously

reaching improved identification rates plus a statistical interpret-

ation may pave the way toward significance measures such as false

discovery rates.

The new scoring Bayesian (fixed tree) is integrated into SIRIUS

4.0, the frontend of CSI:FingerID. Individual trees and biotransfor-

mations will be integrated in an upcoming release.
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