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Abstract: N-(4-bromophenyl)furan-2-carboxamide (3) was synthesized by the reaction furan-2-
carbonyl chloride (1) and 4-bromoaniline (2) in the presence of Et3N in excellent yields of 94%.
The carboxamide (3) was arylated by employing triphenylphosphine palladium as a catalyst and
K3PO4 as a base to afford N-(4-bromophenyl)furan-2-carboxamide analogues (5a-i) in moderate
to good yields (43–83%). Furthermore, we investigated the in vitro anti-bacterial activities of the
respective compounds against clinically isolated drug-resistant bacteria A. baumannii, K. pneumoniae,
E. cloacae and S. aureus. The molecule (3) was found to be the most effective activity against these
bacteria, particularly NDM-positive bacteria A. baumannii as compared to various commercially
available drugs. Docking studies and MD simulations further validated it, expressing the active site
and molecular interaction stability.

Keywords: amide; cross-coupling; anti-bacterial; resistant; docking studies; MD simulations

1. Introduction

The rise of widely drug-resistant (XDR) bacteria is a serious threat to public healthcare
systems worldwide [1]. If anti-microbial resistant bacteria prevail, one life will be lost
every three seconds in 2050, leading to an economic loss of more than $100 trillion [2].
Carbapenem-resistant Klebsiella pneumonia (CRKP), Carbapenem-resistant Acinetobacter
baumannii (CRAB) and carbapenem-resistant Enterobacter cloacae (CREC) were placed on
the “Critical Pathogens List” by the World Health Organization, while methicillin-resistant
Staphylococcus aureus (MRSA) was placed on the “High Priority Pathogens List” by the
WHO [3]. Bacteremia, septicemia, wound infections, skin, respiratory tract, urinary tract
and nosocomial infections are all caused by these bacteria. These infections have devel-
oped resistance to a broad spectrum of antibiotics, including quinolones, β-lactams, and
aminoglycosides, and can only be treated with toxigenic antibiotics like polymyxin and col-
istin [4]. The pathogens acquired resistance by various mechanisms such as an efflux pump
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in A. baumannii and E. cloacae [5,6], porin protein loss and decreased intake of antibiotics
in K. pneumoniae [7], and production of PBP2a in S. aureus [8]. The development of new
anti-microbial pharmaceuticals is still in demand since diseases and previously existing
antibiotic agents have a diminishing effect on microbial resistance, which are significant risk
factors for morbidity and mortality in both developed and underdeveloped countries [9–11].
O-heterocycles are found in a diverse range of pharmaceuticals, synthetic precursors, and
natural products [12–15]. Carboxamide is an essential scaffold that can show antibacterial
properties. The carboxamide bond (–CO–NH–) in proteins is indeed a pivotal building unit
that has gotten a lot of attention due to its great hydrolysis resistance. This phenomenon is
significant in biological systems because it allows peptides to be built from very simple
amino acid substrates [16–22]. Moreover, Suzuki–Miyaura cross-coupling is an efficient
tool that involves a pseudohalide/organohalide electrophile and organoboron nucleophile
to establish a carbon–carbon bond in the presence of a catalyst [23,24].

Therefore, in the present work, N-(4-bromophenyl)furan-2-carboxamide (3) by the reac-
tion of furan-2-carbonyl chloride (1) with 4-bromoaniline (2) in the presence of base trimethy-
lamine (Et3N) and its derivatives (5a-i) were synthesized via Suzuki–Miyaura cross-coupling
reactions [25]. The agar well diffusion method was used to evaluate all of the target com-
pounds for antibacterial activity toward NDM-producing bacteria. Following that, the MBC
and MIC were analyzed and validated by MD simulations and molecular docking studies.

2. Results and Discussion
2.1. Chemistry

N-(4-bromophenyl)furan-2-carboxamide (3) was synthesized by the reaction of com-
mercially available furan-2-carbonyl chloride (1) and 4-bromoaniline (2) in the presence of
triethylamine base and dry dichloromethane (DCM) to afford the product in an excellent yield
(94%) at room temperature (Scheme 1). Subsequently, the Suzuki–Miyamura cross-coupling
reaction of N-(4-bromophenyl)furan-2-carboxamide (3) with various aryl and heteroaryl
boronic acids (4) in the presence of the catalyst tetrakis(triphenylphosphine)palladium(0)
and potassium phosphate as a base afforded the targeted compounds (5a-i) in fair to good
yields (32–83%) (Scheme 2). The synthesized compounds were purified by flash column
chromatography, and were characterized by spectroscopic techniques (1HNMR and 13CNMR),
mass spectrometry, elemental analysis and their melting points, which are mentioned in Sec-
tion 3.3. Our research group previously determined the effect of substituents on boronic acids,
where the electron-donating groups were more responsible for good yields than the electron-
withdrawing groups [26,27]. The same pattern can be observed in the synthesized compounds;
the compound (5b) has the lowest yield (38%) due to the presence of electron-poor and bulky
groups (Figure 1).
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Figure 1. An overview of N-(4-aryl phenyl)furan-2-carboxamide (5a-i) via Suzuki–Miyamura cross-
coupling reactions.

2.2. Antibacterial Activity

The MIC values of various antibiotics exhibited in Table 1 show that Gram-negative
bacterial strains were resistant to the AWaRe (Access, Watch, and Reserve) WHO classes
of antibiotics such as β-lactams, aminoglycosides, and quinolones, except for polymyxin.
Further, MRSA displayed resistance to β-lactams, and quinolones and was sensitive to
vancomycin and linezolid. Phenotypic detection revealed that all the GNR were carbapen-
emase and MBL producers while Staphylococcus were MRSA. Therefore, in the present
study, the molecules (3) and (5a-i) were screened for antibacterial activity at different con-
centrations (10, 20, 30 40, and 50 mg/well) against XDR pathogens (CRAB, CRKP, CREC,
and MRSA) by the agar well diffusion method. MIC and MBC were calculated by broth
dilution methods. The results presented in Table 1 show that only compound (3) exhibited
excellent activity against XDR pathogens. However, compound (5c) displayed low activity
as compared to compound (3), while the other molecules failed to present good activity.
The zone of inhibition (mm) increased against all XDR pathogens with the increase in
compound concentration. Compound (3) at 50 mg concentration showed the highest zone
of inhibition (18 mm) against CRAB as compared to other pathogens while meropenem
antibiotic was inhibited at a 4 mm zone of inhibition (Figure 2). The values of MBC and
MIC of compound (3) were calculated against all tested XDR pathogens and the results
showed that CRAB, CREC, and CRKP exhibited a MIC of 6.25 mg and MBC of 12.5 mg
respectively, while MRSA exhibited a MIC of 12.5 mg and MBC of 25 mg, respectively
(Table 2).
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Table 1. Agar well diffusion of different compounds against XDR pathogens.

Comp. No. Bacterial
Strains

Zone (mm)
(50 mg)

Zone (mm)
(40 mg)

Zone (mm)
(30 mg)

Zone (mm)
(20 mg)

Zone (mm)
(10 mg)

Zone (mm)
DMSO

Zone (mm)
Meropenem

3

CRAB 18 ± 1 11 ± 2 7 ± 2 6 ± 2 4 ± 0 0 ± 0 4

CREC 10 ± 2 8 ± 3 7 ± 3 5 ± 2 4 ± 0 0 ± 0 4

CRKP 8 ± 1 7 ± 2 6 ± 2 5 ± 2 4 ± 0 0 ± 0 4

MRSA 11 ± 2 9 ± 1 7 ± 2 6 ± 2 5 ± 0 0 ± 0 4

5c

CRAB 6 ± 3 4 ± 2 4 ± 2 4 ± 3 4 ± 0 0 ± 0 4

CREC 5 ± 2 4 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CRKP 4 ± 1 4 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

MRSA 5 ± 1 4 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

5d

CRAB 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CREC 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CRKP 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

MRSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

5g

CRAB 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CREC 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CRKP 4 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

MRSA 4 ± 3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4
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Table 1. Cont.

Comp. No. Bacterial
Strains

Zone (mm)
(50 mg)

Zone (mm)
(40 mg)

Zone (mm)
(30 mg)

Zone (mm)
(20 mg)

Zone (mm)
(10 mg)

Zone (mm)
DMSO

Zone (mm)
Meropenem

5h

CRAB 5 ± 2 4 ± 2 4 ± 2 0 ± 0 0 ± 0 0 ± 0 4

CREC 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CRKP 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

MRSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

5i

CRAB 4 ± 2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CREC 5 ± 1 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

CRKP 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

MRSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 4

Table 2. MIC (mg/)mL and MBC of compound (3) against XDR pathogens.

Pathogens MIC MBC

CRAB 6.25 12.5
CREC 6.25 12.5
CRKP 6.25 12.5
MRSA 12.5 25

2.3. Molecular Docking Study
Molecular Docking Study of the NDM-1 A. baumannii/3, 5a-i Compounds

The broad conformation zone of (3, 5a-i) compounds surrounded by the NDM-1 active
site was investigated using molecular docking. The active site of NDM-1 was overlaid
with the 100 binding conformations for each drug (3, 5a-i). The superposition of all the
conformations of ligands (3, 5a-i) displays three major binding pockets (Pocket A, Pocket B
and Pocket C) as shown in Figure 3A. Interestingly, the final selected confirmation based
on the highest Gold score and least energy value showed the ligands binding in the pocket
A (Figures S27 and S28). Moreover, the docked complexes represent a similar binding
pattern (Figure 3A) with distinct binding interactions (Figure 3B) towards NDM-1 protein.
These results indicate that pocket A is the most probable cavity for the inhibition of NDM-
1-embelin protein (Figure S27). Moreover, the non-bonded interactions of compound (3)
at the NDM-1-embelin interface were determined to describe the important interacting
residues that could be incorporated in the design of potent inhibitors with improved
biological activity. Almost all of the compounds (3, 5a-i) were embedded in the NDM-
1 active site (Pocket A), demonstrating that NDM-1 and ligands had a broad van der
Waals interaction (3, 5a-i) (Supplementary Information Figure S27). The catalytic corner
of the enzyme binds to the N–H of amide functionality of (3, 5a-i) compounds, whereas
the other part points out of this corner. Compound (3) displayed hydrogen bonding
(OH–NH) between the carbonyl group of the amide substitution and Asn220 amino acid
residue. Moreover, the hydrophobic interactions, Pi–H and Pi–Pi, were also observed with
Asn220 and His250 amino acid residues. The compound (5c) displayed only hydrophobic
(Pi–H) interactions with His120 and Asn220. Similarly, the compounds (5g, 5h and 5i)
also displayed hydrophobic interactions with His120, Asn220, Lys216, and His250. The
activities of these compounds were predicted experimentally, and the parent compound (3)
and its derivative (5c) showed high biological activity in comparison to others. This might
be because compound (3) showed both hydrogen bonding and hydrophobic interactions,
which are missing in the rest of the dataset. The importance of the coordination bond in
collaboration and recognition of the NDM-1-ligand with a viable drug was established
in a prior docking study of embelin with NDM-1, emphasizing the importance of the
coordination bond in collaboration and detection of NDM-1-ligand with a suitable drug. It
was proposed that compound (3) regained meropenem activity towards a panel of NDM-
positive pathogens, including K. pneumoniae, A. baumannii, and E. coli, due to the strong
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hydrogen bonding and hydrophobic interaction between (3, 5a-i) and NDM-1 [28]. The
antibacterial activities against NDM-1 A. baumannii were confirmed by a docking analysis
of corresponding furan derivatives, which revealed that compounds (3 and 5c) had the
best meropenem activity towards NDM-positive bacteria, with comparable results to our
compounds (5g, 5h, and 5i). Compound (3) was discovered to be a strong antibacterial
antibiotic hybrid against NDM-1 A-baumannii in a preliminary study (Figure 3). As a
result, we predicted that (3) and its derivative (5c) could be effective carbapenem adjuvants
for bacteria that produce NDM-1. To validate our hypothesis, the MD simulation of
the experimentally tested compounds (3, 5c, 5g, 5h, and 5i) was performed using the
GROMACS (Supplementary Information Figures S29–S33).
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Figure 3. Conformational analysis and interaction pattern of NDM-1-embelin protein with highly
active compound 3. (A) Three major binding pockets (pocket A, pocket B and Pocket C) were
identified and the majority of the ligand conformations found in the pocket A of NDM-1 protein,
which enhances the confidence that pocket A is the most probable binding cavity. (B) Molecular
interactions (hydrogen bonding and hydrophobic) of highly active compound 3 with NDM-1 protein.
(C) The least energy conformation of compound 3 residing in pocket A, depicting the significant role
of Pocket A in ligand binding.

The RMSD graph obtained between the protein backbone and the ligands throughout
the 50 ns MD simulation ensures the stability of the protein–ligand complexes. It has
been observed (Figure 4) that the RMSD plots of NDM-1 A. baumannii/(3, 5c, and 5g-i)
compounds showed that all the complexes achieve stability after 20 ns of the simulation.
This may infer the high binding affinities and better binding fit of the ligands within the
active site of the 4EXS receptor. The overall RMSD analysis implicated that compound (3)
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and its structural analogues (5c, 5g-i) are important for the inhibition of NDM-1 protein
(individual RMSD plots given in Supplementary Information Figures S29–S33).
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3. Materials and Methods
3.1. General Information

All the chemicals were sourced from Sigma-Aldrich and Alfa-Aesar. The moisture
and air-sensitive reaction were done in an inert environment. The compounds or reaction
mixture were dried by a rotary evaporator. The reaction progress was checked by thin-layer
chromatography (silica gel 60 PF254 cards) and the reaction mixture was separated through
column chromatography by using Silica gel (230–400 mesh). The synthesized compounds
were confirmed by spectroscopic analysis, a 500 MHz Bruker NMR spectrometer in the
presence of solvent deuterated dimethyl sulfoxide (DMSO-d6). Mass spectra were recorded
on a JEOL spectrometer (JMS-HX-110, USA).

3.2. General Procedure for the Synthesis of Compounds
3.2.1. Synthesis of N-(4-Bromophenyl)furan-2-carboxamide (3)

In a clean and dried schlenk flask, 4-bromo aniline (1.0 eq., 2.30 mmol) was added
in a 15 mL dry dichloromethane (DCM) solvent. Subsequently, triethylamine (1.0 eq.,
2.30 mmol) was poured into the reaction mixture and it was placed in an ice bath to chill
it down to 0 ◦C. Then, furan-2-carbonyl chloride (1.0 eq., 2.30 mmol) was added to the
reaction mixture at room temperature (r.t.) for 18 h. TLC was used to monitor the reaction
completion. After that, a 1N HCl solution was added to the dried reaction mixture, and
DCM was used to quench the product from the aqueous layer. After the separation of
the organic layer, the saturated sodium bicarbonate (NaHCO3) solution and brine were
added. The DCM layer was separated and dried after vigorous shaking. The components
of the reaction mixture were separated by flash column chromatography. Spectroscopic
examination confirmed the final product [29].



Pharmaceuticals 2022, 15, 841 8 of 14

3.2.2. Arylation of N-(4-Bromophenyl)furan-2-carboxamide (5a-i)

At room temperature, N-(4-bromophenyl)furan-2-carboxamide (1.0 eq., 0.488 mmol)
was poured into a Schlink tube in 5 mL of 1,4-dioxane under inert argon atmosphere, along
with the tetrakis(triphenylphosphine)palladium(0) catalyst, and agitated for 30 min. Then,
aryl or heteroaryl boronic acids (1.1 eq., 0.537 mmol), K3PO4 (1.0 eq., 0.488 mmol) as a
base, and 0.5 mL water were added. The reaction was then set to reflux for 8–18 h. TLC
was used to examine the reaction’s progress. Following the completion of the reaction,
the reaction mixture was washed with ethyl acetate and dried using a rotary evaporator.
The required product was then purified by using flash column chromatography with ethyl
acetate and n-hexane (20:80). NMR spectroscopy and mass spectroscopy analysis was used
to characterize the desired product [30].

3.3. Characterization Data
3.3.1. N-(4-Bromophenyl)furan-2-carboxamide (3)

White solid, M.P = 257–260 ◦C; 1H NMR (500 MHz, DMSO) δ 10.31 (s, 1H), 7.94 (dd,
J = 1.6, 0.6 Hz, 1H), 7.79–7.68 (m, 2H), 7.52 (d, J = 8.9 Hz, 2H), 7.33 (dd, J = 3.5, 0.6 Hz, 1H), 6.70
(dd, J = 3.5, 1.7 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 156.71, 147.72, 146.38, 138.41, 138.16,
131.94, 122.70, 115.55, 112.71. EI/MS m/z (%): 267.2 [M+H]+; [M-Cl] = 186.1. Analytically
calculated for C11H8BrNO2: C, 49.65; H, 3.03; N, 5.26. Found: C, 49.71; H, 3.06; N, 5.21.

3.3.2. N-(3′-Chloro-4′-fluorobiphenyl-4-yl)furan-2-carboxamide (5a)

Light Brown solid, M.P = 312–318 ◦C; 1H NMR (500 MHz, DMSO) δ 10.25 (s, 1H),
7.95 (d, J = 1.0 Hz, 1H), 7.82 (dd, J = 8.1, 5.0 Hz, 3H), 7.71 (d, J = 8.7 Hz, 2H), 7.64 (dd, J = 5.0,
2.9 Hz, 1H), 7.56 (dd, J = 5.0, 1.2 Hz, 1H), 7.35 (d, J = 3.4 Hz, 1H), 6.72 (dd, J = 3.4, 1.7 Hz,
1H). 13C NMR (126 MHz, DMSO) δ 156.62, 147.98, 146.21, 141.57, 138.04, 131.13, 127.46,
126.76, 126.51, 121.04, 120.56, 115.24, 112.66. EI/MS m/z (%): 316.8 [M+H]+; [M-Cl] = 280.14,
[M-F, Cl] = 261.3. Analytically calculated for C17H11ClFNO2: C, 64.67; H, 3.51; N, 4.44.
Found: C, 64.72; H, 3.53; N, 4.41.

3.3.3. Methyl 4′-(Furan-2-carboxamido)biphenyl-4-carboxylate (5b)

Off-white solid, M.P = 360–364 ◦C; 1H NMR (500 MHz, DMSO) δ 10.35 (s, 1H), 8.03 (d,
J = 8.3 Hz, 2H), 7.97 (s, 1H), 7.91 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.7 Hz,
2H), 7.38 (d, J = 3.5 Hz, 1H), 6.73 (dd, J = 3.4, 1.7 Hz, 1H), 3.88 (s, 3H). 13C NMR (126 MHz,
DMSO) δ 167.34, 162.12, 146.34, 134.51, 130.29, 129.37, 127.73, 127.36, 126.92, 122.39, 121.08,
119.94, 115.45, 52.61. EI/MS m/z (%): 322.4 [M+H]+; [M-COOCH3] = 262.4. Analytically
calculated for C19H15NO4: C, 71.02; H, 4.71; N, 4.36. Found: C, 71.10; H, 4.72; N, 4.32.

3.3.4. N-(3′-Acetylbiphenyl-4-yl)furan-2-carboxamide (5c)

White solid, M.P = 373–375 ◦C; 1H NMR (500 MHz, DMSO) δ 10.34 (s, 1H), 8.20 (s, 1H),
7.98–7.89 (m, 4H), 7.76 (d, J = 8.6 Hz, 2H), 7.62 (t, J = 7.7 Hz, 1H), 7.37 (d, J = 3.5 Hz, 1H),
6.74–6.72 (m, 1H), 2.67 (s, 3H). EI/MS m/z (%): 306.5 [M+H]+; [M-COCH3] = 262.4. Analytically
calculated for C19H15NO3: C, 74.74; H, 4.95; N, 4.59. Found: C, 74.80; H, 4.97; N, 4.57.

3.3.5. N-(4′-Methoxybiphenyl-4-yl)furan-2-carboxamide (5d)

White solid, M.P = 335–338 ◦C; 1H NMR (500 MHz, DMSO) δ 10.26 (s, 1H), 8.00–7.92 (m,
1H), 7.83 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 4H), 7.36 (d, J = 3.5 Hz, 1H), 7.01 (d, J = 8.7 Hz,
2H), 6.72 (dd, J = 3.4, 1.7 Hz, 1H), 3.79 (s, 3H). 13C NMR (126 MHz, DMSO) δ 159.12, 156.63,
148.01, 146.18, 137.83, 135.62, 132.56, 127.85, 126.74, 121.15, 115.21, 114.80, 112.65, 55.62.
EI/MS m/z (%): 294.5 [M+H]+; [M-OCH3] = 262.4. Analytically calculated for C18H15NO3: C,
73.71; H, 5.15; N, 4.78. Found: C, 73.77; H, 5.17; N, 4.77.

3.3.6. N-(4-(Thiophen-3-yl)phenyl)furan-2-carboxamide (5e)

Off white solid, M.P = 352–354 ◦C; 1H NMR (500 MHz, DMSO) δ 10.31 (s, 1H), 7.97 (s,
1H), 7.92–7.84 (m, 3H), 7.69 (dd, J = 8.7, 5.6 Hz, 3H), 7.50 (t, J = 9.0 Hz, 1H), 7.37 (d, J = 3.5 Hz,
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1H), 6.73 (dd, J = 3.4, 1.7 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 156.97, 146.31, 138.97,
133.88, 128.64, 127.74, 127.50, 124.02, 121.06, 119.24, 117.85, 115.41, 112.73. EI/MS m/z
(%): 270.4 [M+H]+; 271.4 [M+2]. Analytically calculated for C15H11NO2S: C, 66.89; H, 4.12;
N, 5.20. Found: C, 66.95; H, 4.13; N, 5.18.

3.3.7. N-(4′-Chlorobiphenyl-4-yl)furan-2-carboxamide (5f)

Off white solid, M.P = 324–327 ◦C; 1H NMR (500 MHz, DMSO) δ 10.28 (s, 1H), 7.96
(d, J = 0.9 Hz, 1H), 7.85 (d, J = 8.7 Hz, 2H), 7.64 (dt, J = 17.6, 8.9 Hz, 4H), 7.35 (dd, J = 8.5,
6.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 1H), 6.73 (dd, J = 3.5, 1.7 Hz, 1H). EI/MS m/z (%): 298.9
[M+H]+; [M-Cl] = 262.4. Analytically calculated for C17H12ClNO2: C, 68.58; H, 4.06; N, 4.70.
Found: C, 68.61; H, 4.10; N, 4.68.

3.3.8. N-(4-(Pyridin-3-yl)phenyl)furan-2-carboxamide (5g)

Light brown solid, M.P = 344–347 ◦C; 1H NMR (500 MHz, DMSO) δ 10.26 (s, 1H),
7.96 (d, J = 0.8 Hz, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.6 Hz, 1H),
7.53 (d, J = 8.8 Hz, 2H), 7.36 (dd, J = 5.5, 3.5 Hz, 2H), 7.27 (s, 1H), 6.72 (dd, J = 4.7, 3.0 Hz, 1H).
13C NMR (126 MHz, DMSO) δ 156.71, 147.95, 146.37, 138.32, 131.94, 129.00, 127.24, 124.62,
122.71, 121.06, 115.55, 112.71. EI/MS m/z (%): 265.5 [M+H]+; 266.5 [M+2]. Analytically
calculated for C16H12N2O2: C, 72.72; H, 4.58; N, 10.60. Found: C, 72.76; H, 4.61; N, 10.57.

3.3.9. N-(3′,5′-Dichlorobiphenyl-4-yl)furan-2-carboxamide (5h)

Off white solid, M.P = 366–369 ◦C; 1H NMR (500 MHz, DMSO) δ 10.35 (s, 1H),
7.98–7.88 (m, 2H), 7.76 (dd, J = 12.4, 8.8 Hz, 2H), 7.63 (dd, J = 11.2, 7.7 Hz, 2H), 7.58–7.54 (m,
1H), 7.46 (d, J = 7.2 Hz, 1H), 7.36 (dd, J = 11.9, 3.5 Hz, 1H), 6.78–6.70 (m, 1H). 13C NMR
(126 MHz, DMSO) δ 156.74, 147.86, 146.35, 139.65, 131.99, 129.28, 129.19, 127.64, 122.68,
120.94, 115.50, 112.72, 109.82. EI/MS m/z (%): 333.3 [M+H]+; [M-2Cl] = 261.3. Analytically
calculated for C17H11Cl2NO2: C, 61.47; H, 3.34; N, 4.22. Found: C, 61.51; H, 3.37; N, 4.19.

3.3.10. N-(4′-Methylbiphenyl-4-yl)furan-2-carboxamide (5i)

White solid, M.P = 303–305 ◦C; 1H NMR (500 MHz, DMSO) δ 10.28 (s, 1H), 7.97–7.94 (m,
1H), 7.84 (d, J = 8.6 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 7.9 Hz, 2H), 7.36 (d, J = 3.5 Hz,
1H), 7.26 (d, J = 8.2 Hz, 2H), 6.72 (dd, J = 3.4, 1.7 Hz, 1H), 2.34 (s, 3H). EI/MS m/z (%): 278.5
[M+H]+; [M-CH3] = 262.4. Analytically calculated for C18H15NO2: C, 77.96; H, 5.45; N, 5.05.
Found: C, 78.03; H, 5.51; N, 5.01.

3.4. Anti-Bacterial Activity
3.4.1. Identification of the Bacterial Strains

K. pneumoniae, A. baumannii, E. cloacae and S. aureus were isolated from blood sam-
ples using BACTEC/Alert (Marcy-l’Étoile, France). The isolates were sub-cultured on
MacConkey agar, blood and UTI chrome agar (Aldrich Sigma, St. Louis, MO, USA) and
confirmed by VITEK 2® compact system (Biomerieux, Marcy-l’Étoile, France).

3.4.2. Antibiogram of the Isolates

The VITEK 2® compact system was used to determine the MIC (µg/mL) of different
antibiotics for these infections (BioMerieux, Marcy-l’Étoile, France). Ticarcillin/clavulanic
acid, penicillin, cefuroxime, cefoxitin, ampicillin/sulbactam, cefixime, piperacillin, ceftriax-
one, aztreonam, cefepime, meropenem, moxifloxacin, levofloxacin, tigecycline, minocycline,
tetracycline, colistin and trimethoprim CLSI guidelines 2020 were used to evaluate the
susceptibility (Table 3).
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Table 3. MIC (µg/mL) of antibiotics against XDR pathogens.

Antibiotics MIC Breakpoints
(µg/mL) A. baumannii K. pneumoniae E. cloacae S. aureus

P ≤0.12–≥0.25 NA NA NA ≥16
E ≤0.5–≥8 NA NA NA ≥32

DA ≤0.5–≥4 NA NA NA ≥16
SAM ≤8/4–≥32/16 ≥64/128 ≥64/32 ≥64/128 NA
PIP ≤16–≥128 ≥256 ≥256 ≥256 NA
FOX ≤4–≥8 NA NA NA ≥32
CRO ≤8–≥64 ≥256 ≥256 ≥128 ≥128
FEP ≤8–≥32 ≥256 ≥128 ≥128 ≥64
ATM ≤4–≥16 ≥64 ≥64 ≥64 ≥64
MEM ≤2–≥8 ≥32 ≥32 ≥32 ≥8
LEV ≤1–≥4 ≥16 ≥16 ≥16 0.5
MXF ≤0.5–≥2 ≥16 ≥16 ≥16 NA
MNO ≤4–≥16 ≥64 ≥64 ≥32 NA

TE ≤4–≥16 ≥32 ≥32 ≥32 NA
C ≤8–≥32 ≥64 ≥128 ≥64 NA

SXT ≤2/38–≥4/76 ≥8/304 ≥8/304 ≥8/304 ≥8/152
VA ≤2–≥16 NA NA NA 1

LZD ≤4–≥8 NA NA NA 2
CS ≥4 0.5 0.5 0.5 NA

P: Penicillin; DA: Clindamycin; E: Erythromycin; SAM: Ampicillin/sulbactam, CRO: Ceftriaxone; PIP: Piperacillin;
ATM: Aztreonam; FOX: Cefoxitin; MEM: Meropenem; FEP: Cefepime; MNO: Minocycline; MXF: Moxifloxacin;
LEV: Levofloxacin; TE: Tetracycline; C: Chloramphenicol; SXT: Co-trimethoprim; TGC: Tigecycline; VA: Van-
comycin; CS: Colistin, LZD: Linezolid, NA: Not applicable.

3.4.3. Phenotypic Determination of MRSA

MRSA was evaluated by the agar disc diffusion method, as defined by the CLSI 2020.
MRSA was dispersed on a Mueller Hinton agar (MHA) plate, and a cefoxitin (30 µg) disc
was placed on top of it. MRSA was declared positive if the zone of inhibition was less than
21 mm [31].

3.4.4. Phenotypic Detection of Carbapenemase Enzyme

The Modified Hodge’s test was used for the carbapenemase activity to test the Gram-
negative isolates [32]. The isolates were loaded onto the MHA plate, the meropenem
disc was inserted in the center, and test organisms were streaked from the disc’s edge to
the plates’ edge. A cloverleaf-like indentation indicated the existence of carbapenemase
enzymes after overnight incubation (Figure 5A).
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3.4.5. Phenotypic Detection of Metallo-β-Lactamase (MBL) Enzyme

MBL-producing bacteria were identified by utilizing a double disc synergistic method
with EDTA, as previously described. In a nutshell, the isolates were placed out on MHA
plates with two imipenem and meropenem discs spaced 24 mm apart. Each carbapenem
disc received 10 ul of 0.5 M EDTA solution (Figure 5B). If the EDTA discs had a greater
inhibition zone of >5 mm than the non-EDTA discs, the test was declared positive [33].

3.5. Antibacterial Activity of the Compound against XDR Pathogens
3.5.1. Agar Well Diffusion Method

The antibacterial activity of the compounds towards XDR E. coli was tested using
an agar well diffusion method. After injecting a 0.5 McFarland bacterial suspension on
the Mueller Hinton Agar plate, a cleaned 6 mm cork borer was used to create wells on
each plate. The plates were incubated overnight at 37 ◦C when the drugs (10 mg, 20 mg,
30 mg, 40 mg, and 50 mg) were poured into the wells and diluted in 100 µL DMSO. A
Vernier caliper was used to determine the Zone of Inhibition (mm). The experiment was
carried out three times. A meropenem (10 g) disc was used as an antibiotic control (Figure 2,
Table 1) [34].

3.5.2. Minimum Inhibitory Concertation of Different Compounds against XDR Pathogens

The MIC (% w/v) of different compounds was determined by the micro broth dilution
method. Two to three different colonies were mixed in double-strength lysogeny broth
(LB) media (20 mL) and cultured overnight at 37 ◦C in a Falcon 50 mL tube. The bacterial
suspension was diluted to 0.5 McFarland at an optical density (OD) of 0.07 at 600 nm. In a
nutshell, each molecule was serially diluted in DMSO (0.76, 1.56, 3.12, 6.25, 12.5, 25, 50 mg),
and 100 µL of each dilution was applied to 96-well flat-bottom microtiter plates (Thermo
Fisher Scientific, Leicestershire, UK). A 100 µL bacterial suspension was then poured
into each well. The positive-control wells had LB with bacterial suspension, while the
negative-control wells had 100 µL of LB. In a shaking incubator (Thermo Fisher Scientific’s
MaxQTM Mini 4450), the microtiter plate was shaken at 3 g overnight at 37 ◦C. The MIC
was calculated by comparing each well to positive and negative control wells. All of the
operations were repeated three times (Table 2) [34].

3.5.3. Determination of MBC

The initial dilution with no growth on the agar plate is characterized as the minimum
bactericidal concentration (MBC, % w/v). A sample of 10 µL was collected from a microtiter
plate with no visible growth wells, injected on nutrient agar plates (Oxoid, Hampshire,
UK), and aerobically cultured for 24 h at 37 ◦C. The viability of the cells on the plates was
checked, and any colonies that formed were rated as either bacterial growth or no bacterial
growth. All procedures were carried out three times (Table 2) [34].

3.6. Docking Studies

Gold software was used to examine the interaction of intermolecular N-(4-bromo-
phenyl)furan-2-carboxamide (3) and its analogues (5a-i) with NDM-positive A. baumannii
protein [35]. The Gold score fitness function was used to estimate the binding energies
of a produced ligand with a protein receptor. One hundred conformations of the NDM-1
active site per ligand were predicted to eliminate any basis in the docking process. A
high-resolution crystal structure of NDM-1 bonded to L-captopril (PDB ID: 4EXS) from the
Protein Data Bank (PDB) was chosen as a model for the entire docking investigation [36].
The binding site was sampled by keeping a distance of 20 Å around the amino acid
residues Asn220, Cys208, His250, Gly219, His122, Asp124, His189, Val73, His120, Met67,
and Trp93 [36]. These previously known amino acid residues from mutagenesis data
are implicated to be crucial in defining the binding site/region of NDM-1 protein for
the docking study of N-(4-bromophenyl)furan-2-carboxamide (3) derivatives. The X-ray
crystallographic structure of NDM-1(4EXS) was prepared before the docking by the removal
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of L-captopril and water molecules. Moreover, the 4EXS was optimized by the protonation
at a pH of 7.0 followed by the energy minimization using Amber99 force field in the
Molecular Operating Environment (MOE). Furthermore, the N-(4-bromophenyl)furan-2-
carboxamide (3) and its analogues (5a-i) were also energy minimized using the MMFF9x
force field in MOE. Both the 4EXS structure and ligands were subjected to molecular
docking for protein–ligand interaction analysis [37].

3.7. Molecular Dynamics (MD) Simulation

Molecular dynamics (MD) simulation was performed using the CHARMM36 force
field in the GROMACS software [38]. The ligand (3, 5c, 5g, 5h, and 5i) topology files
compatible with the receptor (4EXS) force field (CHARMM36) were obtained from the
CGenFF server. The system was solvated using the TIP3P water model to represent the
explicit water molecules. Moreover, the Na+ ions were also added to neutralize the system.
The subsequent NVT and NPT equilibration simulations were carried out at 300 K using the
Nosé–Hoover thermostat and the Parrinello–Rahman barostat, respectively [39]. After the
energy minimization and equilibration steps, the MD simulation was performed for all the
experimentally tested compounds to check their stability in the binding pocket over 50 ns.
The root-mean-square deviation (RMSD) graphs of the simulated NDM-1 A. baumannii (3)
and its analogues (5c, 5g, 5h, 5i) were plotted through the QTgrace software to analyze the
stability of complexes (4EXS-3, 5c, 5g-5i) over 50 ns of MD simulation.

4. Conclusions

We synthesized N-(4-bromophenyl)furan-2-carboxamide (3) with an excellent yield
(94%). A series of functionalized molecules (5a-i) were synthesized by the Suzuki–Miyaura
cross-coupling reaction in moderate to good yields (43–83%). The molecule (3) was found
to be the most effective compound against these bacteria, particularly NDM-positive A.
baumannii as compared to various commercially available drugs. Docking studies and MD
simulations revealed the stability of the protein–ligand complexes. All of the compounds
(3, 5a-i) were embedded into the NDM-1 active site but compound (3) displayed hydrogen
bonding and hydrophobic interactions: Pi-H and Pi-Pi. Further validation showed the
stability of the protein–ligand complexes. The compound (3) was the most valuable and
proved to be a potential antibacterial agent.
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