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of trimethylamine, a toxic product of gut bacteria,
in the aqueous humor: a pilot study
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Abstract

Purpose Animal studies suggest that gut bacteria

metabolites are involved in regulation of intraocular

pressure or development of glaucoma. However,

clinical data are lacking. Here, we wanted to compare

level of trimethylamine (TMA), an uremic toxin

produced by gut bacteria, along with betaine and

trimethylamine N-oxide (TMAO), a substrate and a

product of its metabolism, in the aqueous humor and in

plasma of patients with glaucoma and their controls.

Methods Twenty patients were selected for cataract

phacoemulsification, and 20 patients selected for

phacotrabeculectomy were enrolled in the study.

Patients were matched with controls on systemic

diseases and estimated glomerular filtration rate.

Blood samples were collected in the preoperative

suite, whereas aqueous humor samples were collected

as the first step of both procedures. Subsequently, level

of betaine, TMA and TMAO was analyzed by means

of chromatography.

Results In the aqueous humor, level of TMA, but not

betaine or TMAO, was significantly higher in the

phacotrabeculectomy group than in the phacoemulsi-

fication group. Plasma level of betaine, TMA and

TMAO was similar between groups. In both groups,

level of betaine and TMA, but not TMAO, was

significantly higher in plasma than in the aqueous

humor.

Conclusion TMA, but not TMAO or betaine level, is

increased in the aqueous humor of patients with

glaucoma. TMA might play a role in pathogenesis of

glaucoma; however, prospective studies are needed to

confirm our findings.

Keywords TMA � TMAO � Intraocular pressure �
Betaine

Introduction

The most recent studies prove that bacterial metabo-

lites are involved in pathophysiology of many diseases

[1]. Their role in multiple sclerosis, hypertension,

heart failure or cancer has been highlighted [2].

Furthermore, recent evidence implies that gut
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bacterial metabolites, including short-chain fatty acids

(SCFA), hydrogen sulfide and trimethylamine N-ox-

ide (TMAO), play an important role in regulation of

intraocular pressure (IOP) [3–5].

In vitro experiments suggest that TMAO, a product

of betaine, choline and carnitine metabolism, stabi-

lizes mutant myocilin and prevents degradation of

trabecular meshwork in the juvenile, hereditary glau-

coma [4]. Observations regarding TMAO were linked

to its chaperonic activity [4]. Notably, TMAO protects

cardiomyocytes from increased load in the setting of

hypertension or heart failure in rats and acts as a buffer

against increased osmotic and hydrostatic pressure in

the deep-sea animals [6–8]. In contrast, trimethy-

lamine (TMA), a substrate for TMAO synthesis, exerts

cytotoxic effect on vascular smooth muscles and

cardiomyocytes [9, 10].

Interestingly, role of TMA and TMAO in primary

open-angle glaucoma (POAG) has not been thor-

oughly investigated in clinical studies so far. It is

possible that TMAO acting as a chaperone might

protect proteins in the outflow pathways as well as in

the optic nerve fibers from pressure-related degener-

ation [11]. Contrarily, TMA might negatively affect

optic fibers and smooth muscle cells in the trabecular

meshwork [12]. These negative effects of TMA might

be primarily related to its effects on lactate dehydro-

genase, an enzyme involved in protection against

hypoxic stress—one of causative factors for develop-

ment and progression of glaucoma [12–14].

Furthermore, although various cardiovascular dis-

eases, ischemic heart disease or hypertension, are

linked to development of glaucoma, mechanistic

relationship between these seemingly distinct entities

is far from clear. We believe that TMA and TMAO

might constitute a common humoral background

which affects not only cardiovascular system, but also

has a direct or indirect effect on the structure of the

optic nerve. Firstly, TMA and TMAO are involved in

blood pressure (BP) homeostasis [15–17]. Notably,

dysregulation of BP is considered a risk factor for both

cardiovascular mortality and glaucoma [18, 19].

Secondly, TMAO was shown to accelerate develop-

ment of atherosclerosis which is considered a risk

factor for glaucoma [20–22].

Here, we evaluated the levels of TMA, TMAO and

betaine, a TMA precursor, in the aqueous humor and

in the blood of patients with increased and normal

IOP.

Materials and methods

This cross-sectional study was approved by the

Bioethical Committee at the Medical University of

Warsaw and adhered to the Declaration of Helsinki.

All patients were enrolled at the Department of

Ophthalmology at the Medical University of Warsaw,

a tertiary eye care center in Poland.

Considering the preliminary character of the study

and lack of sufficient data to calculate power of the

study number of participants was arbitrarily set at 20 in

both groups.

Inclusion criteria

The first group consisted of patients undergoing

routine cataract surgery. Patients with advanced

primary open-angle glaucoma, who were selected for

combined procedure of phacoemulsification and tra-

beculectomy, were included in the second group.

Considering that level of TMA was shown to be

inversely proportional to estimated glomerular filtra-

tion rate (eGFR) [10], whereas level of TMAO

correlates with cardiovascular mortality; we decided

to match patients on eGFR as well as diseases related

to cardiovascular mortality, i.e., diabetes, hyperten-

sion and ischemic heart disease. To calculate eGFR,

we utilized Modification of Diet in Renal Disease

(MDRD) study equation.

Both groups underwent routine slit-lamp examina-

tion, including IOP measurement and optic nerve disc

assessment. Patients were selected for phacotra-

beculectomy procedure based on increased cup-to-

disc ratio, elevated IOP and other morphological or

functional features of glaucomatous neuropathy,

including visual field or optical coherence tomography

examination.

Exclusion criteria

Conditions which might impair blood–aqueous humor

barrier were set as exclusion criteria, including uveitic

or traumatic cataract and proliferative diabetic

retinopathy. Furthermore, patients with known gas-

trointestinal disorders which increase permeability of

gut–blood barrier and patients who underwent treat-

ment with antibiotics 3 months prior to the study were

excluded as well. Additionally, patients treated for

glaucoma were not included in the control group.
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Collection of aqueous humor sample

Aqueous humor was collected at the beginning of the

procedure. Following a clear corneal, 1 mm paracen-

tesis 30G cannula was introduced to the anterior

chamber of the eye and 100 ll of the aqueous humor

was aspirated. In order to avoid contamination of the

aqueous humor with blood, care was taken not to

injure limbal vessels. Following collection of fluid,

both phacoemulsification and phacotrabeculectomy

procedures were performed as usual. Aqueous humor

was stored at – 20 �C before analysis.

Collection of peripheral blood sample

Sample of venous blood was collected to a vial

containing EDTA. Collection was performed in the

preoperative suite before infusion of sedating drugs;

2 ml of blood was centrifuged at 5000/min for 10 min,

and serum was aspirated and transferred to an empty

vial which was subsequently stored at – 20 �C before

analysis.

Betaine, TMA and TMAO concentration

evaluation (chromatography)

Chemicals The following chemicals were used: LC–

MS grade—acetonitrile, HPLC gradient grade acetone

(POCh), 25% ammonium hydroxide and formic acid

(J.T. Baker). Ultra-pure water was obtained from

water purification system (Milli-Q, Millipore). TMA,

TMAO and betaine hydrochloride were purchased

from Sigma-Aldrich. All stock solutions were pre-

pared in methanol.

Sample preparation It was performed as follows:

10 ll of sample was mixed with 100 ll of acetone

containing internal standards. After the mixture was

vortexed and centrifuged. A 7 ll of aliquot was

injected into apparatus.

Analytes They were quantified at the Institute of

Biochemistry and Biophysics using liquid chromatog-

raphy–tandem mass spectrometry method. The instru-

mentation consisted of a Waters Acquity Ultra-

Performance Liquid Chromatograph coupled with

Waters TQ-S triple quadrupole mass spectrometer.

Chromatographic separation was performed using a

Waters HILIC column (1.7 lm, 2.1 mm 9 50 mm)

thermostated at 70 �C. Mobile phase A was Milli-Q

water with addition of 1 ml of 25% NH4OH per

1000 ml of water, and mobile phase B was 1 ml of

formic acid in 1000 ml of acetonitrile. The flow rate of

mobile phase was set at 0.5 ml/min. The total time of

separation was 1.7 min. The mass spectrometer oper-

ated in multiple-reaction monitoring (MRM) negative

electrospray ionization (ESI-) mode for indoxyl

sulfate and in multiple-reaction monitoring (MRM)

positive electrospray ionization (ESI?) mode for

other analytes. The calibration curve ranges were

0.02–20 lg/ml for TMAO, 0.1–120 lg/ml for TMA,

0.1–50 lg/ml for indoxyl sulfate and 0.02–10 lg/ml.

Mean R2 coefficients of a calibration curves from six

calibrators were not lower than 0.99.

Statistical analysis

Data were analyzed for normal distribution with

Kolmogorov–Smirnov test. Differences between

groups were tested for statistical significance with

unpaired Student t test. Contingency tables were

analyzed with Cochran’s Q test. Level of statistical

significance was set at 0.05. All analyses were

performed with Graphpad (Prism, USA) and Excel

(Microsoft, USA).

Results

Characteristics of the studied population are included

in Table 1. There was a statistically significant

difference in IOP between phacoemulsification and

phacotrabeculectomy groups (P\ 0.001). There were

no statistically significant differences in age, eGFR,

number of patients with diabetes, hypertension or

ischemic heart disease between groups.

Plasma and aqueous humor levels of TMA, betaine

and TMAO

Plasma level of TMA and betaine was significantly

higher than aqueous humor level of TMA and betaine

in both groups (phacotrabeculectomy betaine

P\ 0.001; TMA P = 0.001) (phacoemulsification

betaine P\ 0.001; TMA P\ 0.001). There was no

difference between aqueous humor and plasma level

of TMAO (Fig. 1a, b).
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Phacoemulsification versus phacotrabeculectomy

Aqueous humor level of TMA, but not betaine or

TMAO, was significantly higher (P\ 0.001) in

phacotrabeculectomy group than in phacoemulsifica-

tion group (Fig. 1a). There were no significant differ-

ences between plasma level of TMA, betaine and

Table 1 Characteristics of

the group

Results are expressed as an

absolute number or a

mean ± standard error of

the mean (SEM)

LOCS III—The lens

opacities classification

system

Phacoemulsification Phacotrabeculectomy P

Number 20 20 P[ 0.05

Age 73.7 ± 1.8 72.1 ± 1.9 P[ 0.05

IOP (mmHg) 13.3 ± 0.8 21.5 ± 1.6 P\ 0.05

Creatinine (mg/ml) 0.82 ± 0.04 0.84 ± 0.04 P\ 0.05

eGFR (ml/min/1.73 m2) 87 ± 6 90 ± 5 P[ 0.05

Cup-to-disc ratio 0.3 ± 0.1 0.8 ± 0.2 P\ 0.05

Number of anti-glaucoma drugs 0 3 ± 0.2 P\ 0.05

Mean deviation (visual field) 0.2 ± 0.5 6.2 ± 1.2 P\ 0.05

LOCS III nuclear score 3 ± 0.3 3.2 ± 0.35 P[ 0.05

Diseases related to cardiovascular mortality

Hypertension 16 14 P[ 0.05

Ischemic heart disease 5 3 P[ 0.05

Diabetes 4 5 P[ 0.05

Classes of anti-glaucoma medication

Prostaglandins 0 16 P\ 0.05

Beta blockers 0 14 P\ 0.05

Alpha-2 agonists 0 15 P\ 0.05

Anhydrase inhibitors 0 16 P\ 0.05

Fig. 1 a Aqueous humor

level of trimethylamine

(TMA), trimethylamine

N-oxide (TMAO) and

betaine. b Plasma level of

trimethylamine (TMA),

trimethylamine N-oxide

(TMAO) and betaine.

*p\ 0.05

phacoemulsification TMA

versus phacotrabeculectomy

TMA. $p\ 0.05 plasma

TMA versus aqueous humor

TMA; plasma betaine versus

aqueous humor betaine
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TMAO in phacotrabeculectomy and phacoemulsifica-

tion groups (Fig. 1b).

Discussion

Here, we have found that the aqueous humor contains

TMA, a gut bacteria metabolite, as well as a substrate

and a product of its metabolic pathway, i.e., betaine

and TMAO, respectively. Furthermore, we have

shown that level of TMA in the aqueous humor of

patients with advanced open-angle glaucoma is sig-

nificantly higher than in phacoemulsification control

group.

Betaine, L-carnitine and choline are abundant in red

meat and in deep-sea animals [23, 24]. They are

metabolized by gut bacteria to TMA, which is in turn

oxygenated to TMAO in the liver [25]. Additionally,

saltwater fish constitute an important direct dietary

source of TMAO [26].

The landmark study which linked an increased level

of TMAO to cardiovascular mortality triggered inter-

est in hypothesis that products of L-carnitine and

betaine metabolism, which involves gut bacteria, play

a pivotal role in maintenance of homeostasis [27, 28].

Basic and clinical research which followed proved that

TMAO prolongs effects of angiotensin II and plays a

role in carcinogenesis or development of diabetes [26].

However, growing body of research shows that it is

not TMAO, which is a product of liver oxygenation of

TMA, but rather TMA itself is toxic and might be

responsible for decreased viability of smooth muscles

or cardiomyocytes and may directly lead to dysregu-

lation of homeostasis [10].

To the best of our knowledge, no previous clinical

study investigated the presence of gut bacteria

metabolites in the aqueous humor of patients with

cataract and patients with cataract and glaucoma.

Here, we have found that betaine, TMA and TMAO

are present in the aqueous humor of cataract patients

and patients with both cataract and glaucoma. Inter-

estingly, although level of TMAO in the aqueous

humor and in the plasma is similar, concentration of

TMA and betaine in the eye is twofold lower than in

the plasma. Considering that the exclusive locations of

TMAO and TMA synthesis are the liver and the gut,

respectively [29], our findings suggest that TMAO

diffuses freely from blood to the aqueous humor and

does not undergo metabolism in the eye. In contrast,

distribution of TMA and betaine to the eye might be

restricted by specific transporters, active removal or

metabolism.

Furthermore, we have found that level of TMA in

the aqueous humor of glaucoma patients is signifi-

cantly higher than in cataract patients. Considering

that TMA has been shown to impair smooth muscle

function [10], we hypothesize that TMA might

negatively affect smooth muscle cells in the trabecular

meshwork and decrease filtration. What is more, TMA

was found to accelerate degeneration of lactate

dehydrogenase (LDH) [10]. It is well established that

mechanisms involved in response to hypoxia, includ-

ing LDH, are impaired in glaucomatous eyes [13, 14].

We hypothesize that TMAmight further interfere with

defense mechanisms against hypoxic stress and

accelerate development or progression of glaucoma.

Furthermore, large cross-sectional studies showed

positive correlation between chronic kidney disease

and incidence of open-angle glaucoma [30, 31].

Notably, given that plasma level of TMA is inversely

correlated with eGFR, TMA might constitute a

plausible mechanistic link between chronic kidney

disease and glaucoma [10].

Limitations of our study should be underlined.

Firstly, considering that patients selected for phaco-

trabeculectomy procedure were under influence of

anti-glaucoma medication, we cannot rule out effects

of these drugs on level of betaine, TMA and TMAO,

particularly in the aqueous humor. Secondly, we

cannot rule out influence of other factors, including

diet or baseline IOP in the phacotrabeculectomy

group. Finally, prospective and randomized trials are

needed to fully elucidate role of gut bacteria metabo-

lites in the development and progression of glaucoma.

In conclusion, TMA, but not TMAO or betaine

level is increased in the aqueous humor of patients

with glaucoma. TMA might play a role in pathogen-

esis of glaucoma, however, prospective studies are

needed to confirm our findings.
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