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Deep learning (DL) has had unprecedented success and is now
entering scientific computing with full force. However, current DL
methods typically suffer from instability, even when universal ap-
proximation properties guarantee the existence of stable neural
networks (NNs). We address this paradox by demonstrating basic
well-conditioned problems in scientific computing where one can
prove the existence of NNs with great approximation qualities;
however, there does not exist any algorithm, even randomized,
that can train (or compute) such a NN. For any positive integers
K > 2 and L, there are cases where simultaneously 1) no ran-
domized training algorithm can compute a NN correct to K digits
with probability greater than 1/2; 2) there exists a deterministic
training algorithm that computes a NN with K − 1 correct dig-
its, but any such (even randomized) algorithm needs arbitrarily
many training data; and 3) there exists a deterministic training
algorithm that computes a NN with K − 2 correct digits using no
more than L training samples. These results imply a classification
theory describing conditions under which (stable) NNs with a
given accuracy can be computed by an algorithm. We begin this
theory by establishing sufficient conditions for the existence of
algorithms that compute stable NNs in inverse problems. We
introduce fast iterative restarted networks (FIRENETs), which we
both prove and numerically verify are stable. Moreover, we prove
that only O(| log(ε)|) layers are needed for an ε-accurate solution
to the inverse problem.

stability and accuracy | AI and deep learning | inverse problems | Smale’s
18th problem | solvability complexity index hierarchy

Deep learning (DL) has demonstrated unparalleled accom-
plishments in fields ranging from image classification and

computer vision (1–3), to voice recognition and automated di-
agnosis in medicine (4–6), to inverse problems and image recon-
struction (7–12). However, there is now overwhelming empirical
evidence that current DL techniques typically lead to unstable
methods, a phenomenon that seems universal and present in
all of the applications listed above (13–21) and in most of the
new artificial intelligence (AI) technologies. These instabilities
are often detected by what has become commonly known in the
literature as “adversarial attacks.” Moreover, the instabilities can
be present even in random cases and not just worst-case scenarios
(22)—see Fig. 1 for an example of AI-generated hallucinations.
There is a growing awareness of this problem in high-stakes
applications and society as a whole (20, 23, 24), and instability
seems to be the Achilles’ heel of modern AI and DL (Fig. 2,
Top row). For example, this is a problem in real-world clinical
practice. Facebook and New York University’s 2019 FastMRI
challenge reported that networks that performed well in terms
of standard image quality metrics were prone to false negatives,
failing to reconstruct small, but physically relevant image abnor-
malities (25). Subsequently, the 2020 FastMRI challenge (26)
focused on pathologies, noting, “Such hallucinatory features are
not acceptable and especially problematic if they mimic nor-
mal structures that are either not present or actually abnormal.

Neural network models can be unstable as demonstrated via
adversarial perturbation studies (19).” For similar examples in
microscopy, see refs. 27 and 28. The tolerance level for false
positives/negatives varies within different applications. However,
for scenarios with a high cost of misanalysis, it is imperative that
false negatives/positives be avoided. AI-generated hallucinations
therefore pose a serious danger in applications such as medical
diagnosis.

Nevertheless, classical approximation theorems show that a
continuous function can be approximated arbitrarily well by a
neural network (NN) (29, 30). Thus, stable problems described
by stable functions can always be solved stably with a NN. This
leads to the following fundamental question:

Question. Why does DL lead to unstable methods and AI-generated
hallucinations, even in scenarios where one can prove that stable
and accurate neural networks exist?

Foundations of AI for Inverse Problems. To answer the above ques-
tion we initiate a program on the foundations of AI, determining
the limits of what DL can achieve in inverse problems. It is
crucial to realize that an existence proof of suitable NNs does not
always imply that they can be constructed by a training algorithm.
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Fig. 1. AI-generated hallucinations. A trained NN, based on a U-net architecture and trained on a set of ellipses images, generates a black area in a white
ellipse (Top Left image, shown as green arrow) when reconstructing the original image x from noiseless measurements. By adding random Gaussian noise
e1 and e2 (where ‖e1‖l2/‖e2‖l2 ≈ 2/5) to the measurements, we see that the trained NN removes the aspiring black ellipse (Top row, Center Left to Center
Right). FIRENET on the other hand is completely stable with and without random Gaussian noise (Bottom row, Left to Center Right). In Right column, we
show the original image x, with a red square (Top Right) indicating the cropped area. In this example, A ∈ Cm×N is a subsampled discrete Fourier transform
with m/N ≈ 0.12.

Furthermore, it is not difficult to compute stable NNs. For exam-
ple, the zero network is stable, but not particularly useful. The big
problem is to compute NNs that are both stable and accurate (30,
31). Scientific computing itself is based on the pillars of stability
and accuracy. However, there is often a trade-off between the
two. There may be barriers preventing the existence of stable and
accurate algorithms, and sometimes accuracy must be sacrificed
to secure stability.

Main Results. We consider the canonical inverse problem of an
underdetermined system of linear equations:

Given measurements y = Ax + e ∈ C
m , recover x ∈ C

N . [1]

Here, A ∈ Cm×N represents a sampling model (m < N ), such as
a subsampled discrete Fourier transform in MRI, and x the un-
known quantity. The problem in Eq. 1 forms the basis for much of
inverse problems and image analysis. The vector e models noise
or perturbations. Our results demonstrate fundamental barriers
preventing NNs (despite their existence) from being computed by
algorithms. This helps shed light on the intricate question of why
current algorithms in DL produce unstable networks, despite the
fact that stable NNs often exist in the particular application. We
show the following:

1) Theorems 1 and 2: There are well-conditioned problems (suit-
able condition numbers bounded by 1) where, paradoxically,
mappings from training data to suitable NNs exist, but no
training algorithm (even randomized) can compute approx-
imations of the NNs from the training data.

2) Theorem 2: The existence of algorithms computing NNs de-
pends on the desired accuracy. For any K ∈ Z≥3, there are

well-conditioned classes of problems where simultaneously
1) algorithms may compute NNs to K − 1 digits of accuracy,
but not K; 2) achieving K − 1 digits of accuracy requires
arbitrarily many training data; and 3) achieving K − 2 correct
digits requires only one training datum.

3) Theorems 3 and 4: Under specific conditions that are typically
present in, for example, MRI, there are algorithms that com-
pute stable NNs for the problem in Eq. 1. These NNs, which
we call fast iterative restarted networks (FIRENETs), con-
verge exponentially in the number of hidden layers. Crucially,
we prove that FIRENETs are robust to perturbations (Fig. 2,
Bottom row), and they can even be used to stabilize unstable
NNs (Fig. 3).

4) There is a trade-off between stability and accuracy in DL,
with limits on how well a stable NN can perform in inverse
problems. Fig. 4 demonstrates this with a U-net trained on
images consisting of ellipses that is quite stable. However,
when a detail not in the training set is added, it washes it
out almost entirely. FIRENETs offer a blend of both stability
and accuracy. However, they are by no means the end of the
story. Tracing out the optimal stability vs. accuracy trade-off is
crucial for applications and will no doubt require a myriad of
different techniques to tackle different problems and stability
tolerances.

Fundamental Barriers
We first consider basic mappings used in modern mathematics of
information, inverse problems, and optimization. Given a matrix
A ∈ Cm×N and a vector y ∈ Cm , we consider the following three
popular minimization problems:
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Fig. 2. Top row (unstable neural network in image reconstruction): The neural network AUTOMAP (60) represents the tip of the iceberg of DL in inverse
problems. Ref. 60, pp. 1 and 487, promises that one can “…observe superior immunity to noise….” Moreover, the follow-up announcement (ref. 83, pp.
1 and 309) proclaims “A deep-learning-based approach improves speed, accuracy and robustness of biomedical image reconstruction.” However, as we
see in Top row, the AUTOMAP reconstruction Ψ(Ax + ej) from the subsampled noisy Fourier MRI data Ax + ej is completely unstable. Here, A ∈ Cm×N is
a subsampled Fourier transform, x is the original image, and the ej s are perturbations meant to simulate the worst-case effect. Note that the condition
number cond(AA∗) = 1, so the instabilities are not caused by poor condition. The network weights were provided by the authors of ref. 60, which trained
and tested it on brain images from the Massachusetts General Hospital Human Connectome Project (MGH-USC HCP) dataset (84). The image x is taken from
this dataset. Bottom row (the FIRENET is stable to worst-case perturbations): Using the same method, we compute perturbations ẽj to simulate the worst-case
effect for the FIRENET Φ : Cm → CN. As can be seen, FIRENET is stable to these worst-case perturbations. Here x and A ∈ Cm×N are the same image and
sampling matrix as for AUTOMAP. Moreover, for each j = 1, 2, 3 we have ensured that ‖ẽj‖l2 ≥ ‖ej‖l2 , where the ej s are the perturbations for AUTOMAP
(we have denoted the perturbations for FIRENET by ẽj to emphasize that these adversarial perturbations are sought for FIRENET and have nothing to do
with the perturbations for AUTOMAP).

(P1) argminx∈CN FA
1 (x ) := ‖x‖l1w , s.t.‖Ax − y‖l2≤ε,

(P2) argminx∈CN FA
2 (x , y ,λ) := λ‖x‖l1w + ‖Ax − y‖2l2 ,

(P3) argminx∈CN FA
3 (x , y ,λ) := λ‖x‖l1w + ‖Ax − y‖l2 ,

known respectively as quadratically constrained basis pursuit [we
always assume existence of a feasible x for (P1) ], unconstrained
least absolute shrinkage and selection operator (LASSO), and
unconstrained square-root LASSO. Such sparse regularization
problems are often used as benchmarks for Eq. 1, and we prove
impossibility results for computing the NNs that can approximate
these mappings. Our results initiate a classification theory on
which NNs can be computed to a certain accuracy.

The parameters λ and ε are positive rational numbers, and the
weighted l1w norm is given by ‖x‖l1w :=

∑N
l=1 wl |xl |, where each

weight wj is a positive rational. Throughout, we let

Ξj (A, y) be the set of minimizers for (Pj ). [2]

Let A ∈ Cm×N and let S = {yk}Rk=1 ⊂ Cm be a collection of
samples (R ∈ N). We consider the following key question:

Question. Given a collection Ω of pairs (A,S), does there exist a
neural network approximating Ξj , and if so, can such an approxi-
mation be trained or determined by an algorithm?

To make this question precise, note that A and samples in S
will typically never be exact, but can be approximated/stored to

arbitrary precision. For example, this would occur if A was a
subsampled discrete cosine transform. Thus, we assume access
to rational approximations {yk ,n}Rk=1 and An with

‖yk ,n − yk‖l2 ≤ 2−n , ‖An − A‖ ≤ 2−n , ∀n ∈ N, [3]

where ‖ · ‖ refers to the usual Euclidean operator norm. The
bounds 2−n are simply for convenience and can be replaced by
any other sequence converging to zero. We also assume access to
rational {xk ,n}Rk=1 with

inf
x∗∈Ξj (An ,yk,n )

‖xk ,n − x∗‖l2 ≤ 2−n , ∀n ∈ N. [4]

Hence, the training data associated with (A,S) ∈ Ω must be

ιA,S := {(yk ,n ,An , xk ,n) | k = 1, . . . ,R, andn ∈ N} . [5]

This set is formed of arbitrary precision rational approximations
of finite collections of data associated with (A,S). Given a col-
lection Ω of pairs (A,S), the class of all such admissible training
data is denoted by

ΩT := {ιA,S as in Eq. 5 | (A,S) ∈ Ω,Eqs. 3 to 4 hold} .

Statements addressing the above question are summarized in
Theorems 1 and 2. We use Nm,N to denote the class of NNs from
Cm to CN . We use standard definitions of feedforward NNs (32),
precisely given in SI Appendix.
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Theorem 1. For any collection Ω of such (A,S) described above,
there exists a mapping

K : ΩT →Nm,N , K(ιA,S) = ϕA,S ,

s.t . ϕA,S(y) ∈ Ξj (A, y), ∀y ∈ S.

In words, K maps the training data ΩT to NNs that solve the
optimization problem (Pj ) for each (A,S) ∈ Ω.

Despite the existence of NNs guaranteed by Theorem 1, com-
puting or training such a NN from training data is most delicate.
The following is stated precisely and proved in SI Appendix.
We also include results for randomized algorithms, which are
common in DL (e.g., stochastic gradient descent).

Theorem 2. Consider the optimization problem (Pj ) for fixed pa-
rameters λ ∈ (0, 1] or ε ∈ (0, 1/2] and wl = 1, where N ≥ 2 and
m < N . Let K > 2 be a positive integer and let L ∈ N. Then there
exists an infinite class Ω= Ω(K ,L) of elements (A,S) as above,
with the following properties. The class Ω is well-conditioned with
relevant condition numbers bounded by 1 independent of all param-
eters. However, the following hold simultaneously (where accuracy
is measured in the l2 norm):

1) (K digits of accuracy impossible) There does not exist any algo-
rithm that, given a training set ιA,S∈ΩT , produces a NN with
K digits of accuracy for any element of S. Furthermore, for any
p > 1/2, no probabilistic algorithm (Blum–Shub–Smale [BSS],
Turing, or any model of computation) can produce a NN with K
digits of accuracy with probability at least p.

2) (K − 1 digits of accuracy possible but requires arbitrarily many
training data) There does exist a deterministic Turing machine
that, given a training set ιA,S∈ΩT , produces a NN accurate
to K − 1 digits over S. However, for any probabilistic Turing
machine, M ∈ N and p ∈

[
0, N−m

N+1−m

)
that produces a NN,

there exists a training set ιA,S ∈ ΩT such that for all y ∈ S, the
probability of failing to achieve K − 1 digits or requiring more
than M training data is greater than p.

3) (K − 2 digits of accuracy possible with L training data) There
does exist a deterministic Turing machine that, given a training
set ιA,S ∈ ΩT and using only L training data from each ιA,S ,
produces a NN accurate to K − 2 digits over S.

Remark 1 (condition and class size). The statement in Theorem
2 refers to the standard condition numbers used in optimization
and scientific computing. For precise definitions, see SI Appendix.
The class Ω we construct is infinite. Similarly, one can design a
finite class Ω with the same conclusion by allowing the sample
size R to be infinite.
Remark 2 (distributions on training data). In DL it is often the
case that one assumes some probability distribution on the train-
ing data. This is not needed for Theorem 2. However, having
a probability distribution on the training data ιA,S would not
invalidate statement 1 in Theorem 2. In particular, there is no
(computable) probability distribution that would make statement
1 in Theorem 2 cease to be true. This follows from the prob-
abilistic part of statement 1 in Theorem 2, as the existence of
such a (computable) distribution and an algorithm would yield
a randomized algorithm violating statement 1 in Theorem 2.
Remark 3 (on the role of K in Theorem 2). The result should be
understood as fixing an integer K (and L) and then Ω= Ω(K ,L)
depends on K and L. However, given a particular Ω one can ask,
what is the largest K such that one can compute K correct digits?
Note that we typically have K = 	log(ε−1)
, where ε > 0 is the
so-called breakdown epsilon of the problem (33), i.e., the largest
ε > 0 for which all algorithms will fail to provide ε accuracy. When
the breakdown epsilon ε > 0, it is typically impossible to check
whether an algorithm fails (33). Thus, even if an algorithm would
succeed with probability 1/2, one could never trust the output.

Table 1. Impossibility of computing approximations of the exist-
ing neural network to arbitrary accuracy

ΨAn ΦAn ‖An − A‖ ≤ 2−n 10−K Ω(K)

‖yn − y‖l2 ≤ 2−n

0.2999690 0.2597827 n = 10 10−1 K = 1
0.3000000 0.2598050 n = 20 10−1 K = 1
0.3000000 0.2598052 n = 30 10−1 K = 1
0.0030000 0.0025980 n = 10 10−3 K = 3
0.0030000 0.0025980 n = 20 10−3 K = 3
0.0030000 0.0025980 n = 30 10−3 K = 3
0.0000030 0.0000015 n = 10 10−6 K = 6
0.0000030 0.0000015 n = 20 10−6 K = 6
0.0000030 0.0000015 n = 30 10−6 K = 6

We demonstrate statement 1 from Theorem 2 on FIRENETs ΦAn and LISTA
networks ΨAn . Shown is the shortest l2 distance between the output from
the networks and the true solution of the problem (P3), with wl = 1 and
λ = 1, for different values of n and K. Note that none of the networks can
compute the existing correct NN (that exists by Theorem 1 and coincides
with Ξ3) to 10−K digits accuracy, while all of them are able to compute
approximations that are accurate to 10−K+1 digits [for the input class Ω(K)].
This agrees exactly with Theorem 2.

Remark 4 (Gödel, Turing, Smale, and Theorem 2). Theorems 1 and
2 demonstrate basic limitations on the existence of algorithms
that can compute NNs despite their existence. This relates to
Smale’s 18th problem, “What are the limits of intelligence, both
artificial and human?”, from the list of mathematical problems
for the 21st century (34), which echoes the Turing test from 1950
(35). Smale’s discussion is motivated by the results of Gödel
(36) and Turing (37) establishing impossibility results on what
mathematics and digital computers can achieve (38). Our results
are actually stronger, however, than what can be obtained with
Turing’s techniques. Theorem 2 holds even for any random-
ized Turing or BSS machine that can solve the halting problem.
It immediately opens up for a classification theory on which
NNs can be computed by randomized algorithms. Theorem 3
is a first step in this direction. See also the work by Niyogi,
Smale, and Weinberger (39) on existence results of algorithms for
learning.

Numerical Example. To highlight the impossibility of computing
NNs (Theorem 2)—despite their existence by Theorem 1—we
consider the following numerical example: Consider the problem
(P3), with wl = 1 and λ= 1. Theorem 2 is stated for a specific
input class Ω= Ω(K ) depending on the accuracy parameter K,
and in this example we consider three different such classes. In
Theorem 2, we required that K > 2 so that K − 2> 0, but this
is not necessary to show the impossibility statement 1, so we
consider K = 1, 3, 6. Full details of the following experiment are
given in SI Appendix.

To show that it is impossible to compute NNs that can solve
(P3) to arbitrary accuracy we consider FIRENETs ΦAn (the NNs
in Theorem 3) and learned ISTA (LISTA) networks ΨAn based
on the architecture choice from ref. 40. The networks are trained
to high accuracy on training data on the form of Eq. 5 with
R = 8, 000 training samples and n given as in Table 1. In all
cases N = 20, m = N − 1, and the xk ,n s minimizing (P3) with
input data (yk ,n ,An) are all 6-sparse. The choice of N, m, and
sparsity is to allow for fast training; other choices are certainly
possible.

Table 1 shows the errors for both LISTA and FIRENETs. Both
network types are given input data (yn ,An), approximating the
true data (y ,A). As is clear from Table 1, none of the networks
are able to compute an approximation to the true minimizer in
Ξ3(A, y) to K digits accuracy. However, both networks compute
an approximation withK − 1 digits accuracy. These observations
agree precisely with Theorem 2.
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The Subtlety and Difficulty of Removing Instabilities and the Need
for Additional Assumptions. Theorem 2 shows that the problems
(Pj ) cannot, in general, be solved by any training algorithm.
Hence, any attempt at using the problems (Pj ) as approximate
solution maps of the general inverse problem in Eq. 1, without
additional assumptions, is doomed to fail. This is not just the case
for reconstruction using sparse regularization, but also applies to
other methods. In fact, any stable and accurate reconstruction
procedure must be “kernel aware” (22), a property that most DL
methods do not enforce. A reconstruction method Ψ: Cm → CN

lacks kernel awareness if it approximately recovers two vectors

‖Ψ(Ax )− x‖ ≤ ε and ‖Ψ(Ax ′)− x ′‖ ≤ ε [6]

whose difference ‖x − x ′‖� 2ε is large, but where the difference
lies close to the null space of A (which is nontrivial due tom < N )
so that ‖A(x − x ′)‖< ε. In particular, by applying Eq. 6 and the
triangle inequality twice, we have that

‖Ψ(Ax )−Ψ(Ax ′)‖ ≥ ‖x − x ′‖ − 2ε [7]

implying instability, as it requires only a perturbation e = A(x ′ −
x ) of size ‖e‖< ε for Ψ(Ax + e) = Ψ(Ax ′) to reconstruct the
wrong image. The issue here is that if we want to accurately
recover x and x ′, i.e., we want Eq. 6 to hold, then we cannot
simultaneously have that x − x ′ lies close to the kernel. Later
we shall see conditions that circumvent this issue for our model
class, thereby allowing us to compute stable and accurate NNs.

While training can encourage the conditions in Eq. 6 to hold, it
is not clear how many of the defense techniques in DL, simulta-
neously, will protect against the condition ‖A(x − x ′)‖< ε. One
standard attempt to remedy instabilities is adversarial training
(41). However, while this strategy can potentially avoid Eq. 6, it
may yield poor performance. For example, consider the following
optimization problem, which generates a reconstruction in the
form of a NN given samples Θ= {(ys , xs) : s = 1, . . . ,R,Axs =
ys} and ε,λ > 0:

min
φ∈Nm,N

R∑
s=1

max
‖e‖

l2
≤ε

{
‖xs−φ(ys)‖2l2+λ‖xs−φ(ys+e)‖2l2

}
. [8]

In other words, for each training point (y , x ) ∈Θ we find the
worst-case perturbation e in the ε -ball around y. This is a sim-
plified model of what one might do using generative adversarial
networks (GANs) to approximate adversarial perturbations (42,
43). For simplicity, assume that A has full row rank m and that
we have access to exact measurements ys = Axs . Suppose that
our sample is such that mini �=j ‖yi − yj‖l2 > 2ε. In this case,
φ minimizes Eq. 8 if and only if φ(ys + e) = xs for all e with
‖e‖l2 ≤ ε. A piecewise affine network achieving this can easily
be constructed using ReLU (rectified linear unit) activation func-
tions. Now suppose that x2 is altered so that x1 − x2 lies in the
kernel of A. Then for any minimizer φ, we must have φ(y1 + e) =
φ(y2 + e) = (x1 + x2)/2 for any e with ‖e‖l2 ≤ ε, and hence we
can never be more than ‖x1 − φ(y1)‖= ‖x1 − x2‖l2/2 accurate
over the whole test sample. Similar arguments apply to other
methods aimed at improving robustness such as adding noise
to training samples (known as “jittering”) (Fig. 4). Given such
examples and Theorem 2, we arrive at the following question:

Question. Are there sufficient conditions on A that imply the exis-
tence of an algorithm that can compute a neural network that is
both stable and accurate for the problem in Eq. 1?

Sufficient Conditions for Algorithms to Compute Stable and
Accurate NNs
Sparse regularization, such as the problems (Pj ), forms the core
of many start-of-the-art reconstruction algorithms for inverse
problems. We now demonstrate a sufficient condition (from

compressed sensing) guaranteeing the existence of algorithms for
stable and accurate NNs. Sparsity in levels is a standard sparsity
model for natural images (44–47) as images are sparse in levels
in X-lets (wavelets, curvelets, shearlets, etc.).

Definition 1 (Sparsity in Levels). Let M = (M1, . . . ,Mr ) ∈ Nr , 1≤
M1 < . . . <Mr = N , and s = (s1, . . . , sr ) ∈ Nr

0, where sl ≤Ml −
Ml−1 for l = 1, . . . , r (M0 = 0). x ∈ CN is (s,M) -sparse in levels
if |supp(x ) ∩ {Ml−1 + 1, . . . ,Ml}| ≤ sl for l = 1, . . . , r .The total
sparsity is s = s1 + . . .+ sr . We denote the set of (s,M) -sparse
vectors by Σs,M. We also define the following measure of distance
of a vector x to Σs,M by

σs,M(x )l1w = inf{‖x − z‖l1w : z ∈ Σs,M}.

This model has been used to explain the effectiveness of com-
pressed sensing (46, 48–52) in real-life applications (53). For
simplicity, we assume that each sl > 0 and that wi = w(l) if
Ml−1 + 1≤ i ≤Ml (the weights in the l1w norm are constant in
each level). For a vector c that is compressible in the wavelet
basis, σs,M(x )l1w is expected to be small if x is the vector of wavelet
coefficients of c and the levels correspond to wavelet levels (54).
In general, the weights are a prior on anticipated support of
the vector (55), and we discuss some specific optimal choices in
SI Appendix.

For I ⊂ {1, . . . ,N }, let PI ∈ CN×N denote the projection
(PIx )i = xi if i ∈ I and (PIx )i = 0 otherwise. The key kernel-
aware property that allows for stable and accurate recovery
of (s,M) -spare vectors for the inverse problem Eq. 1 is the
weighted robust null space property in levels (wrNSPL):

Definition 2 (wrNSPL). Let (s,M) be local sparsities and sparsity
levels, respectively. For weights {wi}Ni=1, A ∈ Cm×N satisfies the
wrNSPL of order (s,M) with constants 0< ρ < 1 and γ > 0 if
for any (s,M) support set I ⊂ {1, . . . ,N } (with complement Ic =
{1, . . . ,N }\I),

‖PIx‖l2 ≤
ρ‖PIcx‖l1w√∑r

l=1 w
2
(l)sl

+ γ‖Ax‖l2 , for all x ∈ C
N .

We highlight that if A satisfies the wrNSPL, then

‖x − x ′‖l2 ≤ C‖A(x − x ′)‖l2 , ∀x , x ′ ∈ Σs,M,

where C = C (ρ, γ)> 0 is a constant depending only on ρ and
γ (SI Appendix). This ensures that if ‖x − x ′‖�2 � 2ε, then we
cannot, simultaneously, have that ‖A(x − x ′)‖< ε, causing the
instability in Eq. 7. Below, we give natural examples of sampling
in compressed imaging where such a property holds, for known
ρ and γ, with large probability. We can now state a simplified
version of our result (the full version with explicit constants is
given and proved in SI Appendix):

Theorem 3. There exists an algorithm such that for any input sparsity
parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N (with the input A
given by {Al}) satisfying the wrNSPL with constants 0< ρ < 1 and
γ > 0 (also input), and input parameters n ∈ N and {δ, b1, b2} ⊂
Q>0, the algorithm outputs a neural network φn with O(n) hidden
layers and O(N ) width with the following property: For any x ∈ CN ,
y ∈ Cm with

σs,M(x )l1w + ‖Ax − y‖l2 � δ, ‖x‖l2 � b1, ‖y‖l2 � b2,

we have ‖φn(y)− x‖l2 � δ + e−n .
Hence, up to the small error term σs,M(x )l1w , as n →∞ (with

exponential convergence), we recover x stably with an error
proportional to the measurement error ‖Ax − y‖l2 . The explicit
constant in front of the ‖Ax − y‖l2 term can be thought of as
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an asymptotic local Lipschitz constant for the NNs as n →∞
and thus measures stability of inexact input y. The error of order
σs,M(x )l1w measures how close the vector x is from the model
class of sparse in levels vectors. In the full version of Theorem
3, we also bound the error when we only approximately apply the
nonlinear maps of the NNs and show that these errors can only
accumulate slowly as n increases. In other words, we also gain a
form of numerical stability of the forward pass of the NN. We call
our NNs FIRENETs.
Remark 5 (unrolling does not in general yield an algorithm pro-
ducing an accurate network). Unrolling iterative methods has
a rich history in DL (9, 56). Note, however, that Theorem 2
demonstrates that despite the existence of an accurate neural
network, there are scenarios where no algorithm exists that can
compute it. Thus, unrolling optimization methods can work only
under certain assumptions. Our results are related to the work
of Ben-Tal and Nemirovski (57) (see also ref. 58), which shows
how key assumptions such as the robust nullspace property help
bound the error of the approximation to a minimizer in terms
of error bounds on the approximation to the objective function.
This is related to robust optimization (59).

In the case that we do not know ρ or γ (the constants in the
definition of wrNSPL), we can perform a log-scale grid search
for suitable parameters. By increasing the width of the NNs to
O(N log(n)), we can still gain exponential convergence in n by
choosing the parameters in the grid search that lead to the vector
with minimal FA

3 [the objective function of (P3)]. In other cases,
such as Theorem 4 below, it is possible to prove probabilistic
results where ρ and γ are known.

Examples in Image Recovery. As an application, we consider
Fourier and Walsh (binary) sampling, using Haar wavelets as
a sparsifying transform. Our results can also be generalized
to infinite-dimensional settings via higher-order Daubechies
wavelets. Theorem 3 is quite general and there are numerous
other applications where problem-dependent results similar to
Theorem 4 can be shown.

Let K = 2r for r ∈ N, and set N =K d so that the objective
is to recover a vectorized d-dimensional tensor c ∈ CN . Let
V ∈ CN×N correspond to the d -dimensional discrete Fourier
or Walsh transform (SI Appendix). Let I ⊂ {1, . . . ,N } be
a sampling pattern with cardinality m = |I| and let D =
diag(d1, . . . , dm) ∈ Cm×m be a suitable diagonal scaling matrix,
whose entries along the diagonal depend only on I. We assume
we can observe the subsampled, scaled and noisy measurements
y =DPIVc + e ∈ Cm , where projection PI is treated as an
m × N matrix by ignoring the zero entries.

To recover a sparse representation of c, we consider Haar
wavelet coefficients. Denote the discrete d-dimensional Haar
wavelet transform by Ψ ∈ CN×N and note that Ψ∗ =Ψ−1 since
Ψ is unitary. To recover the wavelet coefficients x =Ψc of c,
we consider the matrix A=DPIVΨ∗ and observe that y =
Ax + e =DPIVc + e . A key result in this work is that we can
design a probabilistic sampling strategy (SI Appendix), for both
Fourier and Walsh sampling in d dimensions, requiring no more
than m � (s1 + . . .+ sr ) · L samples, that can ensure with high
probability that A satisfies the wrNSPL with certain constants.
The sparsity in levels structure (Definition 1) is chosen to cor-
respond to the r wavelet levels. Here L is a logarithmic term
in N ,m, s , and ε−1

P
[where εP ∈ (0, 1) is a probability]. This

result is crucial, as it makes A kernel aware for vectors that are
approximately (s,M) -sparse and allows us (using Theorem 3) to
design NNs that can stably and accurately recover approximately
(s,M) -sparse vectors. Moreover, due to the exponential con-
vergence in Theorem 3, the depth of these NNs depends only
logarithmically on the error δ. Below follows a simplified version
of our result (the full precise version is given and proved in
SI Appendix).

Theorem 4. Consider the above setup of recovering wavelet coeffi-

cients x =Ψc of a tensor c ∈ CKd

from subsampled, scaled and
noisy Fourier or Walsh measurements y =DPIVc + e . Let A=
DPIVΨ∗, m = |I|, and εP ∈ (0, 1). We then have the following:

1) If I ⊂ {1, . . . ,N } is a random sampling pattern drawn accord-
ing to the strategy specified in SI Appendix, and

m � (s1 + · · ·+ sr ) · L,

then with probability 1− εP, A satisfies the wrNSPL of order
(s,M) with constants (ρ, γ) = (1/2,

√
2), w(l) =

√
s/sl , s =

s1 + · · ·+ sr . Here L denotes a term logarithmic in ε−1
P

,N ,m
and s.

2) SupposeI is chosen as above. For any δ ∈ (0, 1), letJ (δ, s,M,w)
be the set of all y=Ax+e∈ Cm where

‖x‖l2 ≤ 1, max
{
σs,M(x )l1w , ‖e‖l2

}
≤ δ. [9]

We provide an algorithm that constructs a neural network φ with
O(log(δ−1)) hidden layers [and width bounded by 2(N +m) ]
such that with probability at least 1− εP,

‖φ(y)− c‖l2 � δ, ∀y = Ax + e ∈ J (δ, s,M,w).

Balancing the Stability and Accuracy Trade-Off
Current DL methods for image reconstruction can be unstable in
the sense that 1) a tiny perturbation, in either the image or the
sampling domain, can cause severe artifacts in the reconstructed
image (Fig. 2, Top row) and/or 2) a tiny detail in the image
domain might be washed out in the reconstructed image (lack of
accuracy), resulting in potential false negatives. Inevitably, there
is a stability–accuracy trade-off for this type of linear inverse
problem, making it impossible for any reconstruction method
to become arbitrarily stable without sacrificing accuracy or vice
versa. Here, we show that the NNs computed by our algorithm
(FIRENETs) are stable with respect to adversarial perturbations
and accurate for images that are sparse in wavelets (cf. Theorem
4). As most images are sparse in wavelets, these networks also
show great generalization properties to unseen images.

Adversarial Perturbations for AUTOMAP and FIRENETs. Fig. 2 (Top
row) shows the stability test, developed in ref. 19, applied to the
automated transform by manifold approximation (AUTOMAP)
(60) network used for MRI reconstruction with 60% subsam-
pling. The stability test is run on the AUTOMAP network to find
a sequence of perturbations ‖e1‖l2 < ‖e2‖l2 < ‖e3‖l2 . As can be
seen from Fig. 2, Top row, the network reconstruction completely
deforms the image and the reconstruction is severely unstable
(similar results for other networks are demonstrated in ref. 19).

In contrast, we have applied the stability test, but now for the
FIRENETs reported in this paper. Fig. 2 (Bottom row) shows
the results for the constructed FIRENETs, where we rename the
perturbations ẽj to emphasize the fact that these perturbations
are sought for the FIRENETs and have nothing to do with
the adversarial perturbations for AUTOMAP. We now see that
despite the search for adversarial perturbations, the reconstruc-
tion remains stable. The error in the reconstruction was also
found to be at most of the same order of the perturbation (as
expected from the stability in Theorem 3). In applying the test
to FIRENETs, we tested/tuned the parameters in the gradient
ascent algorithm considerably (much more so than was needed
for applying the test to AUTOMAP, where finding instabilities
was straightforward) to find the worst reconstruction results, yet
the reconstruction remained stable. Note also that this is just one
form of stability test and it is likely that there are many other
tests for creating instabilities for NNs for inverse problems. This
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highlights the importance of results such as Theorem 3, which
guarantees stability regardless of the perturbation.

To demonstrate the generalization properties of our NNs, we
show the stability test applied to FIRENETs for a range of images
in SI Appendix. This shows stability across different types of
images and highlights that conditions such as Definition 2 allow
great generalization properties.

Stabilizing Unstable NNs with FIRENETs. Our NNs also act as a
stabilizer. For example, Fig. 3 shows the adversarial example for
AUTOMAP (taken from Fig. 2), but now shows what happens
when we take the reconstruction from AUTOMAP as an input
to our FIRENETs. Here we use the fact that we can view our
networks as approximations of unrolled and restarted iterative
methods, allowing us to use the output of AUTOMAP as an
additional input for the reconstruction. We see that FIRENETs
fix the output of AUTOMAP and stabilize the reconstruction.
Moreover, the full concatenation itself of the networks remains
stable to adversarial attacks.

The Stability vs. Accuracy Trade-Off and False Negatives. It is easy to
produce a perfectly stable network: The zero network is the obvi-
ous candidate! However, this network would obviously have poor
performance and produce many false negatives. The challenge
is to simultaneously ensure performance and stability. Fig. 4
highlights this issue. Here we have trained two NNs to recover a
set of ellipses images from noise-free and noisy Fourier measure-
ments. The noise-free measurements are generated as y = Ax ,
where A ∈ Cm×N is a subsampled discrete Fourier transform,
with m/N = 0.15 and N = 1, 0242. The noisy measurements are
generated as y = Ax + ce, where A is as before, and the real and
imaginary components of e ∈ Cm are drawn from a zero mean
and unit variance normal distributionN (0, 1), and c ∈ R is drawn
from the uniform distribution Unif([0, 100]). The noise ce ∈ Cm

is generated on the fly during the training process.
The trained networks use a standard benchmarking archi-

tecture for image reconstruction and map y �→ φ(A∗y), where
φ : CN → RN is a trainable U-net NN (8, 61). Training networks
with noisy measurements, using for example this architecture,
have previously been used as an example of how to create NNs
that are robust toward adversarial attacks (62). As we can see
from Fig. 4 (Bottom row) this is the case, as it does indeed create
a NN that is stable with respect to worst-case perturbations.
However, a key issue is that it is also producing false negatives
due to its inability to reconstruct details. Similarly, as reported
in the 2019 FastMRI challenge, trained NNs that performed

well in terms of standard image quality metrics were prone to
false negatives: They failed to reconstruct small, but physically
relevant image abnormalities (25). Pathologies, generalization,
and AI-generated hallucinations were subsequently a focus of
the 2020 challenge (26). FIRENET, on the other hand, has a
guaranteed performance (on images approximately sparse in
wavelet bases) and stability, given specific conditions on the
sampling procedure. The challenge is to determine the optimal
balance between accuracy and stability, a well-known problem in
numerical analysis.

Concluding Remarks
1) (Algorithms may not exist—Smale’s 18th problem) There

are well-conditioned problems where accurate NNs exist, but
no algorithm can compute them. Understanding this phe-
nomenon is essential to addressing Smale’s 18th problem on
the limits of AI. Moreover, limitations established in this
paper suggest a classification theory describing the conditions
needed for the existence of algorithms that can compute
stable and accurate NNs (remark 5).

2) (Classifications and Hilbert’s program) The strong optimism
regarding the abilities of AI is comparable to the optimism
surrounding mathematics in the early 20th century, led by
D. Hilbert. Hilbert believed that mathematics could prove or
disprove any statement and, moreover, that there were no
restrictions on which problems could be solved by algorithms.
Gödel (36) and Turing (37) turned Hilbert’s optimism upside
down by their foundational contributions establishing impos-
sibility results on what mathematics and digital computers can
achieve.

Hilbert’s program on the foundations of mathematics led
to a rich mathematical theory and modern logic and com-
puter science, where substantial efforts were made to classify
which problems can be computed. We have sketched a similar
program for modern AI, where we provide certain sufficient
conditions for the existence of algorithms to produce stable
and accurate NNs. We believe that such a program on the
foundations of AI is necessary and will act as an invaluable
catalyst for the advancement of AI.

3) (Trade-off between stability and accuracy) For inverse prob-
lems there is an intrinsic trade-off between stability and ac-
curacy. We demonstrated NNs that offer a blend of both
stability and accuracy, for the sparsity in levels class. Balancing
these two interests is crucial for applications and will no
doubt require a myriad of future techniques to be developed.

Fig. 3. Adding a few FIRENET layers at the end of AUTOMAP makes it stable. The FIRENET Φ : Cm × CN → CN takes as input measurements y ∈ Cm and an
initial guess for x, which we call x0 ∈ CN. We now concatenate a 25-layer (p = 5, n = 5) FIRENET Φ and the AUTOMAP network Ψ : Cm → CN, by using the
output from AUTOMAP as initial guess x0; i.e., we consider the neural network mapping y �→ Φ(y, Ψ(y)). In this experiment, we consider the image x from
Fig. 2 and the perturbed measurements ỹ = Ax + e3 (here A is as in Fig. 2). Left shows the reconstruction of AUTOMAP from Fig. 2. Center Left shows the
reconstruction of FIRENET with x0 = Ψ(ỹ). Center Right shows the reconstruction of FIRENET from Fig. 2. Right shows the reconstruction of the concatenated
network with a worst-case perturbation ê3 such that ‖ê3‖l2 ≥ ‖e3‖l2 . In all other experiments we set x0 = 0 and consider Φ as a mapping Φ : Cm → CN.
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Fig. 4. Trained neural networks with limited performance can be stable. We examine the accuracy/stability trade-off for linear inverse problems by
considering three reconstruction networks Φj : Cm → CN, j = 1, 2, 3. Here Φ1 is a FIRENET, whereas Φ2 and Φ3 are the U-nets mentioned in the main text,
trained without and with noisy measurements, respectively. For each network, we compute a perturbation wj ∈ CN meant to simulate the worst-case effect,
and we show a cropped version of the perturbed images x + wj in Left column (rows 2 to 4). In Center column (rows 2 to 4), we show the reconstructed
images Φj(A(x + wj)) from each of the networks. In Right column (rows 2 to 4) we test the networks’ ability to reconstruct a tiny detail h1, in the form of
the text “Can u see it?”. As we see, the network trained on noisy measurements is stable to worst-case perturbations, but it is not accurate. Conversely, the
network trained without noise is accurate but not stable. The FIRENET is balancing this trade-off and is accurate for images that are sparse in wavelets and
stable to worst-case perturbations.
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Tracing out the optimal stability vs. accuracy trade-off remains
largely an open problem and depends on several factors such
as the model class one wishes to recover, the error tolerance
of the application, and the error metric used. We have shown
stability and accuracy results in the l2 norm, since it is common
in the literature to measure noise via this norm. We expect
a program quantifying the stability and accuracy trade-off
to be of particular relevance in the increasing number of
real-world implementations of machine learning in inverse
problems.

4) (Inverse problems vs. classification problems) The mathemat-
ical techniques used in this paper are applied to inverse prob-
lems. However, the mathematical framework of ref. 33 can
be used to produce similar impossibility results for computing
NNs in classification problems (63).

5) (Future work—Which NNs can be computed?) There is
an enormous literature (29, 30, 64–66) on the existence of
NNs with great approximation qualities. However, Theorem
2 shows that only certain accuracy may be computationally
achievable. Our results are just the beginning of a math-
ematical theory studying which NNs can be computed by
algorithms. This opens up for a theory covering other suf-
ficient (and potentially necessary) conditions guaranteeing
stability and accuracy and extensions to other inverse prob-
lems such as phase retrieval (67, 68). One can also prove
similar computational barriers in other settings via the tools
developed in this paper.

Methods: The Solvability Complexity Index Hierarchy
Our proof techniques for fundamental barriers in Theorem 2
stem from the mathematics behind the solvability complexity
index (SCI) hierarchy (33, 69–78). The SCI hierarchy generalizes
the fundamental problems of Smale (79, 80) on existence of
algorithms and work by McMullen (81) and Doyle and McMullen
(82). We extend and refine these techniques, in particular those
of ref. 33, and generalize the mathematics behind the extended
Smale’s ninth problem (33, 34)—which also builds on the SCI
hierarchy. More precisely, to prove our results we develop the
concept of sequential general algorithms. General algorithms are
a key tool in the mathematics of the SCI hierarchy. Sequential
general algorithms extend this concept and capture the notion
of adaptive and/or probabilistic choice of training data. The
architectures of the NNs in Theorem 3 are based on unrolled
primal–dual iterations for (P3). In addition to providing stability,
the wrNSPL allows us to prove exponential convergence through
a careful restarting and reweighting scheme. Full theoretical
derivations are given in SI Appendix.

Data Availability. All the code and data used to produce the figures
in this paper are available from GitHub, https://www.github.com/Comp-
Foundations-and-Barriers-of-AI/firenet.
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