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This article describes a free and open-source data analysis utility designed for

fast online feedback during serial X-ray diffraction and scattering experiments:

OnDA (online data analysis). Three complete real-time monitors for common

types of serial X-ray imaging experiments are presented. These monitors are

capable of providing the essential information required for quick decision

making in the face of extreme rates of data collection. In addition, a set of

modules, functions and algorithms that allow developers to modify the provided

monitors or develop new ones are provided. The emphasis here is on simple,

modular and scalable code that is based on open-source libraries and protocols.

OnDA monitors have already proven to be invaluable tools in several

experiments, especially for scoring and monitoring of diffraction data during

serial crystallography experiments at both free-electron laser and synchrotron

facilities. It is felt that in the future the kind of fast feedback that OnDA

monitors provide will help researchers to deal with the expected very high

throughput data flow at next-generation facilities such as the European X-ray

free-electron laser.

1. Introduction

The advent of X-ray free-electron lasers (XFELs) has opened

new possibilities for structural biology (Spence et al., 2012).

The ability of XFELs to deliver a very high radiation dose to

the sample within femtosecond time scales has been exploited

in several newly developed techniques, mostly based on the

so-called ‘diffraction-before-destruction’ method (Neutze et

al., 2000). Some of the novel approaches involve imaging of

small protein crystals (serial femtosecond crystallography;

SFX) (Chapman et al., 2011) and pump–probe experiments

(Aquila et al., 2012; Kern et al., 2013; Spence et al., 2012;

Neutze & Moffat, 2012). In other experiments, single mol-

ecules or viruses are imaged, in isolation (Seibert et al., 2011;

Bogan et al., 2008; Saldin et al., 2011) or aligned in an elec-

tromagnetic field (Kierspel et al., 2015).

In most of these techniques, samples are constantly flowed

in a liquid or gaseous jet across a pulsed X-ray source which

has a repetition rate of up to 120 Hz. Significant amounts of

sample are consumed in a very short time, and the data

generated by the instruments requires a large amount of

storage space. Furthermore, experimental parameters, such as

the degree of molecular alignment in controlled imaging

experiments, or the hit rate and resolution in an SFX experi-

ment, must be kept within acceptable bounds. By monitoring
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experimental conditions in close to real time, the experiment

may be maintained in optimal alignment, or alternatively, one

may pause the experiment to correct unfavorable conditions,

thereby preventing the collection of unfavorable data while

preserving valuable sample.

Future instruments under development will feature even

higher pulse repetition rates in excess of 1000 frames per

second, making it impractical for facilities to store all of the

recorded data. Thus real-time analysis and data reduction will

become a necessity. For example, the European XFEL,

scheduled to commence operation in 2017, will be capable of

recording diffraction data using 27 000 pulses per second

(Altarelli, 2006), while the LCLS-2 project foresees megahertz

pulse repetition rates.

Some software packages for real-time monitoring of XFEL

experiments have been developed in recent years. The CASS

program (Foucar et al., 2012) has been created specifically for

this purpose. Cheetah (Barty et al., 2014) was originally

developed for high-throughput offline data reduction, but can

be run at the Linac Coherent Light Source (LCLS) as a

module of the data-processing framework psana (Damiani et

al., 2016) for real-time data analysis. Cctbx.xfel can also be

used to analyze data as they are collected using the Data

Exploration Toolkit (Sauter et al., 2013; Zeldin et al., 2015). All

these packages, however, depend on either multi-thread or

multi-process technology for parallelization, which limits them

to running on a single computer. Some effort will be needed to

adapt them for the quantity of data expected from future

instruments. The recently released Hummingbird (Daurer et

al., 2016), initially developed for single-particle imaging at

LCLS, is, to our knowledge, the only framework that is

designed to scale beyond a single machine.

We introduce OnDA, a new software framework for real-

time monitoring of X-ray imaging experiment data and

experimental conditions. The OnDA project aims to provide

users with a set of stable and efficient real-time monitors for

the most common types of experiments. These can be used

immediately without modifications or can be easily adapted to

meet the users’ requirements. In addition, we provide a set of

modules to easily build real-time monitoring programs

tailored to characteristics of specific experiments. OnDA

processes imaging data in the broadest sense: multi-

dimensional and multiple-pixel data (for example, a diffrac-

tion pattern or a photoemission spectrum, but also an image

coming from a camera or a microscope), but also any kind of

digital output from an instrument or sensor (for example,

temperature readout, beam and pulse, energies). The OnDA

project focuses on scalability and portability, to facilitate its

adoption for a wide array of current and future instruments,

and also strives for stability and performance. In order to

achieve these goals, the OnDA framework implements a

master/worker parallelization paradigm using the Python

interpreted scripting language (http://www.python.org) and

relying on free and open-source libraries and protocols. These

libraries are available on all of the most widely used computer

platforms and architectures and have been actively used in

large-scale deployments in many scientific environments. The

use of the Python programming language, which is particularly

suited to prototyping and rapid development, makes OnDA

easy to modify and to adapt to the requirements of specific

experiments, especially when these requirements emerge ‘in

the field’ during the course of the experiment itself. The

OnDA project also aims to keep the code base simple and as

small as possible. The focus is on providing a core set of

functions, while allowing the framework to be expanded with

external software when possible, avoiding the need to reim-

plement already optimized algorithms.

In the following sections we briefly outline OnDA’s archi-

tecture and introduce the set of real-time monitors that are

currently distributed with the framework. We then briefly

discuss the backends required to integrate OnDA into the

software frameworks of two large-scale facilities. Finally we

describe how to obtain OnDA’s source code and the focus of

future development.

2. OnDA framework architecture

The OnDA framework is based on a master/worker archi-

tecture (see Fig. 1) and operates on data provided by an

experimental facility’s data acquisition system (DAQ). The

DAQ software, running within a facility’s software framework,

collects concurrent readings from a wide range of instruments

and detectors and groups them in a collections of time-related

readouts, called ‘events’. Each event corresponds to the

instrument state and measurements for a single pulse from an

computer programs

1074 Valerio Mariani et al. � OnDA J. Appl. Cryst. (2016). 49, 1073–1080

Figure 1
The OnDA framework is built using a master/worker architecture. The
workers recover and process the data, the result of the processing is sent
to the master for further processing, and eventually dispatched to the
graphical user interface (GUI). The workers and the master communicate
with each other using the MPI protocol, while the master and GUI
communicate using the ZeroMQ protocol.



X-ray free-electron laser, or a single detector readout at a

synchrotron source.

Worker nodes retrieve single-event data from a source,

extract the important information and carry out any required

processing. The resulting data are then sent to the master

node, which can carry out further multi-event processing (for

example, aggregation of data from many workers or aver-

aging) and can optionally send information to the graphical

user interface (GUI) to be displayed. Worker nodes commu-

nicate between themselves and with the master node using the

MPI framework (http://www.mpi-forum.org), while data are

transferred from the master node to the GUI using the

ZeroMQ (ZMQ) protocol (http://zeromq.org). In OnDA, a

single worker of the master node runs on a single CPU core.

OnDA is highly modular. The functions that carry out the

scientific data processing are clearly separated from the

functions that carry out data retrieval, data extraction and

communication between the nodes. The OnDA framework

groups these functions into four layers (see Fig. 2).

(i) Data Processing Layer: this layer carries out the scientific

data processing. OnDA implements in this layer the specific

functions that perform calculations on the data (for example,

peak extraction or background subtraction). These functions

can run both on the worker and on the master nodes. The

nature and capabilities of each type of real-time monitor are

essentially defined by the functions implemented in this layer,

so its content is likely to be unique for each type of experi-

ment.

(ii) Parallelization Layer: the Parallelization Layer takes

care of the communication between the worker and the master

node, and between different worker nodes. Furthermore, this

layer contains functions used by the worker nodes to recover

event data from a data source. Since different data sources

require different data retrieval strategies, the functions that

are implemented in this layer strongly depend on the nature of

the data source (files, shared-memory server etc.).

(iii) Data Extraction Layer: this layer implements the

functions that extract relevant information from event data

(for example, a detector’s recorded image, or the numerical

value corresponding to a sensor’s output). The functions

implemented in this layer depend strongly on the format of the

event data. Each real-time monitor imports the implementa-

tion of the Data Extraction Layer required by the data format.

(iv) Instrument Layer: this layer implements functions for

data extraction that are specific to a single instrument,

detector or sensor. Irrespective of the data format, it is often

necessary to know some details about the way a specific

instrument encodes information: for example, which channel

of a multi-channel instrument contains the required value. The

Data Extraction Layer includes units from this layer

depending on the instruments used for a specific experiment.

The implementation details of the Parallelization, Data

Extraction and Instrument Layers strongly depend on the

software framework on which the DAQ providing the data

runs, and on the format of the provided data. Hence, we

collectively label these layers ‘backend’. The backend exposes

data to the Processing Layer (which we label ‘frontend’) in a

standardized facility-independent format, providing a clear

separation between facilty-dependent and -independent code

in the OnDA framework.

The following paragraphs contain a brief descripition of the

data flow through a typical real-time monitor created using the

OnDA framework. Courier font is used in the text to refer to

the names of classes, functions or data structures.

A real-time monitor is implemented as the onda Python

class which is defined in the Parallelization Layer. This class is

instantiated on all nodes and makes sure that each node is

correctly initialized according to its role. Any required func-

tion defined in one of the other layers is imported during the

initialization. Worker nodes import the extract_data func-

tion defined in the Data Extraction Layer, which in turn

imports all the required instrument-specific functions defined

in the Instrument Layer. Workers also import the process

function from the Data Processing layer, while the master

node imports the collect function from the same layer. A

real-time monitor hence contains, through a chain of inclu-

sions, functions from all four layers. Fig. 3 shows a typical

monitor implementation, and traces the flow of data through

the master and worker nodes.

Each worker node fetches event data from the event data

source and calls the extract_data function. This function

extracts the required information from the event data and

stores it in the form of properties of the onda class. The name

and the content of the properties depend on the specific

extract_data function and are described in the documenta-

tion of the relevant function. For example, the timestamp of

the event data is typically stored in a property called self.

event_timestamp, the raw detector readout is stored in a

computer programs
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Figure 2
The OnDA framework features four distinct layers, as described in the
text. In the diagram, data flow from the bottom to the top, from the
facility framework which provides event data to the Data Processing
Layer that processes the data and prepares it for visualization.



property called self.raw_data, and so on. After the infor-

mation has been extracted, the worker nodes call the process

function, which carries out the data processing (for example,

background correction and detection of diffraction peaks).

This function operates on the class properties and stores any

information that needs to be sent to the master node in a

Python dictionary called results_dict.

After receiving data from a worker, the master node stores

them in a property called results_dict and calls the collect

function. This function is called on the master node every time

data are received from one of the workers and performs data

processing on the aggregated data from multiple events. There

is no default strategy for data aggregation: the preferred

approach can be implemented by the developers of each real-

time monitor in the collect function. After the function

finishes running, the content of the results_dict dictionary

is discarded. It is replaced by new data coming from other

worker nodes when the function is called again. The master

node stores by default no information between function calls,

unless this functionality is implemented in the collect func-

tion. The required information is finally packaged in a

dictionary called collected_data and sent to the GUI for

visualization.

The core scientific data processing is carried out by the

process and collect functions. They can make use of

Algorithms to carry out their task. Algorithms are imple-

mented using Python classes and are instantiated on both the

worker and the master nodes at startup with a common set of

initial parameters. They can be invoked (using the apply

method) from both types of nodes, and perform different tasks

depending on the identity of the caller. Algorithms allow

developers to implement full data processing pipelines, span-

ning across both worker and master nodes, in a single Python

object, resulting in clearer code that is easier to read, modify

and reuse.

Algorithms are generally implemented using Python,

augmented with the NumPy (http://www.numpy.org) and

SciPy (http://www.scipy.org/) libraries. For some complex

algorithms, however, the processing speed of an interpreted

programming language is not sufficient. For these algorithms

OnDA uses compiled languages (like C or C++). A thin

Python wrapper is then written for them using the Cython

(http://cython.org/) Python extension. Wrappers can also

expose the function calls of the external programs to OnDA,

providing two-way conversion of data formats as well as input

and output parameters.

The GUI is implemented using the Qt development toolkit

(http://www.qt.io) and the fast-display PyQtGraph library for

scientific graphics (http://www.pyqtgraph.org). The commu-

nication between the master node of the monitor and the GUI

takes place over a network connection using the ZeroMQ

protocol, which relies on the TCP network communication

protocol. Therefore, a network connection with at least one

open TCP port is required for the connection. While the

ZeroMQ protocol is not as fast as the MPI protocol used by

the nodes to communicate between themselves, its reliance on

TCP allows communication across sub-networks and even

across the internet. OnDA exploits the speed and flexibility of

MPI for interprocess communication between worker and

master processes performing the scientific computing, while

broadcasting results to one or more GUI displays over ZMQ

enables the GUI clients to be run independently on hosts

located remotely on different networks. We have found this to

enhance stability and fault tolerance because the GUI

network can suffer from a delay, or the GUI can even termi-

nate, without affecting the OnDA analysis processes. Many

instances of the GUI, running on several different machines,

even outside of the facility where the experiment takes place,

can connect to the same monitor at the same time. However,

the monitor will continue to run even with no GUI attached,

enabling it survive faults such as network dropouts or the user

accidentally closing the GUI.

The OnDA framework is also designed to be strongly

resilient to errors and missing data, and to survive a crash of

one or more working nodes. If the facility framework fails to

provide data to one or more workers, the affected nodes

simply wait for data while the other nodes keep processing.

The framework also checks data for errors. If the recovered

event data set is incomplete or corrupted, workers simply skip

the corrupted data and move to the next event. Furthermore,

if an unexpected condition causes an unrecoverable crash of

one or more workers, the others will continue processing

events and the monitor will keep working, although with a

reduced performance, as long as the master node is running. In

very high throughput experiments, or when an OnDA monitor

is running on limited computer resources, it is possible that the

speed at which the DAQ provides data will be too high for the

monitor to process an event before the next one is received. In

these circumstances the OnDA framework skips processing

computer programs
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Figure 3
Data workflow in OnDA. Each worker node collects event data from a
source, which can be a shared memory server, a file or a network data
stream. It then calls the extract_data function, which is imported from
the Data Extraction Layer, to recover useful information from the event
data (a detector readout, an instrument reading) and makes it available as
a class property. The worker then calls the process function, imported
from the Processing Layer, to process the information, and stores the
results in a Python dictionary called results_dict. This dictionary is
then sent to the master node using the MPI framework. Upon receiving
the data, the master note calls the collect function, which carries out
further processing, and stores what needs to be sent to the GUI in
another Python dictionary called collected_data.



the oldest events, guaranteeing that the processed ones are as

recent as possible.

It should be pointed out that, although all the real-time

monitors currently distributed with the OnDA framework are

implemented using a single master node and multiple workers,

the framework’s architecture does not prevent the develop-

ment of monitors featuring multiple master nodes with

different roles, or even multiple layers of master nodes. This

flexibility, achieved by implementing inter-node communica-

tion using the MPI protocol, markedly increases scalability.

3. Available real-time monitors

The OnDA project provides, at this time, three complete real-

time monitors: a monitor for SFX, a monitor for velocity map

imaging (VMI) and a monitor for serial fiber diffraction

imaging. The three monitors are described in detail in the

following sections and can be run using the backends

described later as they are provided, without further modifi-

cation. However, all modules, functions and algorithms that

were used to create them (for example, peak finding algo-

rithms, functions that perform detector corrections, averaging

and input/output routines) are available as separate entities in

the OnDA framework. By combining them in different ways,

developers can easily create variations on the provided

monitors, or completely new ones designed for different

experiments.

3.1. SFX monitor

The SFX monitor allows users running an SFX experiment

to keep hit rate (the fraction of X-ray shots that resulted in a

hit) and saturation rate (the fraction of shots where more than

three of the detected peaks appeared to have reached the

saturation threshold of the detector) under control. Further-

more, it uses the collected data to display a constantly

updating virtual powder pattern. The monitor reads the

detector data, applies detector corrections and searches for

Bragg peaks in the resulting data. It can optionally apply a

mask or carry out gain correction according to a gain map

provided by the user. The peakfinder algorithm from the

Cheetah program is used to detect potential Bragg peaks. The

user can alter the sensitivity of the algorithm using all the

options and parameters available in Cheetah. On the basis of

the number of peaks found, the monitor decides if the detector

frame represents a diffraction pattern and updates the hit rate

accordingly. The intensity of each Bragg peak is also checked

against a user-provided threshold to see if it is outside of the

dynamic range of the detector. The collected data are then

sent to the GUI for visualization. All options are configured

using a plain-text configuration file.

The GUI of the SFX monitor (see Fig. 4) displays on the left

a virtual powder pattern generated from the detected Bragg

peaks. The right side is occupied by two plots showing the

recent history of the running averages of the hit rate (at the

top) and of the saturation rate (at the bottom). The most

recent values of the running averages lie on the right-hand

side of the plots. The size of the time-point window used to

compute the running averages can be chosen by the user. By

clicking on the plots, specific time points can be marked with a

vertical line. A right click on the line removes it. A time point

corresponding to changes of important experimental condi-

tions can be marked using this feature, resulting in clearer

visual feedback on the effect of the change. Buttons at the

bottom of the main window allow the user to clear both the

virtual powder pattern and the plots. An estimate of the delay

between the time when the data are collected and when the

result of the processing is displayed in the GUI is also

reported.

We routinely use the SFX monitor for our experiments at

the CXI instrument at the LCLS facility, located at the SLAC

National Accelerator Laboratory in Menlo Park, CA, USA.

We run it on the same machines where the

DAQ is running, to allow memory sharing

and direct communication between the

DAQ and OnDA without passing through

the filesystem. The DAQ at the CXI

instrument uses five machines, which

feature an Intel Xeon E5620 CPU with

eight cores, a clock speed of 2.40 GHz and

48 GB of RAM, to process collected data in

parallel, so each of the machines gets 20%

of the event data. We found that running

the SFX monitor with just four workers per

machine, each running on a single logical

core of the CPU (20 workers in total plus

the master running on a total of 21 CPU

cores), allows us to process all event data

coming from the DAQ without losing any

data. Each OnDA worker uses around

2 GB of virtual memory, while the master

uses around 750 MB of memory. The delay

between data collection and visualization in

computer programs
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Figure 4
Graphical user interface for the OnDA crystallography monitor. The left side of the screen
shows a virtual powder representation of the incoming data, while the right side shows a
running average of the hit rate and of the saturation rate (see main text for definitions of these
rates). The estimated delay between the time of data collection and of data display is reported
below the main panels.



the graphical interface is usually between 1 and 2 s under

typical network load conditions.

The SFX monitor has been used also for experiments at the

P11 bio-imaging and diffraction beamline of the PETRA III

synchrotron located at DESY in Hamburg, Germany. The

monitor was running on a machine with an Intel Xeon E5-2650

CPU featuring a clock speed of 2.60 GHz and 32 cores.

Running OnDA with just 16 workers (plus a master node)

allowed us to process all of the data, with a delay between data

collection and visualization of about 4–5 s,

using a total of 17 CPU cores.

3.2. VMI monitor

This monitor was designed to measure

the degree of laser-induced alignment of

particles in a molecular beam using the

VMI technique (Eppink & Parker, 1997). It

recovers the data from a CCD camera

imaging the phosphor screen of a VMI

spectrometer and applies a simple peak

detection algorithm to detect the ion signal.

Each signal peak is also located with sub-

pixel precision using a center-of-mass

centroiding algorithm. Data from a prede-

fined number of events (chosen by the user)

are accumulated. Some statistics that esti-

mate the degree of alignment of the ions

with respect to the alignment laser (vertical

axis of the VMI spectrometer) are

computed. Since the center of the spectro-

meter screen is often displaced with respect

to the experimental interaction point, the

user can apply translational and rotation

offsets to the data before the statistics are

computed. The data are then sent to the

GUI for visualization.

The GUI of the velocity monitor (see

Fig. 5) shows the detected signal peaks as

red circles. The user must define (though a

configuration file) a wedge-shaped area on

the VMI screen. Only peaks within the area

are included in the statistical calculations.

The area is shown in white in the GUI. By

checking a tick box, the user can display an

accumulation plot of the detected signal

peaks in its place. Below the main viewer,

the degree of alignment statistics � and

hcos2 �i are shown, and under those, an

estimation of the delay between data

collection and display. The right-hand side

of the monitor displays the recent history of

the hcos2 �i alignment statistic.

3.3. Serial fiber diffraction monitor

This monitor was developed for a fiber

diffraction experiment at the LCLS. In this

experiment individual fiber bundles were

injected into the path of the FEL beam via a liquid jet.

Pressure differentials in the liquid jet align each fiber bundle

along its long axis to that of the jet, referred to as ‘flow

alignment’. The axis of alignment could then be scanned by

tilting the liquid jet with respect to the beam axis, allowing

fibers to be imaged over a large range of orientations. The

collected diffraction data were subsequently computationally

aligned to form a view of the reciprocal space volume of the

fibers.

computer programs
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Figure 5
Graphical user interface for the OnDA velocity monitor. The screen shows on the left the signal
peaks detected on the VMI screen for the latest predetermined number of events. Below the
main plot, the degree of alignment of the data along the vertical axis of the VMI screen is
reported as values of � and hcos2 �i. Only the data included in a user-defined wedged-shaped
area of the screen are used to compute the alignment statistics. Behind the signal peaks, shown
as red circles, the user can choose to show the wedge-shaped area, or, like in the above
screenshot, the accumulated peak density. On the right side of the screen, the evolution of the
hcos2 �i alignment statistic over time is shown.

Figure 6
Snapshot of the OnDa graphical frontend used to monitor serial fiber diffraction collection at
the LCLS CXI end station. (Left panel) Live view of individual or integrated diffraction
patterns as recorded by the CSPAD detector. (Inset top left) Outlined in blue, fiber bundle
diffraction peaks as seen with radial background subtraction turned on. (Top right panel)
Histogram of the integrated signal on the selected asics (CSPAD detector panels) as outlined in
red in the left panel. (Middle right panel) Time-averaged hit rate. (Lower right panel)
Integrated signal of the selected asics as a function of time. (Bottom panel) User input options
for the GUI in addition to live output of scalar data such as the detector distance, the photon
energy, and the detector counts and resolution of the pixel under the mouse.



The serial fiber diffraction monitor was designed to observe

the hit rate of the fibers as well as the background signal from

the liquid jet in real time.

Fig. 6 shows a snapshot of the OnDA GUI used during the

experiment. In the left panel we see the integrated diffraction

intensity over approximately 1000 detector frames. Here we

can see the background due to scattering from the liquid jet

nozzle as arcs across the top of the image, as well as a diffuse

background ring from the liquid buffer. The integrated signal

on each detector panel was stored for each shot by OnDA.

These were sent to the GUI and could be observed simply by

clicking on the desired panels, which are then outlined in red

as shown. This allows the user to monitor the signal level on

the detector arising from different sources, by selecting a panel

most exposed to photons scattered by the object of interest.

For example, the liquid jet was kept in the FEL focus by

adjusting the nozzle position so as to maximize the back-

ground from the water ring, ensuring that the FEL beam

passed through the center of the water column.

Diffraction from individual fiber bundles could only be seen

after subtracting the water background. We chose a simple

OnDA module that performs radial background subtraction

for each data frame before it is sent to the GUI (this was

followed by a more detailed treatment of the data offline). To

achieve this we subtract the mean of the signal in each reso-

lution ring after correcting for the azimuthal modulation in the

diffraction intensity due to the polarization axis of the FEL

beam. The result is shown in the top left inset of Fig. 6,

outlined in the blue dashed box, where two diffraction streaks

from the fibers are visible.

4. Available backends

The nature and characteristics of the data source strongly

depend on the environment in which OnDA is running. When

the user is running OnDA during an experiment, the software

infrastructure of the facility is responsible for providing event

data. When OnDA is run on a laptop or on a desktop work-

station, files can be used as the data source. In addition to the

nature of the data source, the instruments used during an

experiment (detectors, cameras, digitizers) dictate the data

extraction procedure. All this is implemented in the Paralle-

lization, Data Extraction and Instrument Layers (collectively

called the ‘backend’). The OnDA project currently provides

three backends: the psana backend, the Petra III P11 backend

and the filelist backend.

4.1. Psana backend

The psana backend allows OnDA to be used at the CXI,

XPP and AMO instruments at the LCLS facility. This backend

allows OnDA to interface with the psana software framework

in use at the facility. Psana can act as a data source both online

(providing data to OnDA as they are collected for real-time

monitoring) and offline (replaying a past experiment by

streaming saved files). When OnDA is run as a real-time

online monitor, it relies on shared memory monitors managed

by psana to access the memory content of the machines that

collect the data. When OnDA is run as an offline non-real-

time monitor, it reads the data stream that psana generates

from the saved files. The psana backend can be used with all

three monitors (crystallography, velocity imaging and fiber

diffraction).

4.2. Petra III P11 backend

The Petra III P11 backend allows OnDA to be used at the

P11 beamline of the PETRA III facility. This backend receives

a data stream over a ZMQ connection from a data provider,

which is implemented within the facility software framework.

As soon as the detector software writes the data files, they are

read and streamed to OnDA by the data provider. OnDA does

not need to be run within the facility’s software framework as

long as the machine where it is running can connect over the

local network to the data provider. The Petra III P11 backend

has, until now, only been used in serial crystallography

experiments.

4.3. Filelist backend

The filelist backend allows OnDA to rely on data files as the

source of event data. OnDA scans a user-provided list of files,

splits the list of files evenly amongst the worker nodes and

processes each file. This backend can be used when the facil-

ity’s software framework does not provide access to a real-

time data flow, but only allows users to access files saved in a

filesystem. Files are often made available with some delay with

respect to data collection, and monitors that rely on this

backend often cannot provide real-time feedback. However,

OnDA’s parallelized processing capabilities can still be used

to very quickly analyze the data as soon as they are made

available. If the delay is not too long, OnDA can still be used

to provide quasi-real-time feedback.

The filelist backend can be used with all the monitors when

no other data source is available. Additionally, it is useful to

test the Processing Layer before the final deployment of

OnDA. Currently, the Filelist backend supports CXI-format

files (Maia, 2012), generic HDF5 files (The HDF Group, 2015)

and CBF-format files (Bernstein & Hammersley, 2006).

5. Future developments

To date we have used OnDA in more than ten experiments for

live feedback. Roughly half of these were SFX experiments.

Using this experience, we are currently developing new

functionality for OnDA with a bias towards improving crys-

tallographic applications. These new functions include the

following:

(a) Online indexing of crystallographic Bragg peaks. This

will be made possible by creating Python wrappers for

indexing routines in CrystFEL (White et al., 2012). As

CrystFEL can index peaks found from a single detector frame,

this process will be highly parallel and thus scalable in OnDA’s

MPI framework.

(b) Improved crystal detection from found peaks. Currently

OnDA determines that a detector frame contains diffraction

from a crystal when the number of found peaks is above a

computer programs
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threshold level. This can fail when too many peaks are found

from background sources, such as hot pixels, ice rings or the

tails of the liquid jet, requiring the user to increase the

threshold. To overcome this problem we are developing a

computationally ‘light’ algorithm that looks for crystal-

lographic order in the found peaks without the need to

execute expensive indexing routines to filter the data.

(c) Live configuration editor. We have often found, espe-

cially during the early stages of an experiment, that it is

necessary to adjust or validate various parameters in OnDA,

for example the peak finding parameters in an SFX experi-

ments. How accurate the starting parameters need to be and

how often the parameters need to be updated typically

depends on the nature of the algorithms used by a specific

monitor. For example, the current peak finding algorithm uses

Cheetah’s peakfinder8 algorithm (Barty et al., 2014), and

parameters typically need to be adjusted only when some

important experimental condition changes (for example, the

sample, the type of injector nozzle or the buffer used to

dissolve the sample). Currently, optimizing these parameters

requires running OnDA with different starting parameters

and evaluating its performance, which in turn requires access

to the machines running the worker nodes. However, we will

make available a live configuration GUI, designed to allow the

user to adjust parameters and preview their effect before

writing them to the main configuration file and running

OnDA.

(d) Pre-installation of OnDA in more facilities. As

described, OnDA is currently configured to run, without any

modification to the source code, for some beamlines in the

LCLS and PETRA III facilities. We aim to make OnDA more

easily available to users by continuing this work at other

beamlines and facilities.

(e) Offline processing. The filelist backend allows OnDA to

use files as the data source. Programs developed with the

OnDA framework can then be run on saved data after the

experiment is over. This opens the framework to the devel-

opment of offline processing software that can take advantage

of OnDA’s parallelization capabilities, and of OnDA’s algo-

rithm and function libraries. We will add useful features for

offline processing to the framework and we will develop

programs for common processing requirements.

6. Access to OnDA

The source code of the current stable version of OnDA can be

downloaded from http://www.desy.de/~vmariani/onda. Since

the OnDA framework is written in an interpreted language, no

compilation is needed. Some algorithms, however, are imple-

mented using the C and C++ programming languages and

must be compiled if they are used by a real-time monitor

created from the framework. Instructions for compilation are

provided in the README.md file shipped with the OnDA source

code. The source code for the development version of OnDA

can be accessed by anyone using the git version control system

at the following repository: https://stash.desy.de/scm/onda/

onda.git. OnDA is distributed under the terms of the GNU

General Public License, version 3 (https://www.gnu.org/

licenses/gpl.html).

The OnDA framework can be used with the most recent

version of Python 2 (2.7). It also requires the following Python

modules to be installed in the system: NumPy, SciPy, PyQt

(https://riverbankcomputing.com/software/pyqt/intro), h5py

(http://www.h5py.org/), mpi4py (Dalcin et al., 2011).

The Petra III P11 backend needs the FabIO python module

(Knudsen et al., 2013) to be installed. Furthermore, the pyqt-

graph module is needed by the machine running the GUI.
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