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ABSTRACT
The solvent can occupy up to ∼ 70% of macromolecular crystals, and hence, having models that predict solvent distributions in peri-
odic systems could improve the interpretation of crystallographic data. Yet, there are few implicit solvent models applicable to periodic
solutes, and crystallographic structures are commonly solved assuming a flat solvent model. Here, we present a newly developed peri-
odic version of the 3D-reference interaction site model (RISM) integral equation method that is able to solve efficiently and describe
accurately water and ion distributions in periodic systems; the code can compute accurate gradients that can be used in minimizations
or molecular dynamics simulations. The new method includes an extension of the Ornstein–Zernike equation needed to yield charge
neutrality for charged solutes, which requires an additional contribution to the excess chemical potential that has not been previously
identified; this is an important consideration for nucleic acids or any other charged system where most or all the counter- and co-
ions are part of the “disordered” solvent. We present several calculations of proteins, RNAs, and small molecule crystals to show that
x-ray scattering intensities and the solvent structure predicted by the periodic 3D-RISM solvent model are in closer agreement with the
experiment than are intensities computed using the default flat solvent model in the refmac5 or phenix refinement programs, with the
greatest improvement in the 2 to 4 Å range. Prospects for incorporating integral equation models into crystallographic refinement are
discussed.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070869

I. INTRODUCTION

Ions and water molecules have been long known to play
crucial roles in governing biomolecular stability and function.
Elucidating how ions and water molecules distribute themselves
around the solutes should provide valuable insights into how
these molecules function and also provide experimental tests
for theoretical predictions. However, there are a few meth-
ods that directly probe the distributions of ions and water
molecules around macromolecules. In solution, excess num-
bers of water molecules and ions around a macromolecule can
be obtained using atomic emission spectroscopy,1,2 small-angle
x-ray scattering,3–6 or measurements of partial molar volumes.7–10

These techniques, however, give relatively little information about

the distribution of water molecules and ions in the vicinity of a
biomolecule.

In principle, much more detailed information is available from
x-ray diffraction studies on biomolecular crystals, and it is common
to include some number of “bound” (or localized) water molecules
and ions in a refined atomic model that has been optimized to fit
observed scattering intensities. These locations are typically iden-
tified as features in a difference electron density map that satisfy
criteria for both intensity (percent occupation) and geometry. How-
ever, the “bound” solvent molecules generally make up only a small
fraction of the total solvent; the remainder is typically modeled as
a flat distribution, usually with density and B-factor components
that are adjusted to optimize the fit of the total model to observed
intensities. The limitations of such a flat-density model are thought
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to contribute to the “R-factor gap,” which reflects the nearly uni-
versal observation that differences between computed and observed
intensities in macromolecular crystallography are much greater
than the experimental uncertainties, prompting searches for better
models.11

In this paper, we develop and apply a novel integral equa-
tion model, the 3D-reference interaction site model (3D-RISM),
to predict the solvent distribution in both small molecule and
macro-molecular crystals of proteins and nucleic acids. We present
results from a newly developed periodic version of the existing non-
periodic 3D-RISM in Amber.12–14 Particular attention is paid to the
way in which charged solutes are handled to ensure the electroneu-
trality of the entire unit cell, that is, to ensure that the distribution of
ions in the solvent counterbalances the net charge of the solute. The
3D-RISM has been used in non-periodic systems to predict the loca-
tion of site bound water molecules and ions and quantities reporting
on the diffuse and territorial binding modes of solvent particles (ion
counting and scattering profiles) and to give quantitative energetics
of solvation or small molecule binding to biomolecules.15–20 Here,
we explore the application of similar ideas to crystalline systems.

II. REFERENCE INTERACTION SITE MODEL
FOR PERIODIC SYSTEMS

The core principle of the RISM is to find the single particle
density distributions that minimize the excess chemical potential in
response to an external potential arising from a molecular solute.
The basic idea and the approximations involved have been discussed
many times,12,17 and we only give a brief summary here. In princi-
ple, the distribution of solvent molecules around a (fixed) solute is
a six-dimensional quantity, describing the translation and orienta-
tions of the solvent molecules. Such an approach is used in molecular
Ornstein–Zernike21 and molecular density functional theories.22 In
contrast, the 3D-RISM formalism reduces these to three-dimensions
by decomposing polyatomic solvents (such as water molecules) into
atomic contributions such that the resulting solvent density dis-
tributions contain only a spatial dependence, ργ(r), and can be
represented by scalar densities on 3D grids. Here, the solvent index
γ would range over H and O sites in water and over mobile atomic
cations, such as Na+ and Cl−.

An Ornstein–Zernike-like equation relates the total correlation
function, hγ(r) = gγ(r) − 1, and direct correlation function, cγ(r),
through a convolution (denoted by ∗) as follows:

hOZ
γ (r) =∑

α
cα(r)∗ χαγ(r). (1)

Here, χαγ(r) = ωαγ(r) + ραhαγ(r) is the site–site solvent susceptibil-
ity of solvent sites α and γ and describes the orientationally averaged
bulk properties of the solvent, where ωαγ(r) is an intramolecular
correlation matrix, ρα is the bulk number density, and hαγ(r) is
the total correlation function. These values are pre-computed (gen-
erally by a “1D-RISM” approach) for the reference solvent using
the dielectrically consistent RISM (DRISM) integral equation.23,24

As in earlier work,12,13 entities with two subscripts, such as hαγ(r),
refer to solvent–solvent interactions, whereas entities with a single
subscript, such as hOZ

γ (r), refer to solvent site γ at point r on the
three-dimensional grid surrounding the solute.

Equation (1) is augmented by a 3D closure relation as follows:

hclosure
γ (r) = exp{ − βuγ(r) + hOZ

γ (r) − cγ(r) + bγ(r)} − 1, (2)

where bγ(r) is the bridge function, which is only known as an infinite
series of functionals and is always subject to some approximation.25

Among the many closure relations that have been developed, in this
work, we use a family of closures related to the hypernetted chain
(HNC) closure,26 where the bridge function is simply set to zero. The
HNC produces good results for ionic27–29 and polar systems30,31 and
has an exact closed form expression for the excess chemical poten-
tial.32 Since HNC solutions are often difficult to converge, one can
use intermediaries such as the so-called partial series expansion of
order-n (PSE-n)33 of the HNC as a Taylor series expansion when the
exponent in Eq. (2) is positive,

hPSE−n
γ (r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp{tγ(r)} − 1, tγ(r) < 0,
n

∑
i=1

tγ(r)i

i!
, tγ(r) ≥ 0,

(3)

tγ(r) = −βuγ(r) + hOZ
γ (r) − cγ(r),

where the HNC is the limiting case as n→∞. As for the HNC,
the PSE-n family of closures have an exact closed form expression
for the chemical potential. The form of this approximation has a
major impact on the convergence of calculations and on resulting
thermodynamic quantities and correlation functions.

The goal of the self-consistent 3D-RISM procedure can be
viewed as finding a direct correlation function cγ(r) such that hOZ

γ

and hclosure
γ become identical at all grid points to within some (fairly

tight) tolerance. In existing non-periodic implementations, the con-
volution required in Eq. (1) is carried out via fast Fourier transform
(FFT) in a rectangular box surrounding the solute, and additional
terms that account for the solvent outside of the artificial box are
added to this. Key changes for crystals are that the electrostatic and
Lennard-Jones potentials that appear in Eq. (3) need to take periodic
boundary conditions into account and that some special consid-
erations are needed, when the solute has a net charge, to ensure
charge neutrality for each unit cell. While our implementation for
non-periodic boundaries uses direct and treecode summation,12,14

periodic methods [e.g., particle mesh Ewald (PME) and Ewald sum-
mation] have been used before to synthesize the long-range electro-
static potential on a 3D grid.34,35 These approaches generally assume
infinite dilution of the solute and employ corrections to capture the
long-range, open-boundary behavior of the solvent and net charge
of the solute when calculating the excess chemical potential. Because
of these long-range corrections, previous methods employing PME
or Ewald summation are not suitable for crowded periodic systems,
such as crystals. In contrast, we use periodic boundary conditions
throughout the method described in Secs. II A and II B.

A. Constructing the periodic solute potential
The closure functional equation requires the mapping of the

solute potential onto regular grids that covers the entire unit cell
with one potential grid for each type of solvent site encompass-
ing both Lennard-Jones and electrostatic components. Mapping the
electrostatic potential follows the smooth PME (SPME) procedure
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used in molecular dynamics simulations36,37 although the grid spac-
ing is smaller, typically 0.5 Å. Lennard-Jones interactions between
solute atoms and all solvent types are calculated at each grid point
using a distance cutoff (the default is 9 Å) and the minimum-image
convention. The same convention is used for the short-range part
of the electrostatic potential where the bare Coulomb interaction is
replaced by erfc(β∣r − ri∣)/∣r − ri∣, where r is the position of a solute
atom and ri is a point on the grid. The remaining, long-range part
of the periodic Coulomb potential is solved for in the reciprocal
space via fast Fourier transform (FFT) and follows the steps given
below.36,37

1. Interpolate the solute atomic charges to the direct space Carte-
sian grid. The current version of the code relies on the smooth
PME (SPME) approach, which uses a cardinal b-spline of
order 4 or 6 to interpolate the source charge to the grid. The
b-spline interpolation has a roughly Gaussian character at
high polynomial orders and has the desirable trait that inte-
gration of its weights over the region of interpolation equals
unity.

2. Convert the source charge grid from real space to reciprocal
space using an FFT.

3. Compute the electrostatic potential and spatial derivatives
(electrostatic field) on the grid using a convolution with a
reciprocal space representation of the Gaussian kernel and
its derivatives; in reciprocal space, the convolution is a sim-
ple multiplication, and the electrostatic interaction potential
Green’s function is k−2.

4. Obtain the real space representation of the electrostatic
potential and electrostatic field using an inverse FFT.

Full details of this procedure are given elsewhere.38

B. Solving the 3D-RISM equations
As noted above, solving the 3D-RISM equations amounts to

finding a direct correlation functional, cγ, for each solute site γ that
minimizes the residual: Δcγ(r) ≡ hclosure

γ (r) − hOZ
γ (r). Calculations

are initialized with a guess for each cγ, which are chosen to be uni-
formly zero, although the code allows for a user-provided starting
point that can accelerate convergence for systems difficult to solve.
Each self-consistent cycle begins with computing hOZ

γ in the recip-
rocal space using Eq. (1), followed by a switch to the real space,
where hclosure

γ is computed using Eq. (2), and ends by modifying
the current guess for cγ using the modified direct inversion of the
iterative subspace (MDIIS) procedure12,39 based upon Δcγ and a
specified number of past cγ solutions. This cycle is repeated until the
root-mean squared residual, RMS(Δcγ), reaches a pre-determined
threshold, which is typically 10−10 if gradients are needed (such as
in the case of minimization or dynamics) and 10−6 if one just needs
thermodynamic parameters or solvent distribution functions. Once
convergence is obtained, there is no longer any distinction between
hclosure and hOZ.

This procedure is complicated when charged solutes are used:
here, one wants the solute net charge to be neutralized by the con-
verged ion distribution of the solvent. However, a consequence of
using PME is that a uniform neutralizing background charge is
imposed on the system, i.e., the effective net charge of the solute is
always zero if only the PME component of the potential is used. As a

result, the hOZ distribution arising from Eq. (1) will also be neutral,
which is a problem when the solute charge is non-zero. We describe
here a procedure modeled after that used by Kovalenko and Hirata
(KH) for the non-periodic 3D-RISM,34,39 which modifies the OZ
direct correlation function to account for this implicit background
charge. We first note that the potential energy due to the solvent site
γ interacting with a non-neutral solute is

uγ(r) = uPME
γ (r) − ubk

γ (r) = uPME
γ (r) − qγϕbk

(r), (4)

where uPME
γ (r) is the potential energy calculated by PME, ubk

γ (r)
is the potential energy due to the neutralizing background charge,
and ϕbk

(r) is the background potential imposed by PME. Since ubk
γ

represents the interaction of the solvent charge on site γ with a back-
ground charge density of infinite extent, it diverges, and we cannot
directly use Eq. (4) in Eq. (2) as it stands. However, an analytic
expression for ϕbk

(r) can be found in reciprocal space: using the fact
that the background charge distribution is qbk

(r) = −Qsolute/Vcell, we
can write Poisson’s equation as

ϕ̂bk
(k) = 4π

q̂bk
(k)

k2 = −δ(k)
Qsolute

Vcell

4π
k2 . (5)

The restriction to k = 0 yields a uniformly distributed quantity in
real-space but has the expected singularity at k = 0. Using the HNC
for simplicity, Eq. (2) can then be written as

hHNC
γ (r) + 1 = exp[−βuγ(r) + hOZ

γ (r) − cγ(r)]

= exp[−βuPME
γ (r) + hOZ

γ (r) − c̃γ(r)], (6)

where we have grouped the background charge contribution with
cγ(r) to define a renormalized direct correlation function as follows:

c̃γ(r) = cγ(r) − βqγϕbk
(r). (7)

The Ornstein–Zernike equation, Eq. (1), is then

hOZ
γ (r) =∑

α
cα(r)∗ χαγ(r)

=∑
α
[c̃α(r)∗ χαγ(r) + βubk

α (r)∗ χαγ(r)]. (8)

Taking the Fourier transform, which we denote by ⋅̂, we obtain

∑
α

βûbk
α (k)χ̂αγ(k) = −∑

α
βδ(k)qα

Qsolute

Vcell

4π
k2 χ̂αγ(k)

= −4πβ
Qsolute

Vcell
δ(k) lim

k→0
∑

α

qα

k2 χ̂αγ(k)

≡ ĥbk
γ δ(k). (9)

This depends only on Qsolute, Vcell, and the properties of the bulk sol-
vent and evaluates to a constant when going back to real space. Even
though ϕ̂bk

(k) in Eq. (5) has a singularity at k = 0, ĥbk
γ in Eq. (9)

is finite. In practice, we use a polynomial interpolation procedure
based on Neville’s algorithm to numerically extrapolate values at
finite k in Eq. (9) to the k = 0 limit.

Modifying hOZ
(r) by a constant would seem to yield a distri-

bution function g(r) ≡ h(r) + 1 that is not zero inside solute atoms.
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However, during the self-consistent cycle, this shift is immediately
followed by an application of the closure relation, Eq. (6), with a con-
tribution exp[−βu(r)] that serves to prevent solvent species from
being close to solute atoms, as discussed in Refs. 34 and 39. Solv-
ing Eqs. (6) and (8), rather than the original equations (1) and (2),
implies that the renormalized c̃γ(r) is used throughout the algorithm
in Fig. 1. By doing so, the solvent distribution will exactly neutralize
the solute charge even though we only use the neutralized potential
energy, uPME

γ (r).
In the end, the procedure for charged solutes is only slightly

modified from that used for neutral solutes: we use c̃ rather than c
[Eq. (7)] and “shift” hOZ

γ by hbk
γ [Eq. (9)]. The pseudo-code for this

process is given in Fig. 1.

C. Computing the excess chemical potential
for a shifted OZ model

When the algorithm in Fig. 1 is complete, we have the total
correlation function for the charged solute, hγ(r), but the direct
correlation function used in the calculation, c̃γ(r), contains the
background potential energy. This must be accounted for when cal-
culating the excess chemical potential. Here, we follow Kovalenko
and Hirata34 and start by considering the Kirkwood charging for-
mula for the excess chemical potential, but we use uPME

γ (r, λ) rather
than the full potential,

Δμ =∑
γ

ργ∫
1

0
∫

Vcell

∂uPME
γ (r, λ)
∂λ

gγ(r, λ) drdλ, (10)

where λ is a coupling parameter between the solute and solvent. To
find a closed form expression for Δμ, we will recast the integrand
in the form of an exact differential in λ. To begin, we consider the
functional variation of the HNC closure, Eq. (6),

δhγ(r) = −gγ(r)βδuPME
γ (r) + gγ(r)δhγ(r) − gγ(r)δc̃γ(r), (11)

which is valid for any variation, including the variation with respect
to λ. We can solve for the integrand in Eq. (10) using gγ = hγ + 1 and

FIG. 1. Pseudo-code for an algorithm to solve the 3D-RISM equations using c̃ and
a “shift” in hOZ (starred line). The code assumes HNC closure for simplicity; the
other starting estimates for c̃0 may be used, such as the result from a previous
step of minimization or MD. FT is the Fourier transform, MDIIS is a version of
the direct inversion of the iterative subspace,12,39 and thresh is a convergence
threshold. For a neutral solute, or for pure water as a solvent, hbk is zero.

δ[h2
γ(r, λ)] = 2hγ(r, λ)δhγ(r, λ) to arrive at

βgγ(r)δuPME
γ (r) = δ[

(hγ(r))2

2
− c̃γ(r)] − hγ(r)δc̃γ(r). (12)

The first term is already in the form of an exact differential, and we
use the following variation to cast the second term to a useful form:

δ∑
γ

ργ∫
Vcell

hγ(r)c̃γ(r) dr = ∫
Vcell
∑

γ
ργ∑

α
[c̃α(r)∗ χαγ(r − r′)δc̃γ(r)

+ c̃γ(r)δc̃α(r)∗ χαγ(r − r′)]

−∑
γ

ργhbk
γ δc̃γ(r) dr,

where we have substituted hγ using Eq. (1). As χαγ(r − r′) is a
property of the bulk solvent and, consequently, invariant, we have

δ∑
γ

ργ∫
Vcell

hγ(r)c̃γ(r) dr = ∫
Vcell
∑

γ
ργ2hγ(r)δc̃γ(r)

+∑
γ

ργhbk
γ δc̃γ(r) dr.

Upon simple rearrangement, we can write

∑
γ

ργ∫
Vcell

hγ(r)δc̃γ(r) dr =
1
2∑γ

ργ∫
Vcell

δ[hγ(r)c̃γ(r) − hbk
γ c̃γ(r)] dr,

(13)

for which the left hand side now has the form of an exact differential.
Taking together Eqs. (10), (12), and (13), we can derive a final

expression for the excess chemical potential as follows:

ΔμHNC
= β−1

∑
γ

ργ∫
Vcell

h2
γ(r)
2
− (1 −

hbk
γ

2
)c̃γ(r) −

hγ(r)c̃γ(r)
2

dr,

(14)

which is identical to the HNC expression for Eq. (1) except for
the use of c̃γ(r) and an additional term, −kT∑γργ∫Vcell

− 1
2 hbk

γ c̃γ dr,
resulting from using the renormalized direct correlation function,
c̃γ(r). This additional term will be present for all closures with a
closed form expression of the excess chemical potential. A simi-
lar treatment for the PSE-n family of closures,33 which includes the
Kovalenko–Hirata (KH) closure,39 is presented in the Appendix.

D. Computing solvation forces on the periodic
solute atoms

A closed form expression for the solvation force on atom i due
to Eq. (14),

fi(Ri) =
∂

∂Ri
Δμ,

may also be derived following the approach of Kovalenko and
Hirata.34 For simplicity, we will again use the HNC expression for
the excess chemical, Eq. (14), as the approach is easily extended to
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any closure with a closed form expression for the excess chemical
potential. For example, the variation of Eq. (14) is given by

δΔμHNC
= kT∑

γ
ργ∫

Vcell

⎡
⎢
⎢
⎢
⎢
⎣

hγ(r)δhγ(r) − δ(
hγ(r)c̃γ(r)

2
) (15)

− (1 −
hbk

γ

2
)δc̃γ(r) dr

⎤
⎥
⎥
⎥
⎥
⎦

. (16)

However, variations in the total and direct correlation functions
are difficult to numerically compute, and we would like to confine
the variation to the potential only. Solving for gγ(r)βδuPME

γ (r) in
Eq. (11) and simplifying, we have

gγ(r)βδuPME
γ (r) = hγ(r)δhγ(r) − hγ(r)δc̃γ(r) − δc̃γ(r).

Using Eq. (13), we can write

∑
γ

ργ∫
Vcell

gγ(r)βδuPME
γ (r) dr

=∑
γ

ργ∫
Vcell

hγ(r)δhγ(r) − δ(
hγ(r)c̃γ(r)

2
)

− (1 −
hbk

γ

2
)δc̃γ(r) dr.

As the right hand side matches the summation in Eq. (16), we
have

δΔμHNC
=∑

γ
ργ∫

Vcell

gγ(r)δuPME
γ (r) dr.

Taking the variation with respect to the position of a solute atom, Ri,
we have

fi(Ri) =
∂

∂Ri
ΔμHNC

=∑
γ

ργ∫
Vcell

gγ(r)
∂

∂Ri
uPME

γ (r) dr. (17)

This expression is the same as that for the standard 3D-RISM
equation and independent of hbk

γ .

III. METHODS
A. Solute preparation

With the exception of the heme group for myoglobin (PDB ID
1BZR) and guanosine-5’-triphosphate (GTP) in the hammerhead
ribozyme (PDB ID 2QUS), all solvent and non-standard residues
were removed from the deposited crystal structures. All protein
and RNA structures were parameterized with the standard Amber
charges and Lennard-Jones parameters,52 which have not changed
since 1995. Naproxen was parameterized with the general Amber
force field 2 (GAFF2).53 Parameters for hemoglobin54 and GTP55

were taken from the Amber contributed parameter database. The
minimizations for 2OIU and 1Y0Q used the RNA ff99OL3 force
field.56,57

B. Solvent preparation
The properties of the bulk solvent, including χ̂αγ(k), required

for Eq. (8) were precomputed with rism1d from AmberTools 21.12,58

In all cases, the dielectrically consistent RISM (DRISM)24 was solved
at a temperature of 298 K with a dielectric constant of 78.497
and the KH closure39 on a grid with a spacing of 0.025 Å and
32 768 points to a residual tolerance of 10−12. The coincident
extended simple point charge model (cSPC/E) water model was used
with Joung–Cheatham parameters for monovalent ions59 and Li-
Merz 12-6 parameters for divalent ions.60 The details of the solvent
composition for each solute can be found in Table I.

C. 3D-RISM calculations
Equation (8) was solved using sander from AmberTools 21,

modified as described in Sec. II. Except where described in Sec. IV,
grid sizes and spacings are detailed in Table I. Calculations requiring
solvation forces (Secs. IV A and IV D) were solved to a residual tol-
erance of 10−10, while all other calculations were solved to a residual
tolerance of 10−7. For biomolecular crystals, grid dimensions were
selected to match the unit cells of the deposited structures, with
exceptions noted for the calculations discussed in Secs. IV A and
IV B. For the small molecule crystal naproxen calculation, the orig-
inal unit cell was expanded 3, 7, and 3 times, respectively, along the
three crystal lattice vectors.

TABLE I. 3D-RISM parameters for crystal structure optimization and energy minimization. The grid spacing is in Å.

PDB/CSD ID Spacing Grid size Solvent

ANOMEW40 0.33 84 × 72 × 96 0.005M MgCl2(aq)
1AHO41 0.4 120 × 108 × 80 Water
2IGD42 0.35 108 × 120 × 126 Water
1BZR43 0.35 108 × 190 × 192 Water
4LZT44 0.35 80 × 96 × 108 Water
2LZT45 0.35 80 × 96 × 108 Water
4YUL46 0.35 126 × 160 × 256 Water
2A4347 0.35 160 × 160 × 160 0.02M MgCl2, 0.14M KCl(aq)
480D48 0.35 90 × 90 × 224 1M NaCl(aq)
2QUS49 0.35 80 × 160 × 210 1M NaCl(aq)
1Y0Q50 1.0 96 × 144 × 224 0.02M MgCl2, 0.14M KCl(aq)
2OIU51 1.0 48 × 112 × 80 0.1M MgCl2, 1.29M NaCl(aq)
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IV. RESULTS
We have applied this periodic 3D-RISM model to a variety

of protein and nucleic acid crystals. We begin with discussions
of the accuracy of forces on solute atoms arising from the gradi-
ents of the excess chemical potential (Sec. IV A) and then look at
the way a periodic system extrapolates to a non-periodic limit as
the size of the periodic box surrounding a single solvent molecule
increases (Sec. IV B). These help to provide confidence in the
correctness of our implementation. We then look at examples of
the solvent distributions in biomolecules, comparing x-ray scat-
tering factors (Sec. IV C), and give examples of predictions for
electrostatic screening effects in RNA crystals (Sec. IV D). These
show promising results, but it is clear that many more studies
will be needed to map out the expected level of accuracy of this
approach.

A. Accuracy of atomic forces
The use of the 3D-RISM as an implicit solvent requires accu-

rate and rapid calculation of atomic forces. Both speed and accuracy
may depend upon the system. Table II gives some results for a small
RNA unit cell, with 108 nucleotides in four chains. We compare
gradients computed via Eq. (17) to those computed with finite dif-
ferences using Eq. (14). There is smooth convergence with respect
to grid spacing for both Δμ and the accuracy of the gradients,
but very large grids can be expensive. For the practical exam-
ples discussed in Sec. IV D, we find that a grid spacing of 0.5 Å
gives results that hardly differ from tighter grids. This is supported
by the numbers of excess water molecules and ions presented in
Table II, which show that the key properties of the solvent distri-
bution are converged even at the larger grid spacings. The actual
value of Δμ is not available from the experiment, so grid arti-
facts in estimating its value are of little consequence provided that
the gradients and solvent distributions are accurate. This appears
to be the case for even the largest grid spacings shown in this
table.

It is worth noting that the “additional” background contribu-
tion of −kT∑γργ∫Vcell

− 1
2 hbk

γ c̃γ dr in Eqs. (14) and (A1) is key for
periodic calculations. If this contribution is omitted, the value of
Δμ changes to −468 kcal/mol (for a grid spacing of 0.5 Å), and
the mean and maximum absolute derivative errors are 0.47 and
1.86 kcal/mol-Å, respectively, more than two orders of magnitude
larger than the values shown in Table II.

By comparison, for a single solute in a large box, this
“additional” term is quite small. As an example, consider one
chain of sarcin–ricin from Table II. Even with a fairly large solute
charge of −26 e, embedding this in a 120 Å box yields Δμ values of
−5941.41 kcal/mol without the “correction” and −5941.62 with it,
with a difference of 0.21 kcal/mol.

B. Extrapolation to the infinite dilution regime
The examples discussed above dealt with molecular crystals,

where solute molecules are in contact with their images in neigh-
boring unit cells, and the solvent volume is fairly small. Another
application might be to a single (dilute) solute surrounded by a
buffer of solvent. As the size of the unit cell increases, such a calcu-
lation should approach the infinite dilution, the non-periodic limit
that has traditionally been assumed in 3D-RISM applications. As
noted above, these traditional calculations actually employ a regu-
lar periodic grid in the vicinity of the solute (to enable convolutions
to be carried out via the fast Fourier transform) and add in esti-
mates of the “asymptotic” contributions from the solvent outside the
grid. Here, we study the box-size dependence of periodic 3D-RISM
calculations that have a single solute molecule at the origin.

The thermodynamic quantity of most direct interest is the
excess chemical potential, Δμ, since this (when added to the potential
energy of the solute alone) creates the potential of mean force that is
used when applying the 3D-RISM as an implicit solvent model. As
discussed above, for a solute with a net charge, the periodic model
we use has a uniform background charge to neutralize the system. A
periodic system with charged molecules and such a uniform back-
ground charge is often called a “Wigner lattice,” and the effects
of periodicity can be computed and removed in order to facilitate
comparison to analogous non-periodic calculations. For a cubic cell,
the result for a single ion, Δμion, is related to the periodic result as
follows:61

Δμion
= Δμperiodic

− q2ζ/2L, (18)

where q is the net charge on the solute, L is the box length, and
ζ = 2.837. Figure 2 shows results for a 27-nucleotide RNA stem-loop
with a net solute charge q of −26 e. The comparison is to parallel cal-
culations with the existing non-periodic 3D-RISM codes in Amber.
The top plot illustrates the near-linear dependence on 1/L expected
from Eq. (18); the lower plot directly compares Δμion for periodic
and non-periodic codes. In the limit of large box sizes, the two results
converge to the same value (to within 1 kcal/mol at L = 240 Å),

TABLE II. Comparison of gradients computed via Eq. (A1) to those computed with finite differences using a displacement of
10−4 Å. The grid spacing is in Å. MAE is the mean absolute error, and max is the maximum absolute error (both in kcal/mol-Å)
for the x, y, and z components of the gradient for 20 randomly selected atoms. Δμ is the excess chemical potential in kcal/mol.
The final four columns give the excess number of water molecules and ions. The system is one unit cell of the sarcin–ricin
system PDB ID 480d, with 108 nucleotides and a solute charge of −104 e. The solvents are 0.02M MgCl2 and 0.14M KCl in
water.

Grid spacing MAE Max Δμ H2O Mg2+ K+ Cl−

0.75 0.0053 0.0332 82.7 −1049.6 19.89 56.79 −7.43
0.50 0.0026 0.0128 54.2 −1047.6 19.89 56.79 −7.43
0.25 0.0006 0.0040 43.9 −1047.3 19.89 56.79 −7.43
0.15 0.0004 0.0018 43.6 −1047.2 19.89 56.79 −7.43
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FIG. 2. Variation of solute excess chemical potential with respect to cell size. A
single sarcin–ricin RNA chain, taken from PDB ID 480d, is placed in cubic boxes
of varying sizes. The solvent is 0.1M NaCl in water, with a grid spacing of 0.5 Å.
Top: original results, plotting Δμperiodic; the green line has a slope of q2ζ/2. Bottom:
the periodic result is corrected to Δμion via Eq. (18) and shown for large box sizes.

but the non-periodic code is much less sensitive to box size. This
is expected since the non-periodic result includes an “asymptotic”
contribution that estimates contributions beyond the box used
for the convolution; this is quite an accurate estimate that pro-
vides reasonably converged results even for modest box sizes.
For this reason, the use of the periodic code for non-periodic
problems is not an attractive option, at least at present. Nev-
ertheless, the existing non-periodic codes have been well tested
for many types of problems, and the convergence illustrated in
Fig. 2 provides evidence for the correctness of the new periodic
implementation.

Another feature of interest, beyond thermodynamics, lies in the
solvent distribution itself. Quantities such as the excess number of
ions (or water molecules) around a charged solute can be measured
experimentally1,2,4,62 and compared with computations. These dis-
tributions converge much more quickly with box size or grid spacing
than does Δμ itself. Table II gives such values for the sarcin–ricin
RNA in a mixed salt with Mg2+, K+, and Cl− ions. Going from a grid
spacing of 0.75 Å to 0.25 Å changes Δμ by 39 kcal/mol, whereas the
excess number of ions changes hardly at all, even the excess number
of water molecules changes by only 0.2%.

C. Solvent distributions in small molecule crystals

One of the key advantages of an atom-based solvent model,
such as the 3D-RISM, compared to continuum implicit solvent
models, is that a thermally averaged solvent distribution profile
(on a 3D-grid) is available for each solvent component. A sim-
ple small-molecule example is the non-steroidal anti-inflammatory
drug naproxen whose crystal structure (CCDC entry ANOMEW40)
as a hydrate with water and Mg2+ is shown in Fig. 3. The solvent
density contours from 3D-RISM closely match the electron density
distributions from x-ray crystallography. This may not be surprising
in this case since the solvent channel is narrow but offers prospects
for the analyses of many polymorphs of naproxen that have differ-
ent amounts of water molecules and cations, sometimes with clear
evidence of the disordered solvent. Similar predictions are available
for biomolecules, such as for the RNA crystals discussed below, but
there it is more difficult to evaluate the accuracy of the 3D-RISM
results since only a small percentage of the ions and water molecules
that must be present in the crystal can be located in electron density
maps.

One way to evaluate the quality of the predicted solvent dis-
tributions is to use them (in combination with atomic models
for the solute molecules) to compute x-ray scattering intensi-
ties that can be compared to those observed from x-ray crystal-
lography. Since atomic models for macromolecules almost never
reproduce experimental x-ray scattering amplitudes to within exper-
imental data (a feature that is sometimes called the “R-factor
gap”11), we compare results using the 3D-RISM with the standard
“flat” solvent models employed in conventional crystallographic
refinement.

The results are shown in Fig. 4 and Tables III and IV. Refine-
ment calculations were performed using two popular macromolec-
ular refinement codes, refmac563 and phenix.64 These two codes
give broadly similar results but differ in details of how the flat
solvent model is implemented and how reflections are binned by
resolution and subsequently scaled. The 3D-RISM solvent density
maps were computed using the deposited solute atomic models
(keeping only the most highly occupied alternate conformations)
with solvent molecules removed. During refinement, the solvent
density is held constant (except for overall scaling and over-
all B-factors, which are refined), and the atomic positions and
B-factors of the solute are modified to achieve the best agree-
ment with the observed diffraction intensities. We used 40 refine-
ment cycles for refmac5 starting from the deposited solute atomic
model. Parallel refinements were carried out using the default,
“flat,” solvent density model. The phenix.refine package does not
have a fully comparable capability, but we can compare the 3D-
RISM and flat bulk-solvent models for the deposited solute atomic
model.

Figure 4 shows results for a 64-residue scorpion toxin protein,
PDB code 1AHO. There is an overall drop of about 1% between the
flat and 3D-RISM solvent models, with about a 2% improvement
in resolutions between 2 and 4 Å, whereas there is little differ-
ence at lower and higher resolutions. This is not an insignificant
improvement (given that there are no new adjustable parameters)
and provides a benchmark example for other solvent models, such as
those based on other closures or on MD simulations: better solvent
models should yield lower R-factors. For now, this calculation only
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FIG. 3. (a) Chemical structure and (b) crystal structure of naproxen H2O⋅Mg2+. (c) Solvent density contours for oxygen from water [red, gO(r) = 30.0] and Mg2+ [green,
gMg2+(r) = 4000.0], with colored spheres showing the locations of localized water molecules and ions as assigned in the refinement process. The large values of the pair
distribution function at the contour surface indicate that the water oxygen atoms and magnesium ions are highly localized. In the case of magnesium, the value is particularly
large due to its low concentration in the bulk liquid (Table I).

provides better “statistics;” this solvent model would need to be inte-
grated into a refinement algorithm to see what effect it would have
on the final atomic model. (Such studies will be reported elsewhere.)
It is likely that improved models may involve some combination
of explicit water molecules (placed into locations identified in the
electron density map) and a 3D-RISM model for the remaining
(“disordered” or “bulk”) solvent. These more complex models have

FIG. 4. Refinement of 1AHO41 in refmac5 (top) and phenix (bottom) using a flat
solvent density model and 3D-RISM.

more adjustable parameters, which will have to be balanced against
improvements in the resulting R-factors.

Tables III and IV show overall drops in R and Rfree for a selec-
tion of small proteins and RNA crystals. In each case, R and Rfree are
improved: on average, the 3D-RISM values for Rfree are 1.3% better
than when using the default flat solvent model in refmac5.

D. Using 3D-RISM as an implicit solvent model
for biomolecular crystals

In addition to providing a map of the distribution of sol-
vent molecules in the crystal lattice, the integral equation approach
provides a solvation free energy and its gradients with respect
to solute atomic positions. This provides an implicit solvent
model that can be used for minimizations or molecular dynam-
ics. This has been found to work well in non-periodic situa-
tions (e.g., for DNA65,66), giving results that are often superior
to numerical Poisson–Boltzmann or generalized Born models.67

Since there are a very few implicit solvent models that work
for crowded periodic systems, such as molecular crystals, this is
an intriguing approach despite its relatively high computational
cost.

The need to include the energetic aspects of solvation is espe-
cially important for nucleic acid crystals where there are many
charged phosphate groups in close proximity, and generally, only
a small number of counter ions are visible in the electron den-
sity maps. We consider two examples here: the L1 ribozyme ligase
circular adduct (PDB code 2OIU51) and a group I intron product
complex (PDB code 1Y0Q50). Figures 5 and 6 show the results of
minimization calculations in the crystal lattice, with and without
the 3D-RISM implicit solvent model. For the smaller 2OIU sys-
tem (9188 solute atoms), we carried out 1100 steps of conjugate
gradient minimization (using the LBFGS algorithm), followed by
30 steps of truncated-Newton conjugate gradient optimization. The
root-mean-square (rms) of the elements of the final gradient was
0.02 kcal/mol-Å, and the energy drop on the final step of truncated-
Newton optimization was 0.3 kcal/mol. For 3D-RISM with a grid
spacing of 1.0 Å, each energy evaluation took 13 s using 16 MPI
threads on a single Xeon Gold 6230 CPU running at 2.10 GHz. The
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TABLE III. Bulk solvent models with a single protein configuration; each block shows R/Rfree after 40 cycles of refmac5
refinement.

Protein Scorpion-toxin GB3 Myoglobin Lysozyme Lysozyme Cyclophilin

PDB ID/resol. 1AHO/0.96 2IGD/1.10 1BZR/1.15 4LZT/0.95 2LZT/1.97 4YUL/1.42
Flat (refmac) 0.209/0.214 0.220/0.233 0.200/0.208 0.196/0.205 0.167/0.216 0.201/0.224
3D-RISM 0.199/0.211 0.213/0.224 0.194/0.206 0.190/0.197 0.154/0.201 0.185/0.202

larger 1Y0Q system (60 288 solute atoms) was minimized for 400
steps of conjugate gradient minimization, with a final rms gradient
of 0.02 kcal/mol. Here, each energy evaluation required 9 min on 16
threads on a single CPU.

Figures 5 and 6 show the superpositions of a single RNA chain
even though the simulations themselves included a full unit cell that
is periodically replicated. In both examples, it is clear that the lack
of solvent screening of the phosphate–phosphate interactions in the
“no solvent model” minimizations results in an expansion of the sys-
tem, even within the constraints of the crystal lattice, whereas the
3D-RISM calculations show excellent fidelity to the experimental
structural models. (It is not enough to just reduce the net charge on
phosphate groups: for 1Y0Q, a “vacuum” minimization where the
net charge on each phosphate is reduced from −1.0 to −0.2, in rough
accord with counterion condensation models, still results in an rms
shift of 4.7 Å.) In a refinement calculation without the implicit sol-
vent model, the force-field energies would be fighting against the
x-ray restraints, whereas the results of Figs. 5 and 6 suggest that this
would be much less true if 3D-RISM were employed.

TABLE IV. Bulk solvent models with a single RNA configuration; each block shows
R/Rfree after 40 cycles of refmac5 refinement.

RNA Pseudoknot Sarcin–ricin loop Hammerhead

PDB ID/resol. 2A43/1.34 480D/1.50 2QUS/2.40
Flat (refmac) 0.223/0.261 0.192/0.216 0.206/0.255
3D-RISM 0.208/0.229 0.175/0.208 0.186/0.234

FIG. 5. Blue: experimental structure from x-ray crystallography (PDB ID 2OIU),
red: structure from a 3D-RISM crystal minimization, and green: structure from a
crystal minimization with no solvent correction. rms gives the root-mean-square
deviation (in Å) of all non-hydrogen atoms from the crystal structure. Only a single
chain is shown, but the calculation included the entire unit cell.

The fairly slow timings for 3D-RISM will limit some poten-
tial applications but need not impede useful results. For example,
a typical ten-cycle refinement run in the phenix package of pro-
grams64 typically makes fewer than 300 energy evaluations during
the coordinate refinement steps so that even a system as large as 1y0q
would need less than 2 days, which is not inappropriate for a final
refinement step. (We have begun coding a graphics processing unit
(GPU)-enabled version of these models and hope that this will pro-
vide a significant speed improvement over the CPU results reported
here.)

As an example, we show in Table V results for several crys-
tallographic refinement calculations for the group I intron, PDB
code 1Y0Q. The diffraction data here are only at a resolution of
3.6 Å, so many structural details are not well-determined by the
x-ray data alone. The first column shows the deposited results
and gives statistics from the MolProbity program.68 The next two
columns show parallel refinements (starting from the deposited
structure) using phenix: the “phenix_cdl” column uses the default
geometric restraints from its conformational dependent library,
which are largely similar to conventional Engh–Huber restraints.
The “phenix_amber” column replaces the cdl restraints with forces
from the Amber force field, as described elsewhere.70 This force field
model has no implicit solvent contribution and hence no charge-
screening effects. The final column adds in the 3D-RISM model
as in Fig. 6; we used in-house codes to carry out the coordinate
refinements and phenix.refine for isotropic B-factor refinements,
alternating cycles of 150 refinement steps of coordinate refinement
with five macro-cycles of B-factor optimization.

The overall results are in general agreement with earlier studies
on proteins.70 The use of a force field greatly reduces the num-
ber of bad contacts, as evidenced by the ClashScore and improves

FIG. 6. Same as Fig. 5 but for the PDB code 1Y0Q.
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TABLE V. Results for several test refinements of 1Y0Q. The first seven rows
come from the MolProbity program;68 the root-mean-square (rms) change from the
deposited structure is computed for all non-hydrogen atoms. Some results are repro-
duced with permission from J. G. Gray and D. A. Case, Crystals 11, 771 (2021).
Copyright 2021 Author(s), licensed under a Creative Commons Attribution (CC BY)
license.69

1Y0Q phenix_cdl phenix_amber 3D-RISM

ClashScore 53.7 35.4 3.7 0.9
rms (bonds) 0.008 0.011 0.017 0.015
rms (angles) 1.35 2.10 3.00 2.00
MolProbity score 3.35 3.18 2.31 1.91
Pucker outliers (%) 8.6 8.6 10.7 8.2
Angle outliers (%) 0.7 0.7 9.4 2.0
Average suiteness 0.492 0.414 0.307 0.574
R-work 0.277 0.221 0.264 0.251
R-free 0.310 0.278 0.307 0.293
rms from deposition 0.00 0.36 0.71 0.37

the overall MolProbity score. However, the RNA-specific scores
for sugar pucker, sugar angles, and “suiteness” (a measure of how
well sugar-phosphate torsion angles agree with databases of well-
refined structures) get worse in the phenix_amber results. This is
presumably because the force field itself prefers an expanded struc-
ture (Fig. 6) and its gradients compete with those from the observed
structure factors. The addition of the 3D-RISM model improves all
the structural features and reduces the shift away from the deposited
structure. The comparable results for six additional RNA crystals are
presented elsewhere.69

It is clear that many more studies will be needed to establish
the generality of these results: in proteins, where charge screening
effects are less important, more than 13 000 such parallel refinements
were carried out to help establish the expected behavior.70 Systems
with higher-resolution diffraction data should depend less on the
nature of the geometric restraints than do lower-resolution struc-
tures. However, these initial results illustrate what is now possible in
this regard.

V. CONCLUSIONS
Water molecules and ions around biomolecules often play

a crucial role in the function. The analysis of the solvent dis-
tributions in biomolecular crystals can provide an important
check on the accuracy of computational models. Here, we present
an implementation of the 3D-RISM solvent model that can be
applied to any periodic system, including “crowded” systems,
such as crystals, where the majority of space is taken up by the
solute.

In many ways, the periodic version is not a major departure
from existing non-periodic 3D-RISM codes since a fast Fourier
transform (with a periodic cell) has always been used to compute
the convolutions needed for the Ornstein–Zernike equation. The
machinery to compute the periodic potential energy was adapted
from existing particle-mesh-Ewald (PME) procedures in the molec-
ular dynamics code. However, a key advance was required for
charged solutes: a modification of the total correlation function h

is needed [Eq. (9)] to account for the implicit neutralizing poten-
tial arising from the PME procedure, and this, in turn, implies an
extra contribution to the excess chemical potential [Eq. (14)] that
had not been recognized before. This contribution is negligible for
non-periodic systems but can become important for crowded crys-
talline environments. With this correction, analytical expressions for
forces on the solute atoms closely match gradients computed by
the finite difference, and the periodic expressions smoothly merge
to existing non-periodic results for a single solute as the size of
the periodic cell increases. Our approach for charged solutes does
involve a uniform background charge distribution (so that uPME can
be used in place of u). This method of unit-cell neutralization is nei-
ther physical nor unique but does lead to an internally consistent
approach with accurate gradients (Table II) and preliminary results
that are promising even for highly charged systems (Figs. 5 and 6
and Table V).

It is clear that much effort will be required to understand the
expected accuracy of this approach and that improvements in poten-
tials and in closure relations should be examined. The predicted
solvent distributions can be compared to the experiment in a variety
of ways: by looking at the locations of ordered water molecules and
ions that can be identified in density maps derived from x-ray crys-
tallography, by comparing computed and observed Bragg intensities,
and (potentially) by comparing predicted and measured crystal den-
sities (which reflect the total number of water molecules and ions
per unit cell). The use of 3D-RISM as a periodic implicit solvent
model can be tested by molecular dynamics or minimization cal-
culations in cases where experimental structures are available. We
have provided a few examples of such comparisons here, but many
more are needed. Improvements in efficiency will help to make this a
practical method; porting the codes to a GPU environment is under
way.

The periodic 3D-RISM implementation used here will
be included in AmberTools, an open source collection of
molecular simulation software, and may be downloaded at
https://ambermd.org. The implementation was based upon an exist-
ing non-periodic RISM code that was primarily developed by
Luchko et al.12 Extensions to periodic systems were implemented
by Jesse Johnson and George Giambasu, and a more complete
description of the codes is given elsewhere.38
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APPENDIX: EXCESS CHEMICAL POTENTIAL
FOR THE PSE-n CLOSURE FAMILY

For the partial series expansion of order-n (PSE-n) family of
closures,33 which includes the Kovalenko–Hirata (KH) closure,39 we
have

gγ(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n

∑
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(t∗γ (r))
i
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which has the bridge function
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where t∗γ (r) = −βuγ(r) + hγ(r) − cγ(r). Because we have a non-zero
bridge function, we must consider the variation in the general form
of the closure, Eq. (2),

δhγ(r) = −gγ(r)βδuPME
γ (r) + gγ(r)δhγ(r)

− gγ(r)δc̃γ(r) + gγ(r)δBγ(r).

All but the last was considered in Sec. II C. For the last term, we have
an exact differential

gγ(r)δBγ(r) =
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where Θ() is the Heaviside function, and we have used δ(t∗γ (r))
n

= nt∗γ (r)
n−1δt∗γ (r). Using this result with Eqs. (10), (12), and (13),

we have
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As with the HNC closure, this expression is the same as the
usual expression33 except for an additional term of −kT∑γργ∫Vcell

− 1
2 hbk

γ c̃γ dr.
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