Journal of Advanced Research 12 (2018) 67-78

Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier.com/locate/jare

Original Article

Optimization of a novel programmable data-flow crypto processor using
NSGA-II algorithm

Mahmoud T. El-Hadidi **, Hany M. Elsayed ? Karim Osama® Mohamed Bakr ", Heba K. Aslan®

2 Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Cairo University, Giza 12613, Egypt
b College of Computing and Information Technology, Arab Academy of Science and Technology and Maritime Transport, Cairo, Egypt
€ Informatics Department, Electronics Research Institute, Cairo, Egypt

Check for
updates

GRAPHICAL ABSTRACT

Data-Flow Programmable Crypto Processor

nstucion Regon - Gl
o

Host Processor

Six candidate solutions on the Pareto front obtained by applying modified NSGA-
Il optimization algorithm to the programmable data-flow crypto processor.

Securlty o A
Aoty AES Eneryption SHA3 Hashing

of Regions

ety | nerey

Mapping of Function Units among execution regions for the candidate solutions
obtained using modified NSGA-II algorithm

| Candidates [1[a[z]2[2]a[a a5 [1]e[2]2]2[5]3]3]3 6 [e]e]z]4]3]2[a]0]

ARTICLE INFO ABSTRACT

Am'fl_e history: The optimization of a novel programmable data-flow crypto processor dedicated to security applications
Rec?lved 22 July 2017 is considered. An architecture based on assigning basic functional units to four synchronous regions was
Revised 30 October 2017 proposed in a previous work. In this paper, the problem of selecting the number of synchronous regions

Accepted 3 November 2017

Available online 4 November 2017 and the distribution of functional units among these regions is formulated as a combinatorial

multi-objective optimization problem. The objective functions are chosen as: the implementation area,

the execution delay, and the consumed energy when running the well-known AES algorithm. To solve
this problem, a modified version of the Genetic Algorithm - known as NSGA-II - linked to a component

Programmable crypto processor . . .

Data-flow crypto processor database and a processor emulator, has been invoked. It is found that the performance improvement

NSGA-II Genetic Algorithm introduced by operating the processor regions at different clocks is offset by the necessary delay

Keywords:

Peer review under responsibility of Cairo University.
* Corresponding author.
E-mail addresses: hadidi@eun.eg, mahmoud.hadidi@gmail.com (M.T. El-Hadidi).

https://doi.org/10.1016/j.jare.2017.11.002
2090-1232/© 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2017.11.002&domain=pdf
https://doi.org/10.1016/j.jare.2017.11.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hadidi@eun.eg
mailto:mahmoud.hadidi@gmail.com
https://doi.org/10.1016/j.jare.2017.11.002
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare

68 M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78

Multi-objective optimization
FPGA implementation
Design space exploration

introduced by wrappers needed to communicate between the asynchronous regions. With a two clock-
periods delay, the minimum processor delay of the asynchronous case is 311% of the delay obtained in
the synchronous case, and the minimum consumed energy is 308% more in the asynchronous design

when compared to its synchronous counterpart. This research also identifies the Instruction Region as

the main design bottleneck. For the synchronous case, the Pareto front contains solutions with 4 regions

that minimize delay and solutions with 7 regions that minimize area or energy. A minimum-delay design

is selected for hardware implementation, and the FPGA version of the optimized processor is tested and

correct operation is verified for AES and RC6 encryption/decryption algorithms.

© 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

As standard cryptographic algorithms - such as DES [1], RSA [2],
ECC [3], and AES [4] - were adopted, researchers and technology
firms devoted considerable effort and time to develop efficient
implementations in software and hardware. Initially, attention
was directed to achieving high throughput as well as low cost
and/or low power consumption for specific algorithms such as
AES (see [5] and the references therein). Considering the fact that
cryptography - by its very nature - is always ever-changing, the
need for a flexible platform that can implement a wide range of
cryptographic primitives, algorithms, and protocols was soon rec-
ognized. Since the late 90s, activities concerning the implementa-
tion of multiple security algorithms have centred around three
main approaches: Customized General Purpose Processor (GPP)
[6-12], Crypto Co-processor [13-16], and Crypto Processor [17-
21]. While throughput was almost always the prime metric, other
figures of merit were sought such as flexibility and security. This
trilogy was used for evaluating various proposals, along with the
usual design considerations of surface area, cost, and power con-
sumption, [5].

A novel data flow-oriented Crypto Processor based on the
Transport Triggered Architecture (TTA) was proposed [22,23]. The
architecture comprised Function Units (FUs) which were selected
to cover all arithmetic/logic functions typically encountered in
encryption/decryption algorithms. A FU would not store its output
in a common memory (as is typical with the von Neumann Archi-
tecture), but rather it would feed its output directly to one (or two)
FUs waiting for such output as an operand. To allow execution of
security algorithms in a parallel mode, the FUs are distributed
among several Execution Regions (ERs). Each of the ERs, as well
as an Instruction Region (IR) and an interconnection region (called
Global Interconnection Network — GIN) operates synchronously at
its own clock frequency, while regions communicate asyn-
chronously. This gives rise to a Globally Asynchronous Locally Syn-
chronous (GALS) architecture. This architecture allows higher
throughput, and the decoupled structure of the GALS units makes
it possible to clock gate idle regions, thereby reducing the amount
of dissipated power. Finally, the asynchrony of regions, in addition
to a novel data scrambling technique can render the processor
more immunity against side channel attacks.

In this paper, the above architecture is enhanced and extended
by investigating the effect of assigning FUs among arbitrary num-
ber of synchronous ERs in order to optimize the processor perfor-
mance. The optimum design will be based on a trade-off
between the primary objective functions of implementation area,
execution delay and consumed energy. Thus the problem will
essentially be one of multi-objective optimization.

The main contributions of this research is the proposal of a
modified version of the Genetic Algorithm - known as NSGA-II -
and linking it to a component database to perform design space
exploration, building a processor emulator that is invoked to calcu-
late the solutions cost and building estimation models for the
design metrics used in the optimization process.

The rest of the paper is organized as follows. Section 2 presents
a brief overview of recent work regarding the three main cate-
gories of security processors. Section 3 provides an overview of
the design of the data-flow crypto processor, while section 4 pre-
sents the design objective functions and performance metrics.
Then section 5 presents the proposed optimization algorithm,
and section 6 gives the optimization results and analyzes their sig-
nificance. In section 7, the implementation of the optimized pro-
cessor on FPGA is presented, and finally section 8 concludes the

paper.
Security processors: An overview

Historically, security processors were designed as Customized
GPPs. These are based on using standard processors (whether CISC
or RISC) and adding special functional units to its Arithmetic and
Logic Unit (ALU) that cater for cryptographic operations, such as

” o«

“bit shifting”, “bit rotation”, “modular addition”, “modular multi-
plication”, “substitution”, and the like. Since new instructions are
introduced to deploy these additional functions, Customized GPP’s
are also called Instruction Set Extension (ISE) processors. While
they offer the highest flexibility - because of their reliance on
easily modifiable software instructions - they require modifica-
tions in the existing processor hardware which comes at the
expense of increased chip area, increased cost, and reduced
throughput. To further enhance the flexibility of Customized GPP,
reconfigurable designs have been proposed [24,25] and arrays of
GPPs have been deployed [26].

On the other hand, Crypto Co-processors attempt to avoid the
shortcomings of Customized GPP’s by detaching the special crypto-
graphic function units from the ALU of the main processor. They
execute cryptographic algorithms or cryptographic protocols on a
completely separate co-processor which is either tightly-coupled
or loosely coupled to the main-processor. Such co-processors pro-
vide hardware implementation of selected cryptographic algo-
rithms or protocols and hence can exhibit a higher throughput
than Customized GPP (especially for tightly-coupled implementa-
tions). However, they lack the flexibility of Customized GPP’s. To
partially circumvent this drawback, reconfigurable designs - such
as reconfigurable FPGA cores - have been proposed [27-31]. Fur-
ther enhancements of Crypto Co-processors were realized by
deploying several such engines within an array (called Crypto
Array) [32,33]. Multi-core versions of Crypto Co-processors were
also proposed [34,35]. Still, Crypto Co-processors cannot be easily
adapted to the wide range of existing and expected future crypto-
graphic algorithms and protocols.

Consequently, Crypto Processors have been proposed to retain
the flexibility of Customized GPP and still approach the higher
throughput exhibited by Crypto Co-processors, by implementing
the additional cryptographic functional units in a separate
tightly-coupled or loosely-coupled processor. The function units
are either realized using customized ALUs or systolic arrays. Other
designs that exhibited flexible implementation of cryptographic
algorithms using Crypto Processors have been also proposed. In

http://creativecommons.org/licenses/by-nc-nd/4.0/

M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78 69

one instance, the ALU is replaced by a set of Function Units (FUs)
connected to a common bus so as to allow data flow implementa-
tions of a cryptographic algorithm [36,37]. It is called Transport
Triggered Architecture (TTA), deploys MOVE instructions, and
allows improved throughput performance when compared to the
classical von Neumann approach. By using a reconfigurable FPGA
engine, the type and number of deployed FUs are adapted to vari-
ous security algorithms.

In a second instance, use of multiple ALUs in the form of an
array has been proposed. Specifically, [38] proposed an
architecture - called Celator — which is based on using an array
of Processing Elements (PEs) where each is capable of performing
basic arithmetic operations, logic operations, modular operations,
shifting operations and rotation operations. These PEs are con-
trolled by instructions stored in a memory (CRAM), and would be
changed depending on the desired cryptographic algorithm.
Another architecture - called Cryptoraptor - is proposed which
comprises 3 main blocks: State Engine, Register File, and Execution
Tile [39]. The Execution Tile consists of 20 stages of Processing Ele-
ments (PEs) rows and Connection Rows (CR). Each PE row consists
of 4 independent PE’s. (The values 20 and 4 are based on intuitive
judgment). Memory blocks are located in the State Engine, in each
PE and next to each CR. Cryptoraptor has no fetch and decode
cycles, and provides a reconfigurable substrate on a non-
configurable platform. However, the State Engine is controlled by
HW State Machine which is configured at initial step (and remains
fixed for each algorithm). This limits the flexibility and ease of use
of this design. Moreover, no public-key cryptographic algorithms
could be accommodated by Cryptoraptor. In order to improve the
performance of Crypto Processors, several cores are grouped
together to form Multi-Core-Crypto-Processor (MCCP). This
approach seemed to be promising and reconfigurable versions
have been developed for it [40,41].

Design background of the novel crypto processor

The architecture of the novel crypto processor proposed previ-
ously [22,23] inherits features both from the transport-triggered
paradigm and the dataflow paradigm. Thus, instructions control
the bypass circuits rather than the FUs; the FU operation is trig-
gered by the presence of its operands; and the results are passed
between the FUs instead of returning back to a register file. All
FUs can work in parallel and fast FUs do not need to run at the
same speed as the slow FUs, which can lead to further improve-
ment in the processor performance.

Fig. 1 shows a block diagram of the processor. The design
includes 27 FUs needed in the execution of major encryption/
decryption algorithms. Table 1 shows the 27 FUs included in the
processor together with the clock period of their ASIC implementa-
tion. The FUs are grouped into a number of ERs, each operating at a
given clock frequency. Normally an ER will include FUs with close
latencies and will operate at a clock period dictated by the slowest
FU it includes. Within the ER, an Instruction Switch (IS) is used to
forward an incoming instruction to the designated FU. Matched
Input Buffers (MIBs) are provided inside an FU to store incoming
instructions and operands. Meanwhile, results from an FU can be
either sent to FUs inside the ER using a Local Interconnection Net-
work (LIN), or else sent to other FUs in other ERs through the GIN.

The function of the IR is to hold the instructions of the algorithm
to be executed, and to dispatch instructions to appropriate ERs. An
Instruction Fetcher within IR fetches instructions from the Instruc-
tion Cache. To allow regions to work in parallel, each fetch opera-
tion can get up to n instructions, where n is the number of ERs. An
Arbiter unit then forwards the fetched instructions to the appropri-
ate ERs, after checking that such ERs are ready to handle a new
instruction. To enhance the processor’s ability to combat side-
channel attacks, the order by which instructions are executed is

Instruction Region Execution Region Global
(IR) (ERo) — ER-GIN-A Interconnection
Network
GIN-ERR
i
:‘CB ‘; FUa —1 % ,\1- B
- weosl |2 [B |i2H- IR
= g 7]
2= MIB g9
[$] -
£ =lro. LS SH-HI-2 b J et outout |
- | € — 8= B Port Port
|, ER-IR-A s L 0
-) 3 (0) (0)
2 5 % ER-GIN-R Blan;Ut
[5} = - urrers
© S w = K -
O s sl] ._._> GIN-ERA
sl.fe 3 s
5 §9 o5 Execution Region
S B 5 ER ER-GIN-A
HEERE: ER)
£ 2 < MIB GIN-ER-R
- — c
— 5 (—=ru e _riHE-
3 — oz B,.
RERR| | & £ —vl*—“ -1
._._ sa VIB 8 x Input
1 > = — o 9
S — 2z A Buffers
| £ = Fu, % of . . n-1 Input Output ||
< — 8 B,.1 Port Port
ER-IR-A o ——“—”»D (n-1) (n-1)
L — 1
+ Flip-Flop GIN-ER-A

Fig. 1. Block diagram of the security processor [42].

70 M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78

Table 1
Functional units used in the crypto processor with the clock period of their ASIC
implementation.

FU FU short FU operation Clock Period
no name (ns)
0 ADD Addition 4
1 ADDMOD Modular Addition 4
2 AND Logical AND 3
3 COMBINE 16 Combining two 16-bit numbers 3
4 COMBINE 8 Combining two 8-bit numbers 3
5 EXTRACT 16 Extracting 16-bits from a 32-bit 4
number
6 EXTRACT 4 Extracting 4-bits from a 32-bit 4
number
7 EXTRACT 8 Extracting 8-bits from a 32-bit 4
number
8 GFMUL Galois Field Multiplication 5
9 MUL Multiplication 8
10 MULINV Multiplicative Inverse 3
11 MUX Multiplexing 3
12 NAND Logical NAND 3
13 OR Logical OR 3
14 PUSHIMM Pushing a number into a register 3
15 READREG Reading a value from a register 10
16 READSBOX Reading a value from SBox 10
17 REPLICATE Replication of a value 3
18 ROL Rotation to the left 4
19 ROR Rotation to the right 4
20 SHL Shifting to the left 4
21 SHR Shifting to the right 4
22 SUB Subtraction 4
23 WRITEREG Writing a value into a register 10
24 WRITESBOX Writing a value into SBox (not used) 10
25 XOR2 Logical XOR (two inputs) 3
26 XOR3 Logical XOR (three inputs) 3

randomly altered, and a random selection is made among internal
signals targeting the same FU.

The GIN is a high speed interconnection network that allows
exchange of intermediate results between the ERs. Incoming data
to the GIN wait in input buffers and are forwarded through the
proper output port to other ERs.

Both the IR and GIN are allowed to have clocks that best suit
their operation. According to the GALS paradigm, signalling inside
each ER is controlled by a single clock (synchronous operation), but
the different ERs may have independent clocks and therefore oper-
ate asynchronously. This necessitates the use of wrappers between
the various regions. In Fig.1, asynchronous communication uses
Request (R)/Acknowledge (A) signals through a double FF
mechanism.

31..30 | 29..27 | 26..22 | 21..20
2

19.18 | 1715 | 1420 | 9.8

Instruction set

Any security algorithm can be encoded in an assembly code
written using instructions that have a standardized format. As
described in [22,23], each instruction specifies the FU responsible
for executing the operation and the FU(s) to which the outcome
should be forwarded. One instruction can identify one or two
destination FUs. The instruction also specifies the “tag” of the FU
outcome. Tags help an FU to link instructions dispatched by IR with
operands received from other FUs. Fig. 2 depicts an example for a
typical instruction. (Due to lack of space, full details regarding the
meaning of fields in Fig. 2, the use of “tags” to bind data to instruc-
tions and the generation of instructions for a specific security algo-
rithm cannot be provided here. However, a concise description of
some of these concepts is given in Appendices B and C).

The encryption/decryption program instructions are stored in
the Instruction Cache of the IR, while the input data (such as plain-
text, ciphertext, encryption keys, decryption keys, and Substitution
Box values) are stored in the WRITEREG and READSBOX FUs.

Each FU stores data and instructions in its MIBs, where each
instruction is matched to corresponding operands according to
their tags. When an FU receives the appropriate operands, along
with the associated instruction, the FU executes its operation and
forwards its outcome to the destination FUs. MIBs allow the results
to wait for their instructions and also the instructions to wait for
their data to arrive. Compared to the common register file used
in TTA architecture, this requires much less address decoding time
and buffers can be read and written back in parallel. Typically, the
size of FU buffers, specified at the design stage, is limited. It is to be
noted that if the FU MIB size is too small, some instructions may be
lost, and if the FU MIB size is too large, there will be wasted area in
the processor.

Design space

Within the guiding design principles mentioned above, still
many design variations are possible. These variations may affect
the different performance aspects of the processor and hence need
to be considered within the Design Space Exploration (DSE)
process.

The number n of ERs in the processor is a major design param-
eter. It will determine the degree to which programs can benefit
from parallelism and asynchrony. The number n will also deter-
mine how many instructions are fetched within the IR which -
in turn - determines the complexity of the Instruction Fetcher
and the Instruction Arbiter. It will also determine the width of

2

2 3 5
Region | FuCode JNNTAG | PORT

2 3 5
Region | FuCode |TAG

PORT

Destination 1

Source Information

Destination 2

3.0

S7] 56
1 3 2

I/ 7.4 | s
] 3
Destination Information | Tag Prefixes

s | s3_s2|s1.49 48 47| =

Src_Tag_Prefix Dest!
\ Tag Prefixes

| #5..41 | 4037 | 36..22
s

REQ Type Region FUCode | SS

1 5 4
| simm [Poae] ococo | M

Source

Fig. 2. Format for a typical instruction of the programmable crypto processor [23].

M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78 71

buses for data and control interconnecting IR and ERs, as well as
how many ports and input buffers the GIN should deploy. This will
have an important impact on processor area and consumed energy.

The manner in which FUs are distributed among ERs is another
major design option. The FUs mapped to an ER will operate at the
clock frequency dictated by the slowest FU in the ER. This may
slow down some FUs and increase the delay of executing some
algorithms. Also, the number of FUs within an ER will determine
the number of ports of this region’s IS and LIN, hence affecting their
complexity, area, and energy consumption.

In [23] the distribution of FUs over four regions was heuristi-
cally selected based on execution time of FUs, the communication
frequency between the execution regions, and the communication
frequency within the Instruction Region. However, other perfor-
mance issues, such as area and energy consumption were not con-
sidered. Considering all these performance aspects will result in a
multi-objective combinatorial optimization problem with a huge
search space (= 20,971,522 points).

Other design options, such as the possible duplication of some
FUs, and changing the number of instruction busses and data busses
may also be considered but will not be addressed in this paper.

Design objective functions and metrics

The design of embedded processors - such as the considered
security processor - needs to comprehensively address different
performance aspects [43,44]. Some of these performance measures
are major quantifiable properties of the system that are typically
used as optimization goals. These are termed the primary objec-
tives of the design. Other performance aspects are domain-
specific features that are not easily quantifiable but cause the
designer to prefer one of otherwise equal designs. These are ter-
med the secondary objectives of the design.

Speed is the first important primary objective of the design. The
speed of a design can be expressed by different metrics such as the
throughput achieved for computations or the latency/response
time for certain events. The average and/or worst-case latency
needed to perform the encryption or decryption algorithm on a
block of data is an appropriate performance measure for the crypto
processor. This follows since these operations will have to be per-
formed repeatedly in a typical usage of the processor and will
affect the overall system performance. Since the Advanced Encryp-
tion Standard (AES) - [4] - is the most popular algorithm among all
symmetric key cryptographic techniques, it has been chosen as the
reference security algorithm for optimizing the programmable
data-flow crypto processor.

The latency of operations will be affected by all the design
choices mentioned in the previous section. For example, placing
a frequently used FU in certain region may force this unit to oper-
ate at a clock frequency less than the maximum possible value.
This in turn delays the execution of instructions and causes the
block encryption process to take a longer time.

The energy consumed by the processor to perform the encryp-
tion or decryption process on a block of data must also be empha-
sized in the design. This is important for embedded battery-
operated systems to prolong the battery life-time. Even for high-
end systems optimized for speed, one needs to consider the gener-
ation of heat within the system that degrades the life-time of the
components. Again, the consumed energy will be affected by all
the considered design choices.

The third quantifiable primary objective function is the cost.
The cost of the design is essentially determined by the area con-
sumption in the target technology and the packaging costs. Fixed
costs, such as the fabrication costs of mask sets cannot drive the
optimization process and are often not included [43].

Secondary objectives that are typically used to compare designs
include utilization of computation and communication resources,
/0 and memory specific metrics, and testability of design. All these
secondary objectives can be used to evaluate different designs of
the security processor, but a major objective will be the immunity
to side channel attacks which target the hardware implementation
of a cryptosystem.

Area, energy, and delay calculations

The objective functions of processor area, energy consumed in
executing the AES encryption algorithm and total delay for execut-
ing this algorithm, will be used to compare between solutions in
the design space. For a given design, the total area of the processor
can be estimated as:

n n f
Total Area = AIR(n) +A(;,N(n) + ZAIS(fi) + ZALIN(fi) + ZAFUO)
i1 i1 =

(1)

where is the number of ERs, f; is the number of FUs in ER;, f is the

total number of FUs in the processor, Ajr(n) is the area of the IR

as function of the number of ERs, Agy (n) is the area of GIN as func-

tion of the number of ERs, Ajs (f;) is the area of IS in ER; as function of

the number of FUs in ER;, Ay (f;) is the area of LIN in ER; as function

of the number of FUs in ER;, and Agy (j) is the area of FU number j.
The consumed energy can be estimated as:

n n
Total Energy = [Pr(n) + Pen(n) + ZP:s(f i)+ ZPLIN(fi)
i=1 i=1

f
+ Pr(j)] D. @)
=

where Pr(n) is the power consumed by the IR as function of the
number of ERs, Pgn(n) is the power consumed by the GIN as func-
tion of the number ERs, Pis (f;) is the power consumed by the IS in
ER; as function of the number of FUs in ER;, P (f;) is the power con-
sumed by the LIN in ER; as function of the number of FUs in ER;, Pry
(j) is the power consumed by the FU number j, and D is the total
delay for executing the program.

The values for the power terms in Eq (2) can be expressed in
terms of a dynamic component and a static (idle) component,
along with the busy period and idle period for each term. Specifi-
cally, each power term can be expressed as:

P =[(Pg«Tq)+ (P;xT;)]/D. (3)

where Py. the dynamic power of the term, P;. the static (idle) power
of the term, T4 is the busy period of the term during program exe-
cution, and T; is the idle period of the term during program
execution.

The third objective function is:

Execution Delay =D =Ty +T;. (4)

Constructing components database

In order to evaluate the objective functions, it is necessary to
know the area, dynamic power, and static power of different com-
ponents as function of corresponding parameters. These depend on
the used circuit designs as well as the technology used to build
these circuits. For optimization purposes, a database of the charac-
teristics of different modules using real ASIC technology data has
been constructed. With the help of synthesis tools for 130 nm ASIC
technology, the VHDL files for the design of the IR, FUs, LIN, IS, and
GIN are used to obtain the required data. The clock periods, area,

72 M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78

Table 2
Area of ASIC implementation of IR as function of
number of regions.

Number of regions n Ag(n) (in pm?)

2 1265264.644446
3 1412147.201183
4 1568757.75622

5 1749327.356845
6 1872148.475496
7 2002606.080944
8 2178954.240621
9 2332172.799922
10 2484849.920043
11 2677141.759073
12 2861539.837971
13 3014935.036752
14 3182263.037729
15 3339948.796589

and power consumption of different components are then used to
evaluate equations (1)-(3) for every candidate design.

For example, Table 1 shows the clock periods for the FUs used in
the database, while Table 2 shows the area of the IR for different
values of n.

Processor emulator

In order to estimate the execution times, as well as the busy and
idle periods of different components in a given configuration, the
programmable data-flow crypto processor is emulated using the
C# programming language. The following specifications have been
targeted during the development of the emulator:

(a) A user friendly interface that facilitates the selection of the
processor’s design parameters, namely: the number of Exe-
cution Regions, the operating frequency for each Execution
Region, the mapping of Function Units to Execution Regions,
the number of Matching Input Buffers for each Function
Unit, and whether the crypto processor runs in the random-
ized mode or not.

(b) Ability to read in the set of instructions for the security algo-
rithm under test.

(c) Ability to read in the input message and the key chosen for
the security algorithm.

(d) Ability to read in S-Box values.

(e) Ability to specify the link delay between any two regions to
emulate the effect of wrappers.

(f) Running the set of instructions and keeping the output of
execution in a file with suitable format.

(g) Keeping record of execution delay and percentage utilization
for all components appearing in Egs. (1) and (2).

Fig. 3 shows several screen captures of the GUI for the devel-
oped software emulator. Meanwhile, sample results are depicted
in Fig. 4.

It is to be observed that the logic used by the various hardware
modules of the crypto processor has been mimicked when devel-
oping the software for the emulator. For example, the determina-
tion of the Program Counter values follows the exact logic used
by the hardware circuit. Moreover, in order to have a cycle accurate
emulation of the crypto processor, the delays experienced by all
signals as they propagate through the IR, ER, and the GIN have been
inserted into the program.

- -
g GALS =1L a5 GALS =1l
Step 1 Step 2
Count Of ERs 4 [(4 ERs and FU's defaul settings | FU Name FU Region FU Buffers #
Insert timer interval for each region » ADD ERO ~|100
Region Name Timer Interval ADDMOD ER2 | 100
IR 10 AND ERD ~|100
GIN 10 COMBINE16 ER1 ~[100
ERD 10 COMBINES ER1 ~[100
ER1 10 EXTRACT16 ER1 ¥ |100
ER2 10 EXTRACT4 ER1 > [100
» [ER3 EXTRACT8 ER1 ~|100
GFMUL ER2 ~|100
MUL ER2 ~[100
MULINV ER2 ~|100
MUX ER3 ~[100
Use Random Priory Index Max Master Cks 30000
r -
gl GALS =L sl GALS =
Step 3 Step 5
ERs and there FUs TetandKeysFie | [Open SBO)
2-ERO
ADD (Start]
AND
NAND
OR
XOR2
XOR3 [R] (GINBuffer] ERs]
ER1
ER2
£-ER3 (Reg)
MUX
ROL (State]
ROR
SHL =
SHR [e l
[Charts]

Fig. 3. Screen captures from the GUI of the software emulator developed for the crypto processor.

M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78 73
READREG_Si To a 7 XOR2 PORTO o i DREC. SF = - 2200 PO =
e ae - ?onz o ¥o READREG Al Tie 17 7 xor> porT1 T2
o g n i SO sret onz & - RCADSBOX rorto T3
e - s » sz P — READREG_ 51 a = > xor2 poRTO T4
(a) READREG ST Tz is 7 ora poRv: T READREG 81 120 s P xo PoRTE ¥4
oRz s - ? neAbsBox ronre 1 Sona s T ? READSBOX PORTO T4
. vz - » ez o ¥z .
READREG 81 Tas e 7 wona poRT: s READREG a1 = s Eaoes pome Ee
onz s > ? neAbsBox rorte 1> !
ona . = 7 REaDsecK owvs ¥=
cix:s
[Decodedinstruction ID-0--1, FUCod: i, Tag-TO, Dest1FUCod: ', Dest1FUPortNo-PORTO, Dest1FUTag-TO, Dest2FUCode-, Dest2FUPortNo-, Dest2FUTag-, FUNumber-:
IDecodedinstruction ID=1--1, FUC i, Tag=T16, . Dest1FUCode=XOR2, Dest1F UPortNo=PORT1, Dest1FUTag=T0, Dest2FUCode=, Dest2FUPortNo=, Dest2FUTag=, FUNumbe
[Decodedinstruction ID=4--1, FUC i, Tag=T17, i 1, Dest1FUCode=XOR2, Dest1F UPortNo=PORT1, Dest1FUTag=T1, Dest2FUCode=, Dest2FUPortNo=, Dest2FUTag=, FUNumbe
[Decodedinstruction ID=5 1, FUCode=XOR2, , Tag=T1, i), Dest1FUC, OX, Dest1FU), Dest1FUTag=T1, Dest2EUCode=, Dest2EUPortNo=, Dest2EUTag=, FUNumber=
cixa
[Decodedinstruction ID=0--1, FUC , Tag=ro, , DestFUCEde=XOR?, Dest1FUPOrNO=PORTO, Dest1FUTAg=To, Dest?FUCodes, Dest2FUPOrNOS, DestFUTags, FUNumber=
[Decodedinstruction ID=4--1, FUC: i, Tag=T17, . Dest1FUCode=-XOR2, Dest1F UPortNo-PORT1, Dest1FUTag-T1, Dest2FUCode=, Dest2FUPortNo=, Dest2FUTag=, FUNumbe
(b) [Decodedinstruction ID=5--1, FUCode=XOR2, , Tag=T1, i ., Dest1FUC OX, Dest1FUI ., Dest1FUTag=T1, Dest2FUCode=, Dest2FUPortNo=, Dest2FUTag=, FUNumber=
[Decodedinstruction ID=6—-1, FUCode=RCADREG, i i, Tag=T2, i , Dest1FUC , Dest1rul =1 TO, Dest1fUTag=T2, Dest2f UCode=, Dest2f Ul -, Dest2FUTag=, FL
cixs
[Decodedinstruction ID-0--1, FUCode -1 i, Tag=10, 1, Dest1FUCode-XOKR2, DestlFUPOrtNo-PORIO, DestlFUTag=10, DestZF UCode=, DestZFUPOortNo=, Dest2FUlag=, FUNumber=:
(Decoriedinstruction 10=6— : ; Tag=T2. . DestiFUCOde-XOR?, DestiFUPOItNG-PORTO, DastiFUTag-T2, Dast2FUCodes, Dast2FUPOING-, Dest2F UTag=, FUNUmber—
{Dacoadinstrsction i0m7.— = . Datasizel-si, Tag-T15, i . Dest1FUCEde=XOR?, Dest1F UIPOrtNG—PORTL, DestlFUTag-T2, DestFUCodes, Dest2FUPorNGS, Dest2FUTags, FUNumbe
[Decodedinstruction ID=8--1, FUC: =8, Tag=T2, i), Dest1FUC Dest1FUI), Dest1FUTag=T2, Dest2FUCode=, Dest2FUPortNo=, Dest2FUTag=, FUNumber=
Input (Plain) Text 50 67 2a6 168 136 920 as 141 a9 a9 152 162 22a 55 7 52
© N . - N . = & e am = e w0
Max # of simultancous MID for FUs:
d ADD — 12 AND -0 NAND - 0 OR -0 XOR2 — 51 XOR3 — 24 COMBINE1G — O COMBINES — O EXTRACT1G6 — O
BaRACTA -0 BarAcrs -0 PUSHIMR — 1 READREG — 12 READSBOX — 20 REPLICATE — 48 WRITEREG © 16 WriTESBOX - 0 preiiamiieid
GrmUL = a7 MUL =1 mMuLINY 2 0 suB2o mMux=o0 rot =0 ROR—0 shi-o Shr—o
[Timingltem ID=1600, InstriD=297--1, FUCode=PUSHIMM, Tag=T20, Ports=0, PortoVal 195, Port1Val: , Port2val It=195, FetchClk=1088, IRReadyClk=1091,
[Timingltem ID=1601, InstriD=300--1, FUCode=WRITEREG, Tag=T15, Ports=0, PortOVal 19, Port1Val , Port2Val , Result=50, FetchClk=1091, IRReadyClk=1092, Il
[Timingltem ID=1602, InstriD=296--1, FUCode=READSBOX, Tag=T11, Ports=0, PortOValue=231, Port1Value=0, Port2Value=0, Result=148, FetchClk=1088, IRReadyClk=1093,
(e) Min clks from arrive to result:1 => [Timingltem ID=1, InstriD=3--1, FUCode=RFADREG, Tag=T1, Ports=0, Por , Port1), Port:), Result=67, FetchClk=1
Max clks from arrive to result:215 => [Timingltem ID=1467, InstriD=162-9, FUCode=XOR3, Tag=T14, Ports=0, Portﬂ\lalue 157, PorthaIue 164, PortZValue 123, Result=66,
Total Exec. Time=(Last Result Clk * Clk Interval)=(1191 * 1)=1191
15 of ERO LIN of ERO
aop xor2
)

[gle: 8 (0.66%)

Fig. 4. Sample results from the software emulator developed for the crypto processor: (a) Part of the Assembly Code for the AES Encryption Algorithm, (b) Fetched
instructions (4 per clock), (c) Input “Plain” text and Output “Cipher” text, (d) Max number of simultaneously used FUs, (e) Computation of the “Total Delay Time”, (f)

Percentage Utilization for some modules of the processor.

It is to be noticed that the emulator software has been modified
to allow its integration with the NSGA-II algorithm. This necessi-
tates that the emulator reads text files with specified formats
describing the input parameters, and then outputs the results in
text files of appropriate formats.

Optimization algorithm
The multi-objective optimization problem

Generally, it is not expected that a single design minimizes all
the objective functions simultaneously. In fact, these objectives
may conflict with each other and a solution that minimizes one
objective may result in unacceptable values for other objectives.
A trade-off between objectives is thus necessary. One way to han-
dle multi-objective optimization is to combine objective functions
into a single composite function, e.g. a weighted sum or product.
The problem with this approach is that a designer has to determine
a priori the weight given to each objective. It is usually very diffi-
cult to quantify the desired trade-off, in terms of weights that are
assigned to objectives having different dimensions and units. Also,
in this approach a single solution is obtained without giving the
designer a view about the range of possible trade-off solutions.

Another approach is to handle one objective function and to
treat the value of other objectives as constraints in the optimiza-
tion problem, e.g. minimize the power consumption under a delay
constraint or vice versa. Again, it is usually difficult to determine
the bounds a priori and repeating the solution for different values
is often necessary.

An alternative approach used in most recent works involving
DSE is to use the concepts of dominance and Pareto solutions,

which originate from the area of economics and game theory. In
this approach, a set of solutions representing the possible range
of trade-offs is obtained. In the following, we give a definition of
Pareto solutions [43,45].

Given k objective functions to be minimized (e.g. in our design
problem area, delay and energy) and two design points A and B
with objective values (a;,a,,...ay) and (b1, bs,...by), solution A is
said to dominate B (denoted by A<B) if and only if

a<b for1<igk

and 3j such that a; < b; ®)

That is, solution A is better for at least one objective, while being at
least the same for all other objectives. A solution which is not dom-
inated by any other solution is said to be a Pareto optimal solution.
A Pareto solution, which represents one possible compromise solu-
tion, is a point where one cannot improve one objective without
degrading at least one other objective. One seeks to obtain the set
of Pareto solutions (or the Pareto front) for the problem of crypto
processor design.

Design space exploration using Genetic Algorithms

Exhaustive evaluation of every design point is prohibitive in
problems with huge design spaces such as the design problem
under consideration. Different approaches are used for multi-
objective optimization in the context of DSE [43-45]. One particu-
larly successful approach is to use evolutionary approaches and in
particular the Genetic Algorithm (GA) [46].

The GA method is a general method that can be applied without
particular requirements in the characteristics of the search space. It
incorporates knowledge of the design space acquired gradually

74

through iterations, which results in faster convergence toward
desired solutions. GA method evaluates a number of solutions
rather than a single solution - in each iteration - and thus it could
be readily modified to obtain Pareto fronts for multi-objective
problems. In this paper, the solution of the optimization problem
is based on the Non-dominated Sorting Genetic Algorithm-Type
11 (NSGA-1I) [47].

Multi-objective GA and NSGA-II algorithm

The aim of the NSGA-II algorithm is to obtain a good estimation
of the Pareto front of a multi-objective problem through a genetic
optimization process. It finds an evenly distributed range of solu-
tions along the Pareto front by combining GA with the Non-
dominated Sorting algorithm and the Crowding Distance
calculations.

NSGA-II sorts a given population based on non-domination into
a number of fronts. The first front is the non-dominated set in the
current population and the second front is dominated only by indi-
viduals in the first front and so on. Each individual is assigned a
rank (fitness) value based on front on which it lies.

The crowding distance is a measure of how an individual is
close to its neighbours in the objective functions space. It assigns
a further fitness value for each solution, which is higher as the
solution is farther from its neighbours. Selecting solutions with lar-
ger crowding distance results in a better diversity of outcomes, and
thus the obtained solutions are evenly spaced along the Pareto
front.

Offspring individuals are obtained by first selecting parents
from the current population. Parents are chosen using binary tour-
nament selection based on both the rank and the crowding dis-
tance. Thus, two random individuals are compared and the one
with lower rank is selected. If ranks of the two solutions are the
same, the one with higher crowding distance is selected. Tradi-
tional crossover and mutation are next applied on the selected
individuals to generate a child population. Giving better solutions
a higher probability of being selected for breeding allows keeping
good solution attributes and results in faster convergence of the
algorithm.

Set algorithm parameters
Generate a random population of size N
for each individual in population do
Assign rank based on Pareto fast non-dominated sort
Calculate crowding distance
end for
for (i=1 to Max_generations) do
Select parents from population
Apply crossover and mutation to obtain child population of size N
Combine Parent and Child population into population of size 2N
for each individual in Combined population do
Assign rank based on Pareto fast non-dominated sort
Calculate crowding distance
end for
Generate population of size N from best ranked solutions
end for
Present results

Fig. 5. Pseudo-code of the NSGA-II algorithm.

M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78

Individuals of the current and child population are combined
and sorted again based on non-domination and crowding distance.
Best solutions from both populations are chosen as the next gener-
ation. Thus, best individuals in a population are given a chance to
be directly carried over to the next generation (in GA literature this
is referred to as elitism). Thus, a good solution found early on in the
run will never be lost unless a better solution is discovered. This is
repeated until some stopping criterion is attained. Fig. 5 shows the
pseudo-code of the NSGA-II algorithm. Further details can be found
in [47].

Modifications of the NSGA-II algorithm

The problem of selecting the best distribution of FUs among ERs
falls within the class of grouping problems, for which special solu-
tion encodings and genetic operators are needed [48]. The encoding
and genetic operators used in the processor optimization programs
are based on a modified version of those used in Refs [49,50].

A solution is represented essentially by a binary string with f
fields of f bits each, where f is the number of functional units in
the design (currently = 27). Each field corresponds to one possible
region, implies a maximum of f regions. The ith bit in the jth field is
set to 1 if the ith FU is placed in the jth region and is O otherwise
(Fig. (6)).

For efficiency, this string is actually stored and handled in pro-
gram as a string of integers. The initial population is generated ran-
domly, i.e. individual solutions have random distribution of FUs on
regions. Generation of initial population thus takes relatively
insignificant time. When a random initial population is generated,
a minimum and maximum number of regions are specified (e.g. 3
to 10 regions). A number of individuals is generated for each size
between these limits to cover a large range of the solution space.
For a random solution with n regions, the region in which each
FU is placed is selected at random in the range from O to n—1.

The genetic operator applied on selected solutions is either:

- Move a functional unit selected at random from its region to
another random region.

- Swap two random functional units among two different
regions.

Further, one of these operators is chosen to generate an off-
spring from each selected solution with a specific user selection
probability. Thus, GA is used in combination with local search,
which has been reported to be efficient in a number of similar
problems.

Suppl. Fig. 1 shows the pseudo-code for the modified NSGA-II
algorithm, while Suppl. Fig. 2 shows a Flowchart for the evaluation
of the objective functions for a generation of solutions.

Optimization results

Each run of the optimization algorithm starts with a random
population and uses a population size of 100 individuals and runs
for 200 generations. It is also to be noted that efficient hardware
design dictates the placement of some related FUs within the same
region. These constraints are added to the optimization process. In
particular, FU for logic functions (2, 12, and 13) should be in the
same region. Similarly, Memory-related FUs (15, 16, 23, and 24),

Fuo | Fu1 | Fu2 | FU3 FUo | Ful [FU2 | Fu3 FUo | Ful | Fu2 | FU3
1|0 1|0 ... 00| O 1 ... 0|0 |]0|O
Region 0 Regionl | ... Region 26

Fig. 6. Binary encoding of solution.

M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78 75

COMBINE FUs (3 and 4), and EXTRACT FUs (5, 6, and 7) are placed
in the same regions. These constraints have been enforced by the
program in all individuals of the generated populations.

Optimization results for AES on synchronous processor

The optimization algorithm is applied on the processor archi-
tecture executing the AES encryption algorithm, with all the
regions running at the same clock frequency. Synchronous opera-
tion simplifies design as it does not require special communication
mechanisms between regions operating at different clocks. Suppl.
Figs. 3 and 4 show sample results for the simulation at three
stages: Generation # 1, Generation # 50, and Generation # 200.

It is clear from Suppl. Figs. 3 and 4 that:

- At Generation # 1, processor area ranges between 6.7 mm? and
8.0 mm?, its delay performance ranges between 10.0 ps and
22.5 ps, and its energy consumption ranges between 9.0 p
and 18.0 pJ. When reaching Generation # 50, range of variation
narrows for all objective functions. Starting from Generation
#200 and thereafter, the range of variation stabilizes at a still
narrower window, where area ranges between 6.7 mm? and
7.5 mm?, delay performance ranges between 9.5 us and13.0
us, and energy consumption ranges between 8.0 pJ and11.0 .

- At Generation # 1, the population has number of execution
region ranging between 3 and 10. When reaching Generation
50, the range for the number of execution regions is reduced
and becomes between 4 and 8. Starting from Generation #200
and thereafter, the range for the number of execution regions
stabilizes at four values, namely: 4 (delay is minimized), 7 (area
is minimized or energy is minimized), and 5 or 8 (neither area
nor delay nor energy are minimized, but these candidate solu-
tions are on the Pareto Front implying no other points in the
design space dominate them).

Synchronous vs. asynchronous operation of the processor

In this section, the asynchronous operation of the proposed
architecture is compared with the synchronous operation, [50].
In a number of previous works [51,52], the advantages of GALS
architectures including the avoidance of clock distribution prob-
lems and the possible reuse of IP components that have indepen-
dent clock requirements were shown. However, the
asynchronous communication between regions using mechanisms
such as FIFOs or wrappers could incur delay and power overheads
that may offset the benefits obtained by using various clocks. This
can cause the synchronous design to outperform the asynchronous
design in delay and power consumption. In this section, this phe-
nomenon is studied as applied to the proposed architecture by
comparing the optimal performance measures in the cases of asyn-
chronous and synchronous operation when executing the AES
encryption algorithm.

To evaluate the effect of the delay of the links between the pro-
cessor regions through the wrappers, separate optimization runs
are made for the cases of zero, one, and two clock link delay. Sig-
nals for which link delay is introduced are request/acknowledge
signals between IR and ERs, and request/acknowledge signals
between ERs and ports of GIN. Each of these delays has been put
as 0, 1 or 2 clock periods.

Also, since the Instruction Region (IR) could represent a bottle-
neck for the processor operation, the effect of speeding up the IR is
considered. Thus, for each of the above cases, the optimization pro-
cess is repeated assuming that the IR clock period is reduced to
nearly 50% and 30% of its original value (integer values are used).

Suppl. Fig. 5 shows the minimum delay obtained on the Pareto
front in each of the considered cases, compared with that obtained

with synchronous operation. Optimization results show that if
asynchronous design uses zero link delay (as in the synchronous
case), minimum delay for both asynchronous design with slow IR
and synchronous design is obtained by arranging the units into 4
ERs. The minimum delay for asynchronous design is slightly lower
than the synchronous case. By speeding up the IR however, asyn-
chronous design benefits from regions that can run at higher clocks
so that when IR clock period is reduced to 30% of its original value,
delay becomes 56% of the execution delay in the synchronous case.
However, as link delay increases, its overhead causes the delay of
the asynchronous design to increase by a large factor. Thus, with
two clock periods link delay and original IR speed, execution delay
increases to 311% of the delay in the synchronous case. Speeding
up the IR improves the asynchronous processor delay, but it
remains higher than the synchronous processor.

Suppl. Fig. 6 shows the minimum energy of solutions on the
Pareto front for different values of link delay and IR speed. Again,
asynchronous case is better than the synchronous case for zero link
delay and faster IR. For 50% IR clock period the energy is 83% of that
in the synchronous case, and for 30% clock period it becomes 81%
of the energy in the synchronous case. As link delays increase,
the asynchronous case consumes more energy as a result of
increased delay and region activities. At original IR speed, for 1
and 2 clocks link delay, the energy becomes 201% and 308% -
respectively - compared to the energy in the synchronous case.

Selecting a processor configuration for implementation

Multi-objective optimization problems typically have multiple
solutions, where each would behave well for one or more perfor-
mance measures, but none would behave well for all measures.
In order to reduce the candidate solutions to a small set, the AES
algorithm has been chosen to be the basis for optimization of the
programmable data-flow crypto processor. To further reduce the
set of candidate optimal solutions, it is proposed to differentiate
between members of the optimal solutions for the AES algorithm,
based on the metrics obtained when executing other security algo-
rithms. Earlier results following this approach have been reported
before [53]. However, more refined results are presented in this
section by using an updated component database.

In general, the cardinality of the obtained Pareto front gave a
wide range of design choices. For example, in the case of syn-
chronous design the final population of 100 solutions contained
75 distinct Pareto non-dominated solutions. However, the follow-
ing method is used to identify the major candidate solutions con-
sidering each of the objective functions.

Step 1: Identify the set of points yielding minimum area or min-
imum delay or minimum energy when applying the NSGA-II and
using the instruction sets for AES.

Step 2: Remove candidate solutions that appear more than
once. Table 3 depicts the outcome of this step which shows three
candidates with minimum area (1, 2 and 3), two candidates with
minimum delay (4 and 5), and one candidate with minimum
energy (6). The number of regions for these candidates is, respec-
tively; 7, 4, and 7. Table 4 depicts the mapping of FUs for the six
candidates.

Step 3: Deduce the metrics for the candidates obtained in Step 2
when running security algorithms other than AES encryption. The
following four algorithms have been considered using the FUs’
mapping shown in Table 4: AES Decryption, RC6 Encryption, RC6
Decryption, and SHA3 Hashing. Using Eqs. (1)-(4), along with the
emulator output, values for area, delay and energy have been
deduced. The resulting metrics for the six candidates when using
the aforementioned security algorithms are listed in Table 3.

Step 4: Analyze the metrics of the six candidates. The following
observations can be made:

76 M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78
Table 3
Results for the six candidate solutions on the Pareto front for the synchronous processor design.
Security . «
. AES Encryption = AES Decryption RC6 Encryption | RC6 Decryption SHA3 Hashing
Algorithm .S
)
Objective Area Delay | Energy | & Delay | Energy Delay | Energy | Delay | Energy | Delay Energy
Function mm?2 Micro | Micro | © Micro Micro Micro | Micro | Micro | Micro | Micro Micro
Sec Joule * Sec Joule Sec Joule Sec Joule Sec Joule

11.853000 | 12.267640 | 5.247000 | 5.083223 670000 080751 259000 | 36.553450

16.081000 | 10.734830 | 8229000 | 5.497724 | 8.333000 | 6.060592 |54.821000| 36.191670

Table 4
Assignment of FUs to various regions for the 6 candidates points in the search space.

=

g8 |3
alSlealz
a Z | &
< |2 |<4|=
2 |3
@)

COMBINES
EXTRACT16
EXTRACT4
EXTRACTS
GFMUL
MUL
MULINV
MUX

NAND

OR
PUSHIMM
READREG

READSBOX
REPLICATE
ROL
ROR
SHL
SHR
SUB
WRITEREG
WRITESBO
X
XOR2
XOR3

Candidate 4 | 0 3 0
Candidate 5 0 3 2 1 1 2 2 2 2 0 2 3 2 2 0 3 3 1 0 0 2 2 2 3 3 1 0
Candidate 6 1 4 2 2 2 4 4 4 5 1 6 2 2 2 5 3 3 3 6 6 6 2 4 3 3 3 0

Among the three candidates yielding minimum area for AES
Encryption, Candidate 1 has smallest delay for AES Encryption,
smallest delay and energy for RC6 Encryption, smallest energy
for RC6 Decryption, and smallest energy for SHA3. Meanwhile,
Candidate 2 has smallest delay and energy for AES Decryption
and smallest delay for SHA3. On the other hand, Candidate 3
has smallest energy for AES Encryption, smallest delay for AES
Decryption, and smallest delay for SHA3. Consequently, one
may rank Candidate 1 as the best - followed by both Candidates
2 and 3 - among the three candidates exhibiting minimum area
for AES Encryption.

Among the two candidates yielding minimum delay, Candidate
5 has smaller energy for AES Encryption, smaller delay and
energy for RC6 Encryption, smaller delay and energy for RC6
Decryption, and smaller delay and energy for SHA3. Candidate
4 has smaller area for AES Encryption and smaller energy for
AES Decryption. Consequently, one may rank Candidate 5 as
the best - followed by Candidate 4 - among the two candidates
exhibiting minimum delay for AES Encryption.

Candidate 6 has lowest energy among all 6 Candidates for AES
Encryption, AES Decryption and RC6 Decryption.

For the purpose of FPGA implementation and testing - pre-

sented in the next section - it is decided to give priority to delay,
and hence candidate 5 has beens selected.

FPGA implementation

To validate the functionality of the deduced architecture in

hardware, the entire design is written in VHDL and is implemented

on a Xilinx Virtex 6 FPGA. The FPGA of choice is XC6VLX240T pack-
age FF1156 speed grade —1, as found in the Xilinx evaluation board
ML605. Verification of functionality and performance is ensured in
a variety of ways. First, bit matching is confirmed between the soft-
ware emulator and the results of behavioral simulation for the
VHDL. Second, bit and cycle matching is confirmed between behav-
ioral and post-synthesis simulation using the clock period indi-
cated by the critical path in the synthesis report. This ensures
that the VHDL is properly written and free of synthesis unfriendly
syntax. It also confirms that the critical path produced is true.

As shown in Table 5, the highest resource utilization is in slices

used as logic, which is a result of optimization of MIB sizes. Slices
used as registers are almost exclusively used to provide storage in
the MIBs, as well as a minor component going to pipelining and
state registers. RAM/FIFO unit utilization is very small and is used
entirely as BRAM to store the program, data, and SBOX tables.
DSP48E1 slices provide the ability to use high speed multipliers
while at the same time freeing slice logic to be used for other oper-
ations. The design uses only three DSP units in the multiplicative
FUs.

Table 5
Resource utilization results obtained for XC6VLX240T
package FF1156 speed grade -1using Xilinx ISE Design

Suite 14.5.
Resource Utilization
Number of slices used as registers 66,000
Number of slices used as logic 153,000
Number of RAM/FIFO units used 10
Number of DSP48E1 3

M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78 77

The overall design includes the crypto processor plus a Xilinx
clock manager unit used to generate the appropriate clock from
the on-board 66 MHz clock. The design includes all functional
units, whether or not they are utilized by the algorithms under
investigation, thus inflating the resource utilization but ensuring
full flexibility. To ensure the design fits on the target FPGA, the size
of matched input buffers (the memory component of the content
addressable memory) is optimized per functional unit, ensuring
enough but not excessive entries are included.

Translation, mapping, and placement and routing are per-
formed on the synthesis results with the addition of a chipscope
component used to probe certain signals from the design for veri-
fication purposes. The constraint file demands a clock that fits the
critical path and assigns pin locations so they can be probed in the
hardware setup. Although the FPGA is almost entirely utilized by
the design, judicious choices of constraints and optimization effort
lead to a timing closure and successful generation of bit file. A clock
speed of 13 MHz is attained with moderate or high optimization
effort. This translates into a bit rate of 1.66 Mbps for a single pro-
cessor running AES encryption.

The bit file is programmed to the target FPGA. The program and
input data are first fed to the storage memories through a test
mode setting. Functionality is confirmed in two ways. First, on-
chip assertion is performed through a hardware test bench that
performs bit matching on the plain text and encryption results.
Secondly, a logic analyzer attached to specialty software and inter-
face allows real-time display of signals from the chipscope.

Suppl. Fig. 7 shows the results of running the AES encryption
program on the FPGA-implemented crypto processor. The resulting
waveforms are screen captured from logic analyzer Model Agilent
16851A as fed from the hardware through the chipscope module.
In Suppl. Fig. 7, signals ConfigDataOut_0_OBUF through Con-
figDataOut_10_OBUF show part of the data memory output bus
carrying the results of encryption. This result is for a case where
plain text is 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34,
the key is 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C and
the expected (and obtained) result is 39 25 84 1D 02 DC 09 FB
DC 11 85 97 19 6A 0B 32. AES encryption bits match the results
of the software emulator and - in addition - the number of cycles
in the FPGA implementation matches those obtained from the
emulator. Another test is carried out which involves the encryp-
tion/decryption of a stream of blocks, and this passed successfully.

Suppl. Figs. 8 and 9 show the results for RC6 encryption and
decryption, respectively. Running conditions are identical to those
for testing the AES program. Again, bit-matching is achieved with
the software emulator and cycle-matching agrees with the behav-
ioral simulation. Functionality is confirmed in processing several
consecutive blocks and when switching between encryption and
decryption.

Conclusions

In this paper, the optimization of a novel programmable data-
flow crypto processor dedicated to security applications has been
considered. Its architecture is based on distributing function units
needed for executing security algorithms over a number of execu-
tion regions that operate in parallel. Processor optimization is for-
mulated as a combinatorial multi-objective optimization problem
with the objective functions being area, delay and consumed
energy. The evaluation of objective functions relies on a database
of component specifications as well as a cycle-accurate emulation
of the processor. The optimization problem is solved using a mod-
ified version of the NSGA-II algorithm.

The optimization program, coupled with the emulator and the
component database provides a tool that allows the exploration

of the design space and the study of the impact of different archi-
tectural choices and parameters. It is found that the performance
improvement introduced by operating the processor regions at dif-
ferent clocks is offset by the necessary delay introduced by wrap-
pers needed to communicate between the asynchronous regions.
With a two clock-periods delay, the minimum processor delay of
the asynchronous case is 311% of the delay obtained in the syn-
chronous case, and the minimum consumed energy is 308% more
in the asynchronous design when compared to its synchronous
counterpart. The Instruction Region has been also identified as a
major design bottleneck. For the synchronous case, the Pareto front
contains solutions with 4 regions that minimize delay and solu-
tions with 7 regions that minimize area or energy. A minimum-
delay design is selected for hardware implementation, and the
FPGA version of the optimized processor is tested and correct oper-
ation is verified for AES and RC6 encryption/decryption algorithms.

The ASIC implementation of the optimized programmable data-
flow crypto processor, as well as the redesign of different perfor-
mance bottlenecks, are the subject of future extensions of this
work.

Conflict of interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal
subjects.

Acknowledgments

This work has been funded by the National Telecommunication
Regulatory Authority (NTRA) of Egypt. The authors would like to
express their deep appreciation for the kind support and encour-
agement extended to them by NTRA.

Appendix A-C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jare.2017.11.002.

References

[1] National Bureau of Standards. Data Encryption Standard, FIPS-Pub. 46. U.S.
Department of Commerce January 1977.

[2] Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM February 1978;21(2):
120-6.

[3] Koblitz N. Elliptic curve cryptosystems. Mathematics of Computation January
1987;48(177): 203-9.

[4] NIST. Advanced Encryption Standard, FIPS-Pub 197 26 November 26 2001.

[5] Bossuet L, Grand M, Gaspar L, Fischer V, Gogniat G. Architectures of flexible
symmetric key crypto engines - A survey from hardware coprocessor to multi-
crypto-processor system on chip. ACM Computing Surveys August 2013; 45(4)
Article 41.

[6] Shi Z, Lee R. Bit permutation instructions for accelerating software
cryptography. Proc IEEE Int Conf Appl-specific Syst, Arch Processors July
2000;10-12:138-48.

[7] Ravi S, Raghunathan A, Potlapally N, Sankardass M. System design
methodologies for a wireless security processing platform. In: Proceedings
39th Annual Design Automation Conference (DAC'02) 2002: 777-82.

[8] Tillich S, GroRschddl], Szekely A. An instruction set extension for fast and
memory-efficient AES implementation. CMS 2005, LNCS 3677 2005: 11-21.

[9] GroBschadl], Tillich S, Szekely A. Performance evaluation of instruction set
extensions for long integer modular arithmetic on a SPARC V8 processor.
Proceedings 10th Euromicro Conference on Digital System Design (DSD 2007)
2007: 680-9.

[10] Jenkins C, Mamidi S, Schulte M, Glossner]. Instruction set extensions for the
advanced encryption standard on a multithreaded software defined radio
platform. Int] High Perform Syst Arch 2010;2(2-3):203-14.

https://doi.org/10.1016/j.jare.2017.11.002
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0030
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0030
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0030
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0050
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0050
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0050

78 M.T. El-Hadidi et al./Journal of Advanced Research 12 (2018) 67-78

[11] Gueron S. Intel® advanced encryption standard (AES) new instructions
set. White paper: Intel Mobility group. Israel Development Centre, Intel
Corporation; 2012.

[12] Benhadjyoussef N, Elhadjyoussef W, Machhout M, Tourki R. Enhancing a 32-bit
processor core with efficient cryptographic instructions. J Circ, Syst, Comp
2015;24(10).

[13] Kim HW, Lee S. Design and implementation of a private and public key crypto
processor and its application to a security system. IEEE Trans Consumer
Electronics February 2004;50(1): 214-24.

[14] Hodjat A, Verbauwhede 1. High-throughput programmable cryptocoprocessor.
IEEE Micro May-June 2004:34-45.

[15] IBM 4765 PCle cryptographic coprocessor data sheet, IBM Corporation, 2011.

[16] IBM 4767-002 PCle cryptographic coprocessor (HSM) data sheet, IBM
Corporation, 2016.

[17] Wu L, Weaver C, Austin T. CryptoManiac- a fast flexible architecture for secure
communication. In: Proceedings 28th Annual International Symposium on
Computer Architecture 30 June - 4 July 2001; 110-9.

[18] Buchty R, Heintze N, Oliva D. Cryptonite — a programmable crypto processor
architecture for high-bandwidth applications. In: Proceedings International
Conference on Architecture of Computing Systems (ARCS 2004) 2004; 184-98.

[19] Arora D, Raghunathan A, Ravi S, Sankaradass M, Jha NK, Chakradhar ST.
Software architecture exploration for high-performance security processing on
a multiprocessor mobile SoC. In: Proceedings 43rd Annual Design Automation
Conference July 24-28 2006; 496-501.

[20] Han L, Han], Zeng X, Lu R, Zhao J. A programmable security processor for
cryptography algorithms. In: Proceedings 9th International Conference on
Solid-State and Integrated-Circuit Technology (ICSICT 2008) 20-23 Oct. 2008;
2144-7.

[21] Li C, Jiang Y, Su D, Xu Y, Luo Z. A new design of low cost security coprocessor
for portable electronic devices. In: Proceedings 2010 International Conference
on Communications and Mobile Computing (CMC2010) April 2010; 12-4.

[22] Farouk H, El-Hadidi MT, Abou El Farag A. GALS-based LPSP: Implementation of
a novel architecture for low power high performance security processors. In:
Proceedings 25th IEEE International Parallel and Distributed Processing
Symposium 16-20 May 2011; 542-50.

[23] Farouk H, El-Hadidi M, Abou El-Farag A. GALS-based LPSP: performance
analysis of a novel architecture for low power high performance security
processors. Int] Netw Comput 2012;2(1):56-78.

[24] Barat F, Lauwereins R. Reconfigurable instruction set processors: a survey. In:
Proceedings 11th International Workshop on Rapid System Prototyping (RSP
2000) 21-23 June 2000; 168-73.

[25] Grabher P, GroRschddl J, Hoerder S, Jarvinen K, Page D, Tillich S, Wéjcik M. An
exploration of mechanisms for dynamic cryptographic instruction set
extension. J Cryptogr Eng 2010;2:1-18.

[26] Elbirt AJ, Paar C. Instruction-level distributed processing for symmetric-key
cryptography. In: IEEE Transactions on Parallel and Distributed Systems May
2005; 16(5); 468-80.

[27] Taylor RR, Goldstein SC. A high-performance flexible architecture for
cryptography. In: Proceedings Workshop on Cryptographic Hardware and
Embedded Systems (CHES1999) August 1999; 231-45.

[28] Dandalis A, Prasanna VK. An adaptive cryptographic engine for internet
protocol security architectures. ACM Trans Des Automation Electronic Syst.
July 2004;9(3); 333-53.

[29] Gonzalez 1, Gomez-Arribas FJ. Ciphering algorithms in Microblaze-
based embedded systems. IEE Proc-Comput. Digit Tech March 2006;153(2);
87-92.

[30] Sun K, Pan X, Wang J, Wang]. Design of a novel asynchronous reconfigurable
architecture for cryptographic applications. In: Proceedings First International
Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)
20-24 June 2006; 751-7.

[31] Ni S, Dou Y, Chen K, Deng L. A novel design of flexible crypto coprocessor and
its application. In: Wu], Chen H, Wang X, editors. Advanced computer
architecture. communications in computer and information science 2014;
451: 128-139.

[32] Lomonaco M]. Cryptarray: a scalable and reconfigurable architecture for
cryptographic applications. M.Sc. Thesis, University of Central Florida, 2004.

[33] Majzoub S, Diab H. MorphoSys reconfigurable hardware for cryptography: the
twofish case.] Supercomput 2012;59(1):22-41.

[34] Theodoropolous D, Siskosy A, Pnevmatikatosy D. CCproc- a custom VLIW
cryptography co-processor for symmetric-key ciphers. In: J. Becker et al.,
editors. Proceedings International Workshop on Applied Reconfigurable
Computing (ARC2009): Reconfigurable Computing: Architectures, Tools and
Applications, - LNCS 5453-2009; 318-23.

[35] Niu Y, Wu L, Liu Y, Zhang X, Chen H. A 10 gbps in-line network security
processor based on configurable hetero-multi-cores.] Zhejiang Univ-SCIENCE
C (Comp Electron) 2013;14(8):642-51.

[36] Hamadldinen P, Hannikdinen M, Hdmadldinen T, Corporaal T, Saarvinen J.
Implementation of encryption algorithms on transport triggered architecture.
In: Proceedings International Symposium on Circuits and Systems (ISCAS
2001) May 2001: 6-9.

[37] Hamdldinen P, Heikkinen |, Hdnnikdinen M, Hamadldinen TD. Design of
transport triggered architecture processors for wireless encryption. In:
Proceedings 8th Euromicro Conference on Digital System Design (DSD’05)
2005; 144-52.

[38] Fronte D, Perez A, Payrat E. Celator: A multi-algorithm cryptographic co-
processor. In: Proceedings of the International Conference on Reconfigurable
Computing and FPGAs (ReConFig'08) 2008; 438-43.

[39] Sayilar G, Chiou D. Cryptoraptor: high throughput reconfigurable
cryptographic processor. In: Proceedings Computer-Aided Design (ICCAD),
2014 IEEE/ACM International Conference on, 2-6 Nov. 2014; 155-61.

[40] Grand M, Bossuet L, Gogniat G, Le Gal B, Delahaye JP, Dallet D. A reconfigurable
multi-core cryptoprocessor for multi-channel communication systems. In:
Proceedings 25th IEEE International Parallel and Distributed Processing
Symposium 16-20 May 2011; 199-206.

[41] Wa B, Liu L. A flexible and energy-efficient reconfigurable architecture for
symmetric cipher processing. 2015 IEEE International Symposium on Circuits
and Systems (ISCAS) 24-27 May 2015; 1182-5.

[42] Elsayed HM, El-Hadidi MT, Osama K, Aslan H. Multi-objective genetic
algorithm-based optimization of an asynchronous data-flow security
processor. In: Proceedings 2016 33rd National Radio Science Conference
(NRSC2016) 2016; 168-77.

[43] Gries M. Methods for evaluating and covering the design space during early
design development. VLSI] Dec 2004;38(2):131-83.

[44] Kempf T. Principles of design space exploration. Multiprocessor Systems on
Chip: Design Space Exploration; 2011; 23-47.

[45] Deb K. Multi-objective optimization using evolutionary algorithms. John
Wiley; 2001. Chapter 2.

[46] Konak A, Coitb D, Smith A. Multi-objective optimization using genetic
algorithms: a tutorial. Reliab Eng Syst Saf Sept 2006;91(9):992-1007.

[47] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computing April 2002; 6
(2); 182-97.

[48] Reeves C. Hybrid genetic algorithms for bin-packing and related problems.
Ann Oper Res 1996;63(3):371-96.

[49] Pargas R, Jain R. A parallel stochastic optimization algorithm for solving 2D bin
packing problems. In: Proceedings 9th Conference on Artificial Intelligence for
Applications 1993; 18-25.

[50] Mohamadi N. Application of genetic algorithm for the bin packing problem
with a new representation scheme. Math Sci 2010;4(3):253-66.

[51] lyer A, Marculescu D. Power and performance evaluation of globally
asynchronous locally synchronous processors. In: Proceedings 29th Annual
International Symposium on Computer Architecture 2002; 158-68.

[52] Stevens KS, Golani P, Beerel PA. Energy and performance models for
synchronous and asynchronous communication. In: IEEE Transactions on
VLSI Systems March 2011; 19(3); 369-382.

[53] El-Hadidi MT, Elsayed HM, Aslan H, Osama K. Structured design approach for
an optimal programmable synchronous security processor. In: Kim H, Choi D,
editors. Information Security Applications 2015; 313-25.

http://refhub.elsevier.com/S2090-1232(17)30117-0/h0055
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0055
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0055
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0055
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0070
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0070
http://refhub.elsevier.com/S2090-1232(17)30117-0/h9000
http://refhub.elsevier.com/S2090-1232(17)30117-0/h9000
http://refhub.elsevier.com/S2090-1232(17)30117-0/h9000
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0120
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0120
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0120
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0160
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0160
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0170
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0170
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0170
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0205
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0205
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0210
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0210
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0215
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0215
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0220
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0220
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0230
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0230
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0240
http://refhub.elsevier.com/S2090-1232(17)30117-0/h0240

	Optimization of a novel programmable data-flow crypto processor using NSGA-II algorithm
	Introduction
	Security processors: An overview
	Design background of the novel crypto processor
	Instruction set
	Design space

	Design objective functions and metrics
	Area, energy, and delay calculations
	Constructing components database
	Processor emulator

	Optimization algorithm
	The multi-objective optimization problem
	Design space exploration using Genetic Algorithms
	Multi-objective GA and NSGA-II algorithm
	Modifications of the NSGA-II algorithm

	Optimization results
	Optimization results for AES on synchronous processor
	Synchronous vs. asynchronous operation of the processor
	Selecting a processor configuration for implementation

	FPGA implementation
	Conclusions
	Conflict of interest
	Compliance with Ethics Requirements
	Acknowledgments
	Appendix A–C Supplementary material
	References

