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Abstract: Chronic obstructive pulmonary disease (COPD) is an increasing and major global health
problem. COPD is also the third leading cause of death worldwide. Oxidative stress (OS) takes place
when various reactive species and free radicals swamp the availability of antioxidants. Reactive
nitrogen species, reactive oxygen species (ROS), and their counterpart antioxidants are important
for host defense and physiological signaling pathways, and the development and progression of
inflammation. During the disturbance of their normal steady states, imbalances between antioxidants
and oxidants might induce pathological mechanisms that can further result in many non-respiratory
and respiratory diseases including COPD. ROS might be either endogenously produced in response
to various infectious pathogens including fungi, viruses, or bacteria, or exogenously generated from
several inhaled particulate or gaseous agents including some occupational dust, cigarette smoke (CS),
and air pollutants. Therefore, targeting systemic and local OS with therapeutic agents such as small
molecules that can increase endogenous antioxidants or regulate the redox/antioxidants system can
be an effective approach in treating COPD. Various thiol-based antioxidants including fudosteine,
erdosteine, carbocysteine, and N-acetyl-L-cysteine have the capacity to increase thiol content in the
lungs. Many synthetic molecules including inhibitors/blockers of protein carbonylation and lipid
peroxidation, catalytic antioxidants including superoxide dismutase mimetics, and spin trapping
agents can effectively modulate CS-induced OS and its resulting cellular alterations. Several clinical
and pre-clinical studies have demonstrated that these antioxidants have the capacity to decrease
OS and affect the expressions of several pro-inflammatory genes and genes that are involved with
redox and glutathione biosynthesis. In this article, we have summarized the role of OS in COPD
pathogenesis. Furthermore, we have particularly focused on the therapeutic potential of numerous
chemicals, particularly antioxidants in the treatment of COPD.

Keywords: chronic obstructive pulmonary disease (COPD); small molecules; reactive nitrogen
species; reactive oxygen species; oxidative stress; cigarette smoke; antioxidants

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. One
of the very common characteristics of COPD includes irreversible obstructive breathing.
The World Health Organization (WHO) identified COPD as the third leading cause of
death worldwide in 2019 [1]. Oxidative stress (OS) has significant effects on various lung
functions and in COPD pathogenesis. These effects include apoptosis, remodeling of the
extracellular matrix, alveolar epithelial injury, mitochondrial respiration, membrane lipid
peroxidation (LPO), mucus hypersecretion, and oxidative inactivation of surfactants and
antiproteases [2,3]. In the respiratory tracts of COPD patients, an elevated level of OS is
observed because of the elevated oxidant burden from environmental exposure including
air pollutants and cigarette smoke (CS), and from the elevated levels of reactive nitrogen
species (RNS) and reactive oxygen species (ROS) secreted from the macrophages and leuko-
cytes associated with the inflammatory processes in the lungs of COPD patients [4–6]. These
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RNS and ROS have the capacity to cause oxidative damage to proteins, carbohydrates,
lipids, and DNA, which can further lead to various downstream mechanisms that can lead
to COPD development and progression. In addition, they can also cause the activation of
resident cells in the lung including alveolar macrophages and epithelial cells to produce
chemotactic molecules that engage more inflammatory cells (such as lymphocytes, mono-
cytes, and neutrophils) into the lung [4,7,8], which eventually result in the spread of OS in
the lung. As a whole, these processes result in a dangerous cycle of tenacious inflammation
along with chronic OS, which can result in faulty tissue repair processes, disruptions in the
protease–antiprotease balance, increased autophagy, and apoptosis, which can eventually
play roles in the progression and severity of COPD [9–12].

ROS is the main cause of tissue and cell injury linked with numerous inflammatory
pulmonary diseases including COPD [13,14]. Nonetheless, the exact mechanisms of COPD
pathogenesis are yet to be fully revealed. Oxidant/antioxidant imbalance and elevated
levels of OS may be the main causes of COPD. An elevated level of OS is produced from
airway leukocytes in the blood or in air spaces indirectly because of the secretion of elevated
levels of ROS, and directly because of the environmental oxidant pollutants and CS [15]. It
is well-known that antioxidant enzymes and compounds scavenge ROS [13,16]. Cigarette
smoking is the major etiological factor in COPD pathogenesis, since it can result in OS
in the lower airways. Furthermore, CS contains over 1016–1017 oxidants per puff and
around 4700 chemicals such as nitrogen oxides, superoxide radicals, and peroxynitrite
(ONOO−) [17]. CS exerts significant adverse effects; nonetheless the effects of other risk
factors also need to be well-considered, since not all smokers develop COPD. In Table 1,
we summarized the risk factors that are linked with COPD development. Multiple intra-
cellular and extracellular antioxidants provide protection to the blood and lungs against
the harmful activities of oxidants, under normal conditions [15]. It has been reported that
antioxidants including thiol compounds/donors and their analogs including glutathione
(GSH) and mucolytic drugs, for example, fudosteine, erdosteine, carbocysteine, and N-
acetyl-L-cysteine have the ability to efficiently regulate nuclear factor-κB (NF-κB) activation,
elevate intracellular thiol concentrations, and detoxify/scavenge oxidants/radicals, there-
fore suppressing inflammatory gene expressions [18]. In this article, we have highlighted
the important role of OS in COPD pathogenesis. We have also particularly focused on the
therapeutic potential of numerous antioxidants in the treatment of COPD.

Table 1. The risk factors associated with the development of chronic obstructive pulmonary disease.

Risk Factors References

External

Smoking [19,20]

Biomass smoke exposure [21,22]

Low socioeconomic status [23–25]

Occupational exposures [26,27]

Internal

Alpha-1-antitrypsin deficiency [28,29]

Gender differences [30–33]

Airway mucus hypersecretion [34,35]

Other

Airway hyperresponsiveness [36,37]

Early life insults [38,39]

Air pollution [40–42]

Asthma [43–45]

Malnutrition [46]
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2. Reactive Oxygen Species

OS is supposed to be triggered via CS, and OS-mediated cell injury has a significant
contribution in the development of COPD [47]. CS contains a complex combination of
many free radicals and ROS, which is further grouped into two phases including tar and
gas. The tar phase contains around 1017 long-lived free radicals per gram, for instance,
quinone/hydroquinone (Q/QH2) radicals can decrease oxygen to generate superoxide
anions (O2

•−), resulting in the production of hydroxyl radicals (•OH) (Table 2) and hy-
drogen peroxide (H2O2) [48,49]. It has been reported that •OH is a highly reactive ROS,
which can injure nearly all types of macromolecules following collision [50]. Interestingly,
hydroxyl radicals can be produced via a Fenton reaction including H2O2 and cuprous
copper (Cu(I)) or ferrous iron (Fe(II)), which comprise harmful connections of redox- and
metal homeostasis. Particulate matter (also known as particle pollution) increases OS,
which can further damage the Fenton reaction and lead to the generation of •OH in the
lung [51]. Superoxide radical anions (O2

•−) are less reactive compared to •OH, however,
O2

•− is also detrimental and can play a role in the one-electron pathway involving flavin
cofactors and metals. In contrast, H2O2 is comparatively stable, which has the capacity to
travel long distances from its location of generation [50].

Compared to the superoxide radical anions, H2O2 mainly participates in two-electron
pathways involving sulfur-containing moieties in the cell. Nonetheless, H2O2 also plays a
role in some one-electron pathways involving transition metals. Interestingly, H2O2 can
play a role as a damaging agent at higher concentrations and as a signaling molecule at
low concentrations. Therefore, H2O2 exerts a significant cellular effect that is defined via
overlapping processes of H2O2 identification, signal transduction, and obliteration [52,53].
Hypochlorous acid (HOCl) produced in the presence of H2O2 can result in the generation
of more harmful ROS including •OH [54]. Hypochlorite anions (−OCl) exhibit increased
reactivity, which suggests that it indiscriminately modifies its targets, usually with second-
order rate constants of 105–107 M−1 s−1 [55]. In the case of proteins, various amino
acids including methionine, histidine, and cysteine are known as the ideal residues for
modification. Moreover, −OCl has the capacity to alter various primary amines (those are
present in the lysine’s sidechain) to chloramines. Collectively, increased concentrations
of ROS might result in respiratory problems and lung tissue injury by modifying several
target molecules by different ROS-specific processes.

On the other hand, the gas phase of CS possesses an increased level of reactive molecules
compared to tar. In addition, the gas phase possesses 1015 inorganic and organic radicals per
puff including ONOO−, nitrogen dioxide, and nitric oxide (NO•) [49,56]. NO• is one of the
major RNS and ROS. CS also possesses around 74.5–1008 ppm NO• and smokers are mostly
exposed to this free radical. Although NO• has a shorter half-life (t1/2= around 0.09–2 s), this
free radical reacts rapidly with O2

•− to generate ONOO− [49,57–59]. ONOO− (another RNS)
is associated with numerous pathological and physiological mechanisms [60,61]. ONOO−

also has powerful nitration and oxidation capacities, which can further damage various
molecules in the cells including proteins and DNA. Interestingly, a second-order reaction relies
on the levels of two first-order reactants or one second-order reactant, which are NO• and
O2

•− in the generation of ONOO−. NO• also has the capacity to interact with organic lipid
peroxyl radicals (ROO•) (that are found in CS) to generate cytotoxic species including alkyl
peroxynitrites (ROONO). It has been observed that O2

•− and NO• are generated via multiple
inflammatory cells including macrophages via nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase complexes (NOXs) and nitric oxide synthases (NOSs), respectively. In the
endoplasmic reticulum, RNS and ROS can also be secreted via an uncontrolled mechanism
as by-products during various processes including the protein folding maturation process,
peroxisomal metabolism, and mitochondrial respiration [62,63]. Moreover, their elevated
generation can eventually result in OS and lung injury.
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Table 2. A summary of the free radicals that can play a role in oxidative stress.

Name Structural Formula Properties References

Reactive oxygen species

Radicals

Hydroxyl radical •OH Highly reactive, very unstable in aqueous
solutions [64]

Superoxide •O2
− Moderately reactive, highly unstable,

modulate signaling [65,66]

Peroxyl radical ROO• Products of lipid peroxidation [67]

Alkoxyl radical RO• Products of lipid peroxidation [67]

Non Radicals

Hydrogen peroxide H2O2
Toxic, associated with several signal

transduction pathways and cell fate decisions [68,69]

Hypochlorite anion OCl− Produced by myeloperoxidase [70]

Singlet oxygen 1O2
highly excited, nonradical, metastable state

of molecular oxygen [67]

Ozone O3 Environmental air pollutant [71]

Reactive nitrogen species

Radicals

Nitrogen dioxide •NO2
One of the most threatening environmental

air pollutants, highly reactive [65]

Nitric oxide •NO Important redox signaling molecule [72]

Non Radicals

Nitrogen oxides NOx
Environmental toxins including NO and
•NO2 linked with combustion sources [65,73]

Peroxynitrite ONOO− Highly reactive, unstable intermediate [74,75]

3. Endogenous and Exogenous Generations of Reactive Oxygen Species

The lungs can be exposed to ROS and RNS derived from environmental and cellular
sources. CS is the major environmentally derived ROS that induces COPD pathogenesis.
RNS/ROS can also be produced via multiple structural and inflammatory cells of the
airways. The inflammatory response (inflammation) is a feature of COPD, which is char-
acterized via activation of resident macrophages and epithelial cells, and the recruitment
and activation of monocytes, neutrophils, and T- and B-lymphocytes. Once employed in
the airspace, inflammatory cells become activated and produce ROS as a reaction to an
adequate concentration of a secretagogue stimulus (threshold condition). In inflammatory
cells, NADPH oxidase (NOX) is the major ROS-generating enzyme. Various other enzyme
systems including the heme peroxidases and xanthine/xanthine oxidase (XO) system are
also associated with COPD [76,77]. In a similar manner, nitric oxide synthase mediates
the generation of RNS in the form of nitric oxide (NO) generation. In the presence of
superoxide anions, nitric oxide generates more strong and harmful ONOO− molecules.
It has been reported that the disturbance of the components of NOX including gp91phox

and p47phox, which was found to enlarge the airspace in mouse models, further indicating
that ROS-derived from NOX can play a role in the signaling pathways of tissue homeosta-
sis. Moreover, in COPD, the use of inhibitors of NOX to redress the imbalance between
antioxidants and oxidants might be harmful [78].
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4. Sources of Reactive Oxygen Species in the Lung

The lung is susceptible to damage from environmental OS due to its anatomic structure.
In addition, the lung is also exposed to various sources of endogenous OS produced
via mitochondrial respiration and inflammation to viral and bacterial infections. The
environmental sources of airborne OS involve oxidant gases and nanoparticles and ultrafine
particles from car exhaust fumes and industrial pollution. Nonetheless, tobacco smoking
is the most significant risk factor for COPD in the Western world. On the other hand, the
inhalation of combustion products from enclosed cooking fires is a significant additional
etiological factor in developing countries [79]. Although tobacco smoking can trigger the
onset of COPD (Figure 1), once COPD has occurred, smoking cessation does not stop
COPD progression and the continuous presence of OS [80]. Various endogenous sources
including mitochondrial respiration mediate the continuous presence of OS. In the presence
of carbonyl stress, airway epithelial cells trigger the generation of ROS derived from
mitochondria. In COPD patients, airway smooth muscle cells generate an increased level of
mitochondrial-derived ROS when exposed to inflammatory stress from interferon-gamma,
tumor necrosis factor-alpha, and interleukin (IL)-1. It has been revealed by pathway
studies that mitochondrial dysfunction around complexes I and III are closely linked with
COPD (Figure 1) [81,82]. Furthermore, various other intracellular sources of ROS include
several cytoplasmic ROS-generating enzymes including heme peroxidases, xanthine/XO
system, and NOX. The levels of these enzymes were found to be increased in inflammatory
cells within the airways of COPD patients [83]. Although profusely generated superoxide
radicals are a comparatively weaker oxidizing agent, however, it is the precursor for various
other more detrimental ROS species including hydroxyl radicals, which are increased in the
case of COPD, or the highly damaging and strong ONOO− radicals generated by the fast
reaction of superoxide with nitric oxide [3,84,85]. In a similar manner, myeloperoxidase
(MPO), secreted by activated neutrophils, is likely to build up in the lungs of COPD
patients, which can further result in the generation of highly damaging HOCl. Nevertheless,
intracellular antioxidant defenses are able to effectively clean up these ROS species in
healthy cells, and can therefore limit their impact.

Molecules 2022, 27, 5542 5 of 32 
 

 

The lung is susceptible to damage from environmental OS due to its anatomic struc-
ture. In addition, the lung is also exposed to various sources of endogenous OS produced 
via mitochondrial respiration and inflammation to viral and bacterial infections. The en-
vironmental sources of airborne OS involve oxidant gases and nanoparticles and ultrafine 
particles from car exhaust fumes and industrial pollution. Nonetheless, tobacco smoking 
is the most significant risk factor for COPD in the Western world. On the other hand, the 
inhalation of combustion products from enclosed cooking fires is a significant additional 
etiological factor in developing countries [79]. Although tobacco smoking can trigger the 
onset of COPD (Figure 1), once COPD has occurred, smoking cessation does not stop 
COPD progression and the continuous presence of OS [80]. Various endogenous sources 
including mitochondrial respiration mediate the continuous presence of OS. In the pres-
ence of carbonyl stress, airway epithelial cells trigger the generation of ROS derived from 
mitochondria. In COPD patients, airway smooth muscle cells generate an increased level 
of mitochondrial-derived ROS when exposed to inflammatory stress from interferon-
gamma, tumor necrosis factor-alpha, and interleukin (IL)-1. It has been revealed by path-
way studies that mitochondrial dysfunction around complexes I and III are closely linked 
with COPD (Figure 1) [81,82]. Furthermore, various other intracellular sources of ROS 
include several cytoplasmic ROS-generating enzymes including heme peroxidases, xan-
thine/XO system, and NOX. The levels of these enzymes were found to be increased in 
inflammatory cells within the airways of COPD patients [83]. Although profusely gener-
ated superoxide radicals are a comparatively weaker oxidizing agent, however, it is the 
precursor for various other more detrimental ROS species including hydroxyl radicals, 
which are increased in the case of COPD, or the highly damaging and strong ONOO− 
radicals generated by the fast reaction of superoxide with nitric oxide [3,84,85]. In a similar 
manner, myeloperoxidase (MPO), secreted by activated neutrophils, is likely to build up 
in the lungs of COPD patients, which can further result in the generation of highly dam-
aging HOCl. Nevertheless, intracellular antioxidant defenses are able to effectively clean 
up these ROS species in healthy cells, and can therefore limit their impact. 

 
Figure 1. A schematic presentation of the role of oxidative stress in the development of COPD. 

5. Role of Oxidative Stress in COPD Pathogenesis 
A comparative deficit of antiproteases including alpha-1 antitrypsin (AAT) (because 

of their inactivation mediated via oxidants) may trigger the imbalance between protease 

Figure 1. A schematic presentation of the role of oxidative stress in the development of COPD.



Molecules 2022, 27, 5542 6 of 31

5. Role of Oxidative Stress in COPD Pathogenesis

A comparative deficit of antiproteases including alpha-1 antitrypsin (AAT) (because of
their inactivation mediated via oxidants) may trigger the imbalance between protease and
antiprotease in the lungs, which can further form the basis of the protease–antiprotease
paradigm of emphysema pathogenesis [86]. Various studies have revealed the in vitro AAT
inactivation via oxidants secreted from inflammatory leukocytes or oxidants from CS, but
this activity is less common in vivo [87]. A protease–antiprotease imbalance including
elastase and AAT is an overgeneralization, as other antiproteases and proteases are also
likely to be involved. It has been reported that oxidant generating systems including
xanthine/XO can induce the secretion of mucus from respiratory epithelium [88,89]. In
addition, oxidants are associated with the signaling mechanisms for the epidermal growth
factor receptor (EGFR), and EGFR plays a vital role in mucus secretion [90]. At low
concentrations (100 µM), oxidants including HOCl or H2O2 can cause marked damage
to ciliary beating and stasis [89,91]. Therefore, oxidant-induced hypersecretion of mucus
and reduced mucociliary clearance might lead to mucus accumulation in the airways,
which can eventually result in airflow limitation. Damage to the respiratory epithelium
is a key early event that takes place following exposure to CS, which can be detected by
an elevated level of the epithelial permeability of the airspaces. Both in vitro and in vivo
studies have revealed that exposure to CS can lead to elevated epithelial permeability,
which is partly reversible by antioxidants [92–94]. Intra and extracellular GSH seems to be
essential in maintaining epithelial integrity following exposure to CS, as deficiency of lung
GSH alone may result in an elevated level of in vitro and in vivo epithelial permeability of
the airspaces [95,96]. Interindividual differences in antioxidant defenses might be a factor
in defining whether COPD occurs in cigarette smokers.

It has been confirmed by biopsy studies that COPD is linked with an increased level of
inflammation in the airways [97]. OS might be a process through which the inflammation of
airspaces is increased in the case of COPD [98]. OS might also have a significant contribution
in increasing inflammation via upregulating various redox-sensitive transcription factors
including activator protein-1 (AP-1) and NF-κB. Furthermore, OS might also increase
inflammation via upregulating various extracellular signal-regulated kinases including p38
mitogen-activated protein-kinase and c-Jun-N-terminal kinase signaling mechanisms. It
has been reported that CS activates all of these aforesaid signaling mechanisms [99,100].
Genes for numerous inflammatory mediators are controlled via various oxidant-sensitive
transcription factors including NF-κB [101–103]. Oxidants caused the secretion of multiple
inflammatory mediators including NO, IL-1, and IL-8 in bronchial epithelial cells, alveolar
epithelial cells, and macrophage cell lines, and these processes were found to be linked
with an elevated level of expressions of the genes for these inflammatory mediators, and
an elevated level of activation and the nuclear binding of NF-κB [104,105]. It has been
observed that NF-κB can be activated and translocated to the nucleus in the lung tissues in
COPD patients and cigarette smokers compared to healthy individuals [99,106,107].

Activation of NF-κB in lung tissues is associated with the forced expiratory volume
in the first second (FEV1) [108]. Interestingly NF-κB linking to its consensus location in
the nucleus can result in increased pro-inflammatory gene transcriptions, and as a result
inflammation, which can further lead to the increased OS and can create a vicious circle
of elevated levels of inflammation resulting from the elevated level of OS (Figure 2). The
influx of neutrophils in the lungs was found to be linked with an elevated level of NF-κB ac-
tivation and the expressions of IL-8 genes and protein secretion in animal models of smoke
exposure [109]. Indeed, all of these aforementioned processes were reported to be linked
with OS, as these processes can be abrogated via antioxidant therapy [110–112]. OS can also
induce chromatin remodeling, which might increase the level of inflammation in the lungs,
further permitting access for RNA polymerase and NF-κB to the transcriptional machinery
to increase the gene expression, and this event is familiar as oxidant sensitive [98]. It is hy-
pothesized in emphysema pathogenesis that the loss of lung cells (particularly endothelial
cells) might take place as a primary mechanism in the emphysema development due to the
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apoptosis of endothelial cells [113]. An increased level of apoptosis has been observed in
emphysematous lungs compared to the lungs of nonsmokers [114]. Vascular endothelial
growth factor receptor 2 (VEGFR2) can also mediate endothelial apoptosis. VEGFR2 down-
regulation resulted in emphysema in animal models and such VEGFR2 downregulation
has also been detected in emphysematous lungs [114]. Apoptosis/emphysema mediated
by the suppression of VEGF in animal models was linked with elevated OS markers and
was averted via antioxidants [113], further indicating that OS is associated with this event
and systemic effects including muscle dysfunction in the case of COPD [115].
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6. Pulmonary Strategies of Antioxidant Defense
6.1. Glutathione

Since the lungs are continuously exposed to endogenous and external sources of OS,
they have created various effective antioxidant defensive approaches (Figure 1), where
a decreased GSH level has a significant contribution. As a by-product of metabolism, as
much as 20% of all generated GSH can be found within the mitochondria to counteract the
production of endogenous ROS [116]. It has been revealed that the introduction of airway
epithelial cells from healthy individuals to acute OS induces an elevated level of GSH syn-
thesis via increasing the expression and function of glutamyl-cysteine ligase (an important
enzyme in the synthesis of GSH) [117]. Nevertheless, the level of glutamyl-cysteine ligase
decreases near the central bronchial epithelium and in alveolar macrophages in COPD
patients and smokers, which indicates a faulty regulatory process [118]. Comparable dif-
ferential reactions between the control individuals and COPD patients were obvious with
various other GSH-dependent antioxidant enzymes including the glutathione-S-transferase
(GST) pi isoenzyme, GSH peroxidase, and GSTM1 [119]. Moreover, a genetic deletion
mutation in GSTM1 was liked with emphysema development in smokers and elevated
vulnerability in COPD development [120]. In a similar manner, COPD has also been linked
with the genetic polymorphisms in the GST pi isoenzymes [121].
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6.2. Restoration or Upregulation of Nrf2 Function

In the airway smooth muscle cells, decreased levels in the expressions of various
antioxidant enzymes including superoxide dismutase 2 (SOD2) and catalase were decreased,
while the expression of transforming growth factor β (TGF-β) was elevated in the case
of COPD [122]. These aforesaid antioxidant enzymes are important for counteracting
mitochondrial-derived ROS and are controlled by the transcription factor forkhead box
O-3 (FoxO3). It has been observed that there is a deficit in FOXO3 function in the case
of COPD [123]. SOD2 gene polymorphism is also strongly linked with COPD; however,
insufficient data are available to demonstrate how these polymorphisms are associated
with the functions [124]. SOD3 polymorphisms have also been linked with decreased
lung activity in the case of COPD and defense against COPD development in smokers
when activities of SOD3 are increased [125,126]. Nuclear erythroid-2-related factor 2 (Nrf2)
controls more than 200 cellular detoxification and antioxidant enzymes, which also control
the expression of genes via binding with the antioxidant response elements within the
promoters of numerous cytoprotective and antioxidant genes [127]. A decreased level of
expressions of Nrf2-responsive genes because of decreased Nrf2 function has been reported
in COPD patients [128]. Thus, the restoration or upregulation of Nrf2 function might be an
effective therapeutic approach in the case of COPD [129].

7. Oxidative Stress Biomarkers in Chronic Obstructive Pulmonary Disease
7.1. Exhalation of NO•

In the lungs, the gas NO• is endogenously generated via NO synthase (NOS), which
can exist in both the inducible isoform (iNOS) and constitutive isoform (cNOS). iNOS
can be mediated via inflammatory stimuli in the lungs and might thus indicate airway
inflammation. Thus, exhaled NO• levels are regarded as an indirect measure of OS and
a marker for airway inflammation [130,131]. Nonetheless, the findings on the usage of
NO• concentrations as a marker for COPD are questionable. In stable COPD patients,
an increased level of NO• was found in exhaled air whereas others had lower or normal
levels of exhaled NO• compared to the control individuals [132]. These inconsistencies in
the findings might take place because of the different criteria for patient selection or the
use of different approaches of measurement. In addition, NO• is short-lived in vivo and
by rapidly reacting with the superoxide, it can be transformed into NOx [133,134]. NO•

might also produce stable S-nitrothiols (RS-NOs) by interacting with low molecular weight
thiols including N-acetylcysteine or GSH to increase its bioactivity [135–137]. Therefore,
instead of NO•, RS-NOs are considered as the major products of inflammation and NOS.
Compared to the healthy control individuals and nonsmokers, reports on the RS-NOs
concentrations in inflammatory airway diseases exhibited elevated concentrations in the
exhaled breath condensate (EBC) of smokers and patients with COPD [130].

7.2. Exhalation of Hydrogen Peroxide

H2O2 in exhaled air signifies oxidant production in the lungs. It has been reported that
COPD patients and smokers exhale H2O2 much higher than nonsmokers or ex-smokers
with COPD [138,139]. The level of H2O2 in exhaled air is even higher during acute exacer-
bations of COPD. Although the exact cause of this increased exhalation of H2O2 is not fully
known, this may partially take place from the elevated superoxide anion (O2

−) secretion
by the alveolar macrophages from smokers than the alveolar macrophages from nonsmok-
ers [140,141]. Compared to nonsmoking individuals, an increased level of intracellular
iron has been observed in the pulmonary macrophages of smokers [142]. In the airspaces
of smokers, the presence of elevated levels of free irons might elevate the production of
even more ROS via the Fenton reaction [143]. The combination of xanthine/XO has the
capacity to produce H2O2 and superoxide anion radicals. This combination was found to
be elevated in the plasma and bronchoalveolar lavage (BAL) of smokers and COPD patients
compared to nonsmokers and healthy individuals, respectively. Interestingly, patients with
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COPD performing strenuous exercise experienced systemic OS, which was suppressed via
blocking XO [4].

7.3. Inflammatory Response

Multiple studies have assessed the contribution of ROS in the production of the
inflammation that takes place in the peripheral and central airways of patients with
COPD [100,144]. Common characteristics of lung inflammation include the activation
and recruitment of neutrophils, and the activation of resident macrophages and epithe-
lial cells [100]. Oxidants that are present in CS have the capacity of inducing alveolar
macrophages to secrete various mediators, some of which engage neutrophils and various
other inflammatory cells in the lungs [100,145–148]. In addition, elevated numbers of
neutrophils and macrophages move into the lungs of smokers, where these cells produce
ROS by the reduced NOX [149–153]. The lungs of smokers containing airway obstructions
possess more neutrophils compared to smokers without airway obstruction [154,155]. Dur-
ing acute exacerbations, peripheral blood neutrophils from COPD individuals and smokers
exhibit an elevated generation of superoxide anions. In patients with COPD, this generation
level was found to be returned to normal when they were clinically stable [156,157]. It
has been reported that the MPO level of the neutrophils is positively linked with tobacco
smoking, indicating an elevated level of the generation of oxidants including hypochlorous
acid in smoking individuals [83]. A connection between the FEV1 and circulating neu-
trophil numbers has also been observed, which further indicates an elevated level of airflow
limitation due to the ROS generation of the elevated level of neutrophils [158]. An elevated
level of ROS release takes place from the circulating neutrophils in tobacco smokers with
COPD compared to tobacco smokers without COPD [159].

7.4. Lipid Peroxidation (LPO)

In biological tissues, ROS can induce the peroxidation of polyunsaturated fatty acids,
which can lead to the transformation of fatty acids into lipid hydroperoxides. Then, lipid
hydroperoxides and lipid peroxides can react with nonenzymatic or enzymatic antioxidants
or decay after interacting with iron-containing proteins or metal ions, which can lead to the
formation of unsaturated aldehydes and hydrocarbon gases as by-products [160,161]. Lipid
peroxidation (LPO) measured as thiobarbituric acid-reactive substances showed an increase
in concentrations in the lungs and breath condensate of stable COPD individuals [141,162].
Furthermore, these LPO products are negatively linked with the FEV1, which indicates
that LPO has a significant contribution in deteriorating lung activity [163]. An increased
level in the LPO product has been observed in the bronchoalveolar lavages and plasma
of healthy smokers. Moreover, elevated LPO product levels are inversely linked to the
extent of small airway obstruction and time expired from the last exposure to CS [164,165].
4-Hydroxy-2,3-nonenal (an end-product of LPO) has the capacity to modify cellular pro-
teins. The respiratory endothelial and epithelial cells of smokers with airway obstructions
had increased levels of 4-hydroxy-2,3-nonenal-modified proteins in comparison with the
individuals without airway obstruction or nonsmokers [166]. Ethane (a hydrocarbon) can
be generated as a by-product of the peroxidation of various fatty acids including 9,12,15-
linolenic acid [131]. Exhaled ethane is increased in the case of COPD patients compared
to the control individuals. This elevated level is negatively associated with lung activity,
which indicates that LPO is a crucial factor in COPD progression [131].

7.5. Protein Degradation

OS makes proteins more vulnerable to proteolytic degradation by altering amino acid
chains, which results in the formation of protein aggregates and the cleavage of peptide
bonds. Some of the amino acid residues are transformed to carbonyl residues during
this process, which can be found systemically [167–170]. Following exposure to the gas
phase of CS, human plasma proteins are altered to carbonyl-containing proteins with lost
sulfhydryl groups. In CS, the unsaturated and saturated aldehydes play roles in modifying
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proteins [171,172]. It has been revealed by in vitro studies that the exposure of human
plasma to CS resulted in raised levels of carbonyl proteins and depleted levels of plasma
protein sulfhydryls [173]. OS-mediated damage of proteins and thus the generation of car-
bonyl proteins due to the exposure of CS were found to be partially prevented by GSH and
completely by ascorbic acid [174]. Cigarette smoking can also lead to the formation of RNS,
which can also cause the degradation of plasma proteins via oxidation and nitration [100].
Compared to nonsmokers, concentrations of oxidized proteins are considerably higher in
smokers [175], and compared to nonsmokers, smoking individuals also showed increased
levels of various nitrated proteins including plasminogen, ceruloplasmin, transferrin, and
fibrinogen [175].

Aldehydes found in CS might interact with the amino and sulfhydryl moieties of
plasma proteins through a Michael reaction [176,177]. The transformation of tyrosine
into dityrosine and 3-nitrotyrosine can be considered as an indicator of protein and free
radical damage [178,179]. The levels of nitrotyrosine were found to be increased in the
epithelial lining fluid and plasma of tobacco smokers and negatively linked with the
FEV1 [180]. Alpha 1-proteinase inhibitor (alpha 1-PI), an inhibitor of elastase activity,
has a significant contribution in patients with COPD and its activity was reported to be
reduced by oxidizing agents [181,182]. In alpha 1-PI, the oxidation of an important residue
of methionine amino acid into methionine sulfoxide markedly reduced the suppressive
ability of alpha 1-PI [170,183,184]. It has been revealed by BAL that smokers contain alpha
1-PI, which only exhibited half of its normal function, whereas alpha 1-PI from the lung
washings of nonsmoking individuals is fully functional with only native methionine [141].

8. Strategies for Reducing Oxidative Stress by Antioxidants in the Treatment of COPD
8.1. Thiol-Based Antioxidants
8.1.1. Carbocysteine

S-carboxymethylcysteine (S-CMC or carbocysteine) (Figure 3) is a thiol derivative
of L-cysteine. It has been revealed that S-CMC has anti-inflammatory, mucoactive, and
antioxidant effects. Currently available oral preparations of carbocysteine include S-CMC
and lysine salt of S-CMC (S-CMC-lys). In the gastrointestinal (GI) tract, the lysine residue
in S-CMC-Lys breaks down to generate the active drug S-CMC. Compared to erdosteine
and N-acetyl-L-cysteine (NAC), the mucoactive effect of carbocysteine is different from
other thiol-based mucolytics as carbocysteine elevates the sialomucin level, which affects
the rheological effects of mucus through the suppression of kinins [185]. Furthermore,
carbocysteine mediates mucociliary clearance velocities, specifically in individuals with
chronic bronchitis who have a lower level of clearance prior to treatment [185]. Carbocys-
teine also provided protection against emphysema triggered by CS in the rat models [186].
In patients with COPD, the treatment with S-CMC-Lys for a duration of 6 months markedly
reduced the concentrations of the 8-isoprostane (an LPO product) and pro-inflammatory
cytokine including IL-6, which suggests that S-CMC-Lys showed both antioxidant and
anti-inflammatory effects [187]. Since this drug can also decrease the levels of bacterial
respiratory tract infections in the case of COPD [47], carbocysteine might therefore play a
role by suppressing the adherence of pathogens to the cells.

Compared to the placebo-treated group, the in vitro studies revealed that treatment
with carbocysteine can decrease the attachment of Moraxella catarrhalis (a bacterium to pha-
ryngeal epithelial cells in individuals with chronic bronchitis and healthy subjects [188–190].
Carbocysteine can also markedly decrease the adherence of Streptococcus pneumoniae to
pharyngeal epithelial cells [47]. In COPD patients, carbocysteine can decrease the occur-
rence of common colds and related exacerbations, a characteristic that can contribute to its
capacity to reduce the expression of intercellular adhesion molecule 1 in the respiratory
tract [191]. The effect of treatment with carbocysteine (250 mg, 3 times a day) has been
assessed for 3 years in 709 Chinese COPD patients. It was observed in a clinical study that
COPD patients receiving carbocysteine faced less frequent exacerbations per year [192].
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Moreover, most of these COPD patients were not administered corticosteroids [192]. The
clinical trials of carbocysteine in COPD patients are summarized in Table 3.
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Table 3. The clinical studies on the efficacy of carbocysteine in COPD.

Antioxidant Study Design Duration Study Outcomes References

Carbocysteine Double-blind, randomized,
placebo-controlled study 12 months

Prolonged (12 months) treatment with
carbocysteine decreased the exacerbations
in COPD patients, reduced exacerbations,

no loss of lung activity, ameliorated
health-related quality of life.

[187,192]

Carbocysteine

Multicenter,
placebo-controlled,

double-blind, parallel
group trial

6 months

Duration of the acute respiratory illness
was markedly decreased and this was
linked with a marked decrease in the

administration of antibiotics during the
trial period, no serious adverse effects

were observed.

[193]

Carbocysteine Randomized controlled
trial 12 months

Consistently decreased the frequency of
exacerbations, did not alter the lung

function.
[188]

Carbocysteine Double-blind controlled
study 3 months

Improved the capacity to cough up
bronchial secretions, markedly elevated
the sputum volume output, ameliorated

ventilation.

[194]

Carbocysteine Single-blind study 8 weeks

Greatly eased expectoration, increased the
level of expectorated sputum, markedly

increased peak expiratory flow rate,
ameliorated the severity of dyspnea.

[195]

Carbocysteine Randomized controlled
trial 12 months

Markedly decreased the exacerbation rate
and commoncolds, no substantial
differences in the extent of COPD.

[196,197]
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8.1.2. N-Acetyl-L-Cysteine

NAC (Figure 3) is a powerful reducing agent and an acetyl derivative of the amino acid.
NAC has mucolytic properties and it decreases the viscosity of mucus, thus ameliorating
mucociliary clearance. On the other hand, in the GI tract, NAC is deacetylated to cysteine,
which plays a role as a GSH precursor. NAC has the capacity to neutralize oxidant species
by reducing disulfide bonds. In lungs, NAC can also elevate the level of intracellular
GSH in vivo as it can reduce intracellular cystine to cysteine. Among the thiol derivatives,
NAC has been extensively studied both in vivo and in vitro. Oral administration of NAC
decreased the level of elastase-induced emphysema in rat models [198]. Furthermore, NAC
provided protection against the tobacco smoke-mediated oxidation of the Z variant of
AAT in early-onset emphysema in mouse models [199]. Since GSH is an important lung
antioxidant, NAC has primarily been utilized to increase the level of lung GSH in COPD
patients [200,201]. In Table 4, the clinical trials on the benefits of using NAC in COPD
patients have been summarized.

Table 4. The clinical studies on the efficacy of N-acetyl-L-cysteine in COPD.

Antioxidant Study Design Duration Study Outcomes References

N-acetyl-L-cysteine
(NAC)

Randomized,
placebo-controlled trial 3 years

NAC is not effective at preventing
deterioration of lung activity and
exacerbations in COPD patients.

[202,203]

NAC
Double-blind, double
dummy, randomized

comparison study

12
months

Long-term oral administration of
NAC reduces H2O2 generation in

the airways of patients with
COPD.

[204]

NAC
Double-blind,

randomized, placebo
controlled trial

7 days

NAC introduction in the treatment
with bronchodilators and

corticosteroids does not alter the
outcome in acute exacerbation of

COPD.

[205]

NAC Randomized,
controlled trial 12–24 weeks

Prevention of exacerbation and
improved symptoms as compared
to 34.6% of participants receiving a

placebo.

[206]

NAC Single-blinded,
randomized trial 2 months

Oral administration of NAC for 2
months quickly decreases the

oxidative stress in the airways of
patients with COPD.

[207]

NAC Randomized,
controlled trial 2 months

No significant alteration in lung
activity was observed; marked

decrease in the duration of
disability and a 29% decrease in

exacerbations.

[208]

NAC - 5 days Increased levels of glutathione and
cysteine on day 5. [209]

In a clinical study, NAC treatment at the dose of 600 mg twice per day for 6 months
decreased several BAL fluid and plasma oxidative biomarkers in tobacco smokers [210].
On the other hand, NAC treatment at the dose of 600 mg two times per day for 2 months
decreased the oxidative burden in the airways of individuals with stable COPD [207],
and was linked with ameliorated lung symptoms and decreased risk of exacerbation in
people with chronic bronchitis [206]. In severe COPD patients, NAC ameliorated the
muscle activity by increasing the time of quadriceps endurance, along with a reduction
in the systemic OS markers [211]. Various reports have also shown reduced levels of
exacerbations by 29% [212,213]. In a large multicenter trial, NAC did not affect the decline
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in FEV1 or the frequency of the exacerbations [203]. Moreover, in this study, a reduced
level of exacerbation frequency and overinflation was observed in COPD patients who did
not receive inhaled glucocorticoids [203]. In the GI tract, NAC needs to be deacetylated to
cysteine to play a role as a GSH precursor and is not highly bioavailable to elevate the level
of GSH. Therefore, in order to identify any clinical advantage in COPD treatment, more
studies are needed to evaluate the effects of NAC at higher doses (1200 mg or 1800 mg
daily) or evaluate various other thiol derivatives that show higher bioavailability.

8.1.3. Fudosteine

Fudosteine (Figure 3) is used as an antioxidant and mucolytic agent. Compared
to NAC, fudosteine has higher bioavailability and plays a role as an antioxidant by ele-
vating the level of intracellular cysteine. Fudosteine also suppressed the hypersecretion
of mucin by downregulating the gene expression of Mucin 5AC (MUC5AC) [214]. Fu-
dosteine decreased the expressions of p-ERK in in vitro bronchial epithelial cell lines and
in vivo expressions of p-ERK and phospho-p38 MAPK [214]. In lung epithelial cells, fu-
dosteine suppressed the airway nitrative stress induced by ONOO− by directly scavenging
ONOO− [215]. Therefore, as a mucoactive agent, fudosteine might be useful in the therapy
of various chronic respiratory diseases such as bronchiectasis, COPD, chronic bronchitis,
and bronchial asthma [214,216].

8.1.4. Erdosteine

Erdosteine (Figure 3) is a thiol-based antioxidant and mucoactive agent. Erdosteine
was mainly utilized as a mucolytic agent. It breaks the disulfide bonds of mucus glycopro-
teins and affects the physical properties of the mucus, which can further result in an elevated
level of mucus clearance [217]. In addition, erdosteine has antibacterial, anti-inflammatory,
and antioxidant properties. In a clinical trial, the oral administration of erdosteine (300 mg
twice daily) for 8 months markedly reduced exacerbations and improved the quality of
health in comparison with the placebo [218]. Erdosteine can also be beneficial for people suf-
fering from severe, prolonged, or repeated COPD exacerbations [219,220]. Erdosteine also
decreased the frequency of severe exacerbations, necessitating hospital admissions [217].
Erdosteine (300 mg two times a day) administration for 7–10 days ameliorated symp-
toms and decreased the length of hospitalization in individuals with exacerbations of
COPD [221]. The administration of erdosteine (600 mg daily) with procysteine amelio-
rated the concentrations of various chemotactic cytokines including IL-6 and IL-8 and
improved the concentration of CS-mediated ROS generation via alveolar macrophages in
the bronchial secretions of tobacco smokers with COPD [220]. In COPD patients, erdosteine
also reduced the concentrations of pro-inflammatory eicosanoids in the blood of patients
with COPD [222].

8.2. Superoxide Dismutase Mimetics

There are three classes of SOD mimetics. The first class of SOD mimetics involves
various manganese (Mn)-based macrocyclic ligands including M40419, M40403, and
M40401 [113,223]. The second category involves multiple Mn-metaloporphyrins including
AEOL-10150 and AEOL-10113 226,262], whereas the third class includes salens (Mn-based
SOD mimetics). Since salens also have a catalase-like function, they can also neutralize
ONOO− and H2O2 [224]. In animal models of airway inflammation, so far, only the
second category of SOD mimetics has been investigated. In rat models, AEOL10150 (a
SOD mimetic) suppressed the tobacco smoke-mediated lung inflammation, LPO, and the
production of ONOO− [225]. It has been observed that treatment with recombinant SOD
can reduce the cigarette smoke-induced release of IL-8 and prevent the influx of neutrophils
into the lungs, which further indicates its potential as an anti-inflammatory and antioxi-
dant in the case of COPD [95]. MnTE-2-PyP (a Mn porphyrin) is an antioxidant and ROS
scavenger. MnTE-2-PyP has been reported to have the capacity to scavenge H2O2, ONOO−,
lipid peroxides, and superoxide [226].
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Treatment with MnTE-2-PyP decreased damage and inflammation-mediated via nu-
merous factors [227,228]. The MnTE-2-PyP-mediated anti-inflammatory properties mainly
take place because of its capacity to decrease MnTE-2-PyP. Collectively, these findings
suggest that these compounds might have the potential to treat COPD. In the lungs, ex-
tracellular SOD (ECSOD or SOD3) is found to be highly expressed. ECSOD is found in
the blood vessel linings of the lungs, the surface of the airway smooth muscle, and the
extracellular matrix in the junctions of the airway epithelial cells [229]. SOD3 also has
the capacity to directly scavenge O2•−, thus it has a significant contribution in providing
protection against OS in the lung. Furthermore, SOD3 can reduce CS-mediated OS in
mouse macrophages [230]. Moreover, SOD3 decreases emphysema and lung inflamma-
tion by reducing the oxidative fragmentation of the extracellular matrix (ECM) including
elastin and heparin sulfate [231]. Thus, the discovery of therapeutic agents to increase or
replenish the level of SOD3 in the lungs might be an effective therapeutic intervention for
emphysema/COPD.

8.3. Nrf2 Activators

Nuclear factor erythroid-2-related factor 2 (Nrf2) is found in the cytoplasm of nor-
mal cells. This transcription factor has a significant contribution in providing protection
against ROS and electrophiles. As a reaction to electrophilic stress and OS, Nrf2 de-
taches from Kelch-like ECH-associated protein 1 (Keap1) to translocate into the nucleus,
where it has been reported to bind with the antioxidant response element (ARE) of target
genes [232–234]. It has been observed that Nrf2 controls nearly all of the phase II cytoprotec-
tive genes and antioxidants, for instance, glutathione peroxidase (GPx), glutamate-cysteine
synthase, glutamate-cysteine ligase modifier subunit (GCLM), NAD(P)H/quinone oxidore-
ductase 1 (NQO1), and multiple glutathione S-transferase family members [232]. Nrf2
knockout mouse models exhibited an elevated level of susceptibility to CS-mediated em-
physema compared to wild-type mouse models, which suggests a protective function of
Nrf2 [235,236].

DJ-1 (a Nrf2 stabilizer) loss and post-translational modification of the Keap1–Bach1
equilibrium can lead to Nrf2 downregulation in the lungs of COPD patients [237–240].
CDDO-imidazolide (a Nrf2 activator) was found to provide protection against CS-mediated
emphysema in mouse models [234]. Nrf2 activation via sulforaphane (found in cruciferous
vegetables and broccoli) can result in reducing some of the biochemical changes that take
place in COPD patients and smokers [241]. Chalcones show anti-inflammatory properties
because of their capacity to suppress the NF-κB signaling pathway [242,243] and activate
the Nrf2/ARE signaling pathway therefore triggering expressions of phase II detoxifying
enzymes [244]. Multiple chalcone derivatives are also being invented that are likely to
have the potential to treat COPD [245]. Nevertheless, the toxicity, bioavailability, and
pharmacokinetics of these compounds in the lungs are yet to be fully revealed.

8.4. NOX Inhibitors

In COPD, NOX (a membrane-bound complex) plays a role as an important source
of ROS through the production of superoxide anions. There are various isoforms of the
catalytic component of NOX such as dual oxidases (Duox1 and Duox2) and NOX1-5 [246].
Various inhibitors of NOX have also been invented to counter OS [247,248]. In CS-exposed
mouse models, systemic administration of apocynin (a non-selective inhibitor of NOX)
decreased the inflammatory chemokines and cytokines in BAL fluid [249]. Nebulized
apocynin administration decreased the levels of nitrite and H2O2 in the exhaled air in
patients with COPD, however, no clinical parameters were observed [250]. In addition to
other functions, various polyphenols including resveratrol and quercetin suppressed the
NOX function. Indeed, it is difficult to develop highly selective inhibitors of NOX. Setanaxib
is a dual inhibitor of Nox1/4 that decreases acute lung damage mediated via reperfusion
injury, however, this effect is yet to be confirmed in COPD models and clinical trials [251].
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8.5. Antioxidant Mimetics

Antioxidant mimetics have been created to reinstate the depleted levels of endogenous
antioxidants including GPx, catalase, and SOD [252]. SOD mimetics involve various metal-
loporphyrins including AEOL 10150, AEOL 10113, and Mn-containing molecules including
M40419. These SOD mimetics were found to be effective in several animal models of OS,
for example, CS-exposed mouse models showed a decreased level of inflammation [225].
AEOL 10150 is mainly used to treat radiation pneumonitis and the development of its
derivatives is ongoing for the treatment of patients with COPD. GPx includes non-selenium
and selenium-containing antioxidant enzymes that catalyze H2O2 breakdown. The level of
GPx-1 is decreased in the plasma and lungs of COPD patients, which indicates that GPx-1
mimetics might be therapeutically beneficial [253]. GPx transgenic mouse models have
protection against emphysema and inflammation following CS exposure, while GPx gene
knockout elevated the lung response to CS [254]. Ebselen is a GPx mimetic and a selenium-
based organic complex. This GPx mimetic is a strong antioxidant and it significantly
neutralizes peroxynitrite radicals [255]. Ebselen suppressed the NF-κB/AP-1 activation,
and therefore the expressions of pro-inflammatory genes in human leukocytes treated with
peroxynitrite. Ebselen effectively decreased the ozone-induced airway inflammation in rat
models [256] and inflammatory cytokines in the lungs of CS-exposed mouse models [249],
however, no clinical trials have been carried out in COPD patients.

8.6. iNOS Inhibitors and Spin Trapping Agents

It has been demonstrated that iNOS suppression via several chemical inhibitors includ-
ing NG-nitro-L-arginine methyl ester and L-N6-(1-Iminoethyl)lysine (L-NIL) weakened
animal models of pulmonary emphysema [257,258]. In addition to supplementation with
other antioxidants, selective iNOS inhibition might be an effective approach in managing
COPD [259]. Spin trapping agents are chemicals that can cause the quenching of free
radicals to generate measurable stable end-products. Most of the spin trapping agents
contain a nitroxide- or nitrone-nucleus and are derivatives of these moieties. Spin trapping
agents have been extensively investigated in vitro. Their therapeutic potential has also
been investigated in in vivo animal models of lung inflammation by utilizing α-phenyl-
N-tert-butyl nitrone [260–262]. Spin trapping agents that were created earlier had very
short half-lives and produced toxic hydroxyl radicals on decay. However, this problem has
been solved by introducing electron-withdrawing moieties around the core of the pyrroline
rings [263]. Azulenyl- and isoindole-based nitrones including azulenyl nitrone (STANZ)
show potent antioxidant effects and have the capacity to suppress in vitro LPO [264,265].
On the other hand, derivatives of phenyl-base nitrone spin trap including NXY-059 exerted
beneficial effects in several animal models of lung diseases [266–268].

8.7. Suppression of Nitrative Stress

Superoxide anions rapidly combine with NO to generate extremely reactive perox-
ynitrite ions, which can further lead to the generation of 3-nitrotyrosine adducts of amino
acids in proteins that might disturb their activities as structural proteins, ion channels, or
enzymes. The level of peroxynitrite is elevated in the EBC of patients with COPD [215],
while 3-nitrotyrosine is expressed in the airways and sputum cells of COPD individu-
als [269,270]. The generation of peroxynitrite in the airways of patients with COPD might
elucidate why the level of fractional exhaled NO (FeNO) is low in COPD individuals, since
the entire free NO is closely bound by superoxide anions. NO is expressed in the alveolar
epithelial cells. In response to OS, NO might be produced in the lungs of COPD patients
by NOS1 [258]. Mouse models exposed to CS showed an elevated level in the expres-
sion of iNOS (NOS2) and were found to be protected against emphysema development
by using selective inhibitors of iNOS and via knockout of the iNOS gene [271]. When
aminoguanidine (a comparatively selective iNOS inhibitor) was administered through
nebulization, it partly decreased peripheral and central exhaled levels of NO in COPD
individuals, however, it failed to remove exhaled NO, indicating that NOS1 is the probable
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cause and those selective inhibitors of iNOS might not be beneficial in decreasing the level
of peroxynitrite in patients with COPD [258]. Various highly selective inhibitors of iNOS
have been invented for clinical administration. L-NIL (a selective inhibitor of iNOS) is
highly effective in decreasing the level of FeNO in asthma patients; however, it is yet to be
studied in patients with COPD [272].

8.8. Lazaroids and Edaravone

Lazaroids are a group of non-glucocorticoid analogs of methylprednisolone and they
have the capacity to cross hydrophobic areas of the cell membrane, particularly to avert
membrane LPO [261,273,274]. Their protective actions have already been demonstrated in
numerous animal models of lung injury [274,275]. Lazaroids mainly exert their protective
actions by suppressing LPO. Lazaroids suppressed the secretion of TNF-α from alveolar
macrophages and the generation of free radicals [276,277]. However, more studies are
needed to assess the effectiveness of lazaroids as a therapeutic agent in COPD treatment.
Edaravone is an LPO inhibitor and a strong scavenger of protein carbonyls and free
radicals [278,279]. Since carbonyl stress and protein carbonylation via aldehydes are
present in COPD, edaravone can provide protection to the lungs against the activities of
these oxidative products [280,281]. Moreover, edaravone improved the OS, inflammation,
lung damage, and even mortality, mediated by intestinal ischemia-reperfusion in the rat
models [282]. Collectively, all of these findings suggest that edaravone can be effective in
COPD treatment.

8.9. Enzymatic and Small Molecule Antioxidants

Various antioxidant enzymes including GPx, catalase, and SOD can effectively neu-
tralize cellular ROS. However, the functions and expressions of these antioxidant enzymes
are changed in various diseases including OS. Reinstatement of altered antioxidant enzyme
function can be attained via small molecules having catalytic effects, which can mimic
the function of the enzyme. Various small molecule antioxidants have been created, how-
ever, only a few of them have been investigated in clinical studies. Various nitrone spin
trap antioxidants including disufentan sodium were created as a neuroprotective agent,
however it failed in clinical studies of acute stroke. Thioredoxin (Trx) (an endogenous
regulator of redox balance) has the capacity to neutralize and its level might be decreased
in COPD [283]. Systemic Trx-1 administration was found to be effective in reducing the
neutrophilic inflammation in murine models of COPD [284]. Redox effector factor-1 (Ref-1)
and Trx belong to the oxidoreductase family of redox sensors. Trx has the capacity to bind
to various proteins including apoptosis signal-regulating kinase and hepatopoietin, which
are secreted from these complexes during OS [285].

Following dissociation, Trx was found to reduce an important key thiol group within
the p65/NF-κB subunit, which can further result in transcriptional activation [286–288]. In
an animal model, suppression of Trx by MOL-294 (a small molecule Trx inhibitor) blocked
the nuclear activation of AP-1-, and NF-κB-dependent transcription led to a reduced influx
of neutrophils and the generation of TNF-α [289]. Trx activation through small molecules
decreased the level of OS [290]. Trx-1 overexpression, mainly because of its antioxidant
effect, decreased CS-induced OS and emphysema [291], but the actions in COPD have
yet to be evaluated. It has been observed that XO might produce superoxide anions and
is elevated in the lungs of mouse models exposed to CS [292]. An increased level in the
expression of XO was observed in the bronchial mucosal lining fluid of patients with COPD
and is linked with the elevated expressions of various proinflammatory cytokines [293].
Allopurinol (a XO inhibitor) (Figure 3) decreased the expression of 3-nitrotyrosine in the
sputum cells of patients with COPD and elevated the level of FeNO, perhaps by blocking
the superoxide production so that ONOO− is not generated [294].
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8.10. Dietary Antioxidants

Diets that are poor in antioxidants have been linked to poor lung activity and can be
a risk factor for COPD development, however, it is challenging to demonstrate that an-
tioxidant vitamins precisely ameliorate established COPD [295]. There are various dietary
antioxidants including flavonoids (e.g., quercetin), resveratrol (a dietary polyphenol), vita-
min E, and vitamin C, however, improving the intake of dietary antioxidants has not been
confirmed to ameliorate clinical features of COPD or lung activity [296,297]. It has been
reported that the Mediterranean diet contains an increased level of dietary antioxidants and
some evidence suggests that it might provide protection against COPD development; how-
ever, factors including poverty are challenging to separate out [298]. Resveratrol present
in red wine and red-skinned fruits show in vitro anti-inflammatory and antioxidant prop-
erties in COPD cells and decreases lipopolysaccharide-induced pulmonary neutrophilic
inflammation in rat models [299,300]. Nonetheless, its oral bioavailability is poor, therefore,
stronger and more orally bioavailable analogs have been developed. Resveratrol, through
inhaled formulations, decreased the enhanced lung aging in telomerase-deficient mice [301].
It has been reported that (-)-epigallocatechin (a polyphenol present in green tea) can cause
the activation of FOXO3a, which is a transcription factor that controls various antioxidant
genes including catalase and SOD [302].

8.11. Peroxidase Inhibitors

An increased level of neutrophil-derived MPO has been observed in the case of
COPD, which reflects the activation of neutrophils in the lungs [303]. So far, multiple
inhibitors of MPO have been created [304]. AZD5904 (a selective and irreversible inhibitor
of MPO) decreases OS and emphysema development in CS-exposed guinea pigs [305].
Even though this drug was well-tolerated in human participants, it has been discontinued
for unknown causes.

8.12. Mitochondria-Targeted Antioxidants

It has been confirmed that dysfunctional mitochondria are present in the case of
COPD [306]. Mitochondrial mass was found to increase, along with the disruption and
fusion of mitochondria with leakiness of the mitochondrial membranes [307]. This can be
partially clarified by weakened autophagy processes that eradicate damaged mitochondria
(mitophagy). In the case of COPD, dysfunctional leaky mitochondria might serve as the
main source of ROS [308,309]. There are various available drugs that can particularly
target mitochondria [310–312]. Mitochondria-targeted antioxidants have been developed
primarily based on ubiquinone’s structure, which can be 50- to 100-fold concentrated in the
mitochondrial matrix. Furthermore, they were found to be more potent than multiple ani-
mal models of aging [311,313]. A number of mitochondria-targeted antioxidants including
SkQ1, pyrroloquinoline quinone, mito-TEMPO, and mitoQ are currently being studied in
several clinical studies for age-linked diseases. mito-TEMPO also suppressed the mROS
secretion and mitochondrial dysfunction induced by CS in the human airway epithelial
cells in vitro [314]. Treatment with mitoQ also decreased lung inflammatory mediators,
neutrophilic inflammation, and airway hyperresponsiveness in a murine model of the
chronic OS that involved long-term exposure to ozone [308].

9. Strategies to Improve Pulmonary Bioavailability of Antioxidants

Indeed, the beneficial actions of antioxidants largely depend on their pharmacoki-
netic properties. Therefore, the bioavailability of antioxidants needs to be studied before
assessing their antioxidant properties [315]. Poor pulmonary bioavailability has limited the
use of antioxidants in COPD treatment [139,316]. There are various factors including host
metabolism, release pattern from foods, and absorption, which can affect the bioavailability
of exogenous and dietary antioxidants [315]. Host and dietary factors can markedly limit
the half-life, concentration, and absorption of exogenous antioxidants. Therefore, it is



Molecules 2022, 27, 5542 18 of 31

important to address these factors to develop strong antioxidants that would effectively
maintain constant concentrations within lung tissue compartments [315,317].

Modifying existing antioxidants or developing new antioxidants that are resistant
to phase II modification would be able to retain their bioavailability and potency, even
after modification via enzymes. Tempol, a novel membrane-permeable radical scavenger,
is effective in decreasing lung inflammation in response to shock [318,319]. Ameliorated
inhaled delivery approaches have been developed to avoid the first pass metabolism that
takes place during systemic absorption and to mediate sufficient levels of antioxidants to
be reached in the lung [320,321]. Currently available inhalational devices are able to deliver
most of the drugs only to medium and large size airways of the lung, while ignoring the
alveolar regions and small airways that are major areas in the disease pathogenesis [322].
In addition, ameliorations in distal lung deposition are necessary before utilizing this
technology for the effective delivery of antioxidants. In the near future, this might be
achievable, since there are effective inhalational techniques that can mediate uniform
distribution in the distal lung [323,324]. Future improvements in antioxidant therapy
might include counteracting the CS-mediated stimulation of various oxidant-forming
enzymes including xanthine oxidase and NOX, which are found within the lung epithelium.
Moreover, these enzymes can play significant roles in OS, which is mediated by exposure
to CS [325–328].

10. Future Directions

There is growing evidence that suggests that elevated ROS generation takes place
in the case of COPD, which might be crucial for COPD pathogenesis. Various small
molecules are currently being investigated in clinical studies that quench oxidants or
target oxidant signaling induced by CS. In order to address these issues of COPD, various
anti-inflammatory agents and/or antioxidants including antioxidant mimetics, dietary
polyphenols, spin trapping agents, thiol molecules, and inhibitors of OS-mediated signaling
pathways have been developed. In addition, antioxidants might increase the effectiveness
of glucocorticoids by quenching aldehydes and oxidants, which further increases the
histone deacetylase function in patients with COPD. Various dietary polyphenols including
curcumin and resveratrol can also suppress the release of proinflammatory cytokines,
histone acetylation, oxidant/CS-induced activation of NF-κB, and restore the functions
of glucocorticoids by upregulating the function of histone deacetylase. Therefore, dietary
polyphenols control inflammation at the molecular level, which might further restore
the functions of glucocorticoids in the treatment of CS-mediated chronic inflammatory
diseases. Thus, a potent and effective antioxidant with good bioavailability is important
to regulate inflammatory and localized oxidative mechanisms that are present in COPD
pathogenesis [329].

11. Conclusions

Indeed, OS and carbonyl stress play important roles in COPD pathogenesis. Targeting
OS with potent antioxidants or increasing the endogenous antioxidants may be beneficial
in the treatment of COPD. Antioxidants might also affect various issues of COPD including
ECM remodeling, inflammation, the hypersecretion of mucus, and overcoming steroid
resistance. Various small molecule antioxidants have been evaluated in preclinical and
clinical studies. Even though thiol-based antioxidants can effectively target the ROS
and cellular responses induced by oxidants, novel and more potent antioxidants with
good bioavailability that can be used in COPD treatment need to be studied in clinical
studies. Nevertheless, a limited number of clinical trials have been conducted and there is a
deficiency of data regarding the toxicity, bioavailability, pharmacokinetics, and absorption
of multiple activators of endogenous antioxidants and exogenous antioxidants.
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