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Abstract Nuclease- directed genome editing is a powerful tool for investigating physiology and 
has great promise as a therapeutic approach to correct mutations that cause disease. In its most 
precise form, genome editing can use cellular homology- directed repair (HDR) pathways to insert 
information from an exogenously supplied DNA- repair template (donor) directly into a targeted 
genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations 
associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifica-
tions to both double- stranded and single- stranded DNA- repair templates. We describe 5′-terminal 
modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, 
that consistently increase the frequency of precision editing in the germlines of three animal models 
(Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.

Introduction
Precision genome editing by homology- directed repair (HDR) often requires cells to use exoge-
nously supplied DNA templates (donors) to repair targeted double- strand breaks (DSBs). Maximizing 
precision genome editing, therefore, requires understanding how cells respond both to DSBs and 
to exogenous donors. These responses can be influenced by many variables, including cell- intrinsic 
factors (e.g., genetics, cell type, and cell cycle stage) and cell- extrinsic factors (e.g., donor length, 
strandedness, and chemistry) (Lin et al., 2014; Wienert et al., 2020; Nambiar et al., 2019; Renaud 
et  al., 2016; Rees et  al., 2019; Jayathilaka et  al., 2008; Pinder et  al., 2015; Riesenberg and 
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Maricic, 2018; Yu et al., 2015; Canny et al., 2018; Robert et al., 2015). Each of these variables can 
influence the relative efficiency of HDR compared to competing DSB repair pathways, such as non- 
homologous end joining (NHEJ) (Frank- Vaillant and Marcand, 2002; Mao et al., 2008; Chu et al., 
2015; Maruyama et al., 2015).

In many organisms and cell types, high HDR efficiencies are readily achieved using short single- 
stranded oligodeoxynucleotide (ssODN) donor templates that permit single base changes or short 
insertions or deletions. However, HDR is frequently less efficient when longer double- stranded DNA 
(dsDNA) templates are used as donors. It is not known why longer DNA donors yield lower rates of 
HDR. In many cell types, high concentrations of dsDNA cause cytotoxicity, limiting the number of 
long donor molecules that can be safely delivered into cells. In addition, due to their size, long donor 
molecules may not transit the nuclear envelope as efficiently, reducing the effective concentration at 
the site of repair, or requiring cell division to gain access to the target locus. Moreover, end- joining 
ligation reactions assemble linear dsDNA molecules into concatemers in eukaryotic cells (Perucho 
et al., 1980; Folger et al., 1982; Mello et al., 1991; Stuart et al., 1988; Lacy et al., 1983), further 
limiting the number of individual donor molecules and their ability to diffuse to their DSB target sites.

In an effort to improve nuclear delivery and HDR efficacy, we incorporated 5′-modifications into the 
donor molecules, including a simple triethylene glycol (TEG) moiety, a 2′- O- methyl (2′OMe) RNA::TEG 
modification, and a peptide nucleic acid (PNA) comprising the SV40 nuclear localization signal (NLS) 
(see Materials and methods) (Brandén et  al., 1999). These 5′-modified donors increased the effi-
ciency of templated repair by 2- to 5- fold in cultured mammalian cells as well as germline editing 
of Caenorhabditis elegans, zebrafish (Danio rerio) and mouse (Mus musculus). The modified donors 
exhibited a striking reduction in DNA ligation reactions including reduced self- ligation into concate-
mers and reduced sequence- independent ligation into cellular DSBs, suggesting that the 5′-modifica-
tions reduce the availability of 5′-ends for competing NHEJ reactions.

Results
End-modified DNA donors increase the efficiencies of HDR in 
mammalian cells
To examine the effects of donor end modifications on HDR in cultured mammalian cells, we took 
advantage of a modified traffic light reporter (TLR) comprising a ‘broken’ GFP coding region followed 
by a frameshifted mCherry coding region (Certo et al., 2011; Iyer, 2019). Cas9 targets the ‘broken’ 
GFP, which can only be made functional if precisely repaired by HDR, resulting in green fluorescence. 
If Cas9- mediated DSBs are imprecisely repaired by NHEJ, approximately one- third of the imprecise 
repair events will restore the reading frame of mCherry, resulting in red fluorescence. Cas9 and single 
guide RNA (sgRNA) expression vectors and dsDNA donors with or without 5′-modifications were 
electroporated into HEK293T TLR cells (Figure 1A), followed by flow cytometry to determine the 
percentage of cells expressing either GFP or mCherry.

We first examined the performance of dsDNA donors modified with 15 nucleotide (nt) 2′OMe- RNA 
fused to triethylene glycol (RNA::TEG). Strikingly, the frequency of HDR increased with the amount 
of RNA::TEG- modified donor to a maximal 52 % GFP+ cells at 1.2 pmol of donor before falling off 
at higher amounts of donor (Figure 1B). By contrast, a maximum HDR frequency of only 25 % GFP+ 
cells was observed at 1.6 pmol of unmodified donor. Notably, 0.4 pmol RNA::TEG- modified donor 
was as efficient as 1.6 pmol unmodified donor, suggesting that the modified donor is ~4 - fold more 
potent than the unmodified donor (Figure 1B). The increase in GFP+ cells was accompanied by a 
corresponding reduction in mCherry+ cells (Figure 1C).

We reasoned that the 2′OMe- RNA linker could be used to anneal PNA oligos attached to peptides 
that might enhance nuclear uptake. To test this idea, we produced complementary PNA oligos linked 
to a nuclear localization signal peptide or complementary PNA alone and tested these for HDR. 
Annealing these PNA oligos was well tolerated and did not diminish HDR, however neither did they 
enhance HDR (Figure 1—figure supplement 1A- D). Thus, further study will be needed to determine 
if RNA::TEG adapters can be used to append peptides or other molecules (e.g., CAS9 ribonucleop-
rotein [RNP]) that stimulate HDR.

We next used the TLR assay to define features of the RNA::TEG moiety that promote maximal HDR. 
Nucleofection of 1.2 pmol donors modified with 2′OMe- RNA, TEG, or covalent RNA::TEG moieties all 

https://doi.org/10.7554/eLife.72216
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boosted HDR while reducing NHEJ events (Figure 1D and E). Increasing the length of the ethylene 
glycol moiety (3, 6, or 12 repeats) supported similar levels of HDR with or without the 2′OMe- RNA 
moiety (Figure  1F). Finally, donors with TEG modification at both 5′-ends yielded slightly better 
HDR efficiencies than donors with modification at only one of the two 5′-ends (Figure 1G). However, 
donors with RNA::TEG modification at both 5′-ends or at only one of the 5′-ends yielded similar HDR 
efficiencies (Figure 1G).

To explore the utility of TEG- and RNA::TEG- modified donors for repair at other genomic loci, we 
generated donors to integrate full- length eGFP at the endogenous TOMM20, GAPDH, and SEC61B 
loci (Figure  2A). We found that TEG or RNA::TEG donors consistently exhibited increased HDR 
levels in HEK293T cells as measured by the fraction of cells expressing eGFP at TOMM20 (2- fold), at 
GAPDH (3- fold), and at SEC61B (5- fold) when compared to unmodified dsDNA donor (Figure 2B–D). 
RNA::TEG- modified donors also substantially increased HDR in two cell types that are less amenable 
to editing, increasing HDR at the TOMM20 locus in human foreskin fibroblasts (HFF) cells (2.3- fold) 
and at the Gapdh locus in Chinese hamster ovary (CHO) cells (6- fold) (Figure 2E–F).

Next, to quantify the nature of repair outcomes (precise and imprecise), we employed deep 
sequencing assays. To facilitate sequencing across the repair site, we replaced a 12- nt sequence with 
a 9- nt sequence at the EMX1 locus in HEK293T. We compared HDR efficiencies in this assay using 
unmodified, TEG- modified, and RNA::TEG- modified dsDNA donors with 90 base pair (bp) homology 
arms (Figure 2G). At 1.2  and 2.4 pmol, RNA::TEG- modified donors yielded 2- fold more precise edits 
compared to the unmodified donors. When even higher doses (5 pmol) were used, the gap in efficacy 

Figure 1. 5′-End- modified donors promote homology- directed repair (HDR) in traffic light reporter (TLR) cells. (A) Schematic showing the TLR assay to 
quantify HDR efficiencies using unmodified or end- modified double- stranded DNA (dsDNA) donors. Editing efficiencies plotted as percentage of (B) 
green fluorescent protein (GFP)+ (HDR) and (C) mCherry+ (non- homologous end joining [NHEJ]) HEK293T TLR cells at different amounts of unmodified, 
2′- O- methyl (2′OMe)- RNA::triethylene glycol (TEG)- modified dsDNA donors. Editing efficiencies plotted as percentage of (D) GFP+ (HDR) and (E) 
mCherry+ (NHEJ) HEK293T TLR cells at 1.2 pmol of dsDNA donors indicated. Percentage of GFP+ cells obtained with dsDNA donors modified with 
various lengths of ethylene glycol (F) and with modifications to only one end or both 5′-ends of the donor. TS, target strand; NTS-,non- target strand (G). 
Mean ± s.d. for at least three independent replicates are plotted; two replicates for TEG donor in panel G.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. 2′- O- methyl (2′OMe)- RNA at 5′-ends of donors promote homology- directed repair (HDR) in mammalian cells.

https://doi.org/10.7554/eLife.72216
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between unmodified and RNA::TEG- modified donors narrowed to just 16 % ( 72.8% vs. 89.5%) precise 
reads (Figure 2H). The EMX1 donor with 90 - bp homology arms also supported high levels of HDR 
in K562 cells across a broad dose range. Notably, low doses of donor supported higher levels of 
HDR in K562 cells than in HEK293T cells, suggesting that K562 cells are more susceptible to editing 
(Figure 2—figure supplement 1). In this assay, donors modified with TEG alone exhibited no benefit 
over unmodified donors (Figure 2H and Figure 2—figure supplement 1). Baseline HDR efficiencies 
obtained with unmodified donors vary from locus to locus. This may be caused due to the differences 
in cutting efficiencies, chromatin structure, and microhomology near the DSBs. These factors may also 
influence the fold change increase by end- modified donors.

5′-Modifications increase potency of single-stranded DNA donors
The experiments described thus far employed dsDNA donors; however, long single- stranded DNA 
(ssDNA) or short ssODN donors are also widely used in many HDR editing protocols. We there-
fore decided to explore how 5′-end modifications affect single- stranded donors of different lengths. 
Using the TLR assay, we found that addition of RNA::TEG at the 5′-end of a long (800 nt) ssDNA 

Figure 2. End- modified donors promote homology- directed repair (HDR) at endogenous loci in mammalian cell cultures. (A) Schematic representation 
of the 5′-modified donor design for enhanced green fluorescent protein (eGFP) insertion and fluorescence- activated cell sorting (FACS) is shown. 
Efficacy of eGFP integration at (B) TOMM20 and (C) GAPDH (D) Sec61B loci in HEK293T cells using unmodified, triethylene glycol (TEG) or 2′- O- methyl 
(2′OMe)- RNA::triethylene glycol (TEG)- modified donors are plotted as percentage of GFP+ cells. Efficacy of eGFP integration at the (E) TOMM20 locus 
in human foreskin fibroblast (HFF) (747 bp knock- in with ~1 kb homology arms) and (F) Gapdh locus in Chinese hamster ovary (CHO) (1635 bp knock- 
in with ~800 bp homology arms) cells using double- stranded DNA (dsDNA) (500 ng) donors with and without 2′OMe- RNA::TEG modifications at the 
5′-ends. (G) Schematic representation of the dsDNA donor design used for quantification with deep sequencing is shown. (H) Illumina sequencing 
reads with precise knock- in are plotted for dsDNA donors with 90 bp homology arms at EMX1 locus in HEK293T cells. Mean ± s.d. for at least 
three independent replicates are plotted. p- Values were calculated using one- way ANOVA and in all cases end- modified donors were compared to 
unmodified donor unless indicated otherwise (Tukey’s multiple comparisons test; ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. RNA::TEG (triethylene glycol) donors with short (90 bp) homology arms are more potent than unmodified donors at EMX1 locus.

https://doi.org/10.7554/eLife.72216
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donor significantly boosted HDR compared to the unmodified ssDNA donor. The frequency of HDR 
increased with the dose of ssDNA donor, reaching maximal HDR (22.5 % GFP(+)cells) at 6–8 pmol 
donor amounts (Figure 3A, Figure 3—figure supplement 1A). The RNA::TEG- modified donor was 
greater than 4- fold more potent than the unmodified donor reaching a threshold of 16 % GFP(+) 
cells at a concentration of ∼2 pmol whereas achieving the same threshold of 16 % required 8 pmol of 
unmodified donor (Figure 3A).

High yields of HDR in cultured mammalian cells have been achieved using short synthetic ssODN 
donors (Richardson et  al., 2016). To test 5′-modified ssODNs for HDR efficacy, we used a sensi-
tive green- to- blue fluorescent protein (GFP- to- BFP) conversion assay in K562 cells. Precise editing 
converts a functional GFP sequence to BFP sequence, producing cells that are GFP(-) and BFP(+). 
Imprecise editing produces cells that are both GFP(-) and BFP(-) (Glaser et al., 2016). Using 66 nt 
long ssODN donors and titrating the amount over a range of 0.01–40 pmol, we found that RNA::TEG 
and unmodified donors produced similar maximal levels of HDR (47.5–52.8% BFP(+) cells). However, 
maximal HDR required 10- fold less RNA::TEG- modified ssODN than unmodified donors (Figure 3B). 
We also observed reduced levels of imprecise editing (GFP(-) and BFP(-)) as the frequency of HDR 
increased (Figure 3—figure supplement 1B). For both donor types, the decline in editing at higher 
doses correlated with the appearance of dead cells (data not shown), suggesting that dose- limiting 
toxicity scales with increased HDR potency.

The use of fully synthetic ssODN donors allowed us to explore additional modifications, including 
internal and 3′-modifications. Interestingly, 2′OMe- RNA, RNA::TEG, or TEG moieties at the 
3′-terminus did not enhance HDR compared to unmodified ssODN, and moreover, they blocked 
the ability of 2′OMe- RNA, RNA::TEG, or TEG moieties at the 5′-end to enhance HDR (Figure 3C, 
Figure 3—figure supplement 2). By contrast, HDR was neither enhanced nor impeded by phospho-
rothioate (PS) linkages placed at 5′- or 3′-terminal linkages at the doses tested (Figure 3—figure 
supplement 2). Taken together these findings suggest that the mechanism of HDR improvement 
requires an available 3′-OH.

Figure 3. End modifications increase potency of single- stranded oligodeoxynucleotide (ssODN) donors. (A) Editing efficacy plotted as percentage 
of green fluorescent protein (GFP+) (precise) HEK293T traffic light reporter (TLR) cells at different amounts of unmodified and 2′- O- methyl (2′OMe)- 
RNA::triethylene glycol (TEG)- modified long single- stranded DNA (ssDNA) donors (800 nt). (B) Editing efficacy of GFP- to- blue fluorescent protein (BFP) 
reporter conversion in K562 cells using different amounts of unmodified and 2′OMe- RNA::TEG- modified 66 nt single- stranded oligodeoxynucleotide 
(ssODN) donors plotted as percentage of BFP+ cells (homology- directed repair [HDR]). (C). Editing efficacy of GFP- to- BFP conversion in K562 cells using 
0.5 pmol of ssODN donors modified at the 5′-end alone, the 3′-end alone, or at both the 5′- and 3′-ends, with phosphorothioate (PS), TEG, 2′OMe- RNA, 
or 2′OMe- RNA::TEG, plotted as percentage of BFP+ cells (precise). Complete figure of panel C is shown, along with other modifications, in Figure 3—
figure supplement 2. Mean ± s.d. for at least three independent replicates are plotted. p- Values were calculated using one- way ANOVA and in all 
cases end- modified donors were compared to unmodified donor unless indicated otherwise (Tukey’s multiple comparisons test; ****p < 0.0001; ***p < 
0.001; **p < 0.01; *p < 0.05; ns, not significant).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. 2′- O- methyl (2′OMe)- RNA::triethylene glycol (TEG) modification of single- stranded DNA (ssDNA) donors results in reduced 
imprecise editing.

Figure supplement 2. Effects of terminal and non- terminal modifications of single- stranded oligodeoxynucleotide (ssODN) donors on homology- 
directed repair (HDR) efficacy.

https://doi.org/10.7554/eLife.72216
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5′-Modified donors promote precision germline editing in C. elegans
Efficient genome editing in C. elegans can be achieved by directly injecting mixtures of Cas9 RNP 
complex and donor into the syncytial ovary (Cho et al., 2013; Paix et al., 2015; Dokshin et al., 2018), 
producing dozens of independent precision editing events among the progeny of each injected 
animal (Ghanta and Mello, 2020). We designed unmodified, TEG- modified, and RNA::TEG- modified 
donors to insert gfp at the csr- 1 locus or to correct eft- 3p::gfp reporter that contains partial sequence 
of gfp (see Materials and methods; Figure 4A). To monitor injection quality, we co- injected a plasmid 
encoding the transformation marker rol- 6(su1006), which produces the Roller phenotype. The TEG- 
and RNA::TEG- modified donors produced about twice as many GFP(+) progeny per injected animal 
than did the unmodified donor (Figure 4B and E, two representative broods per donor). Among the 
Roller cohort, which was previously shown to exhibit lower editing efficiency (Ghanta and Mello, 
2020), end- modified donors increased the fraction of GFP(+) Roller progeny by several fold. For 
example, whereas the unmodified eft- 3 donor produced only 12.6 % GFP- positive Rollers, the TEG- 
and RNA::TEG- modified eft- 3 donors produced 57.1% and 49% GFP- positive Rollers (Figure 4C). Simi-
larly, GFP::CSR- 1(+) Rollers increased from 8.8 % (unmodified) to 28 % (TEG) and 32.8 % (RNA::TEG) 
(Figure 4F). TEG- and RNA::TEG- modified eft- 3 and csr- 1 donors produced >50% GFP(+) non- Roller 
progeny compared to roughly 22  % (eft- 3) and 30  % (csr- 1) GFP(+) non- Rollers produced by the 
unmodified donors (Figure 4D and G). Every GFP(+) animal tested transmitted the edit to the next 
generation (Figure 4—figure supplement 1). Thus, compared to the unmodified donors, the 5′-TEG 
and 5′-RNA::TEG donors substantially increase the frequency of gfp insertion by HDR in the C. elegans 
germline. Strikingly, end- modified donors frequently yielded more than 100 independent GFP(+) F1 
progeny from a single injected hermaphrodite.

5′-Modified donors promote precision editing in vertebrate zygotes
We next asked if donor 5′-modifications improve precision genome editing in zebrafish and mouse 
zygotes. For zebrafish genome editing, we designed 147 bp dsDNA donors to insert the 45 nt Avitag 
sequence into the 5′-end of the Hey2 coding sequence (Figure 5A). Unmodified or end- modified 
donors were co- injected with Cas12a RNPs into one- cell embryos (see Materials and methods), and 
editing efficiencies were quantified by high- throughput sequencing using genomic DNA isolated 24 hr 
after injection (Liu et al., 2019). Strikingly, the frequency of precise editing was 11- fold higher with the 
RNA::TEG (4.4%) donor than with the unmodified donor (0.4%) (Figure 5A). The TEG- modified donor 
however failed to enhance precise editing in zebrafish zygotes (Figure 5A). The total level of editing 
was comparable in each condition as shown by the fraction of reads with indels (Figure 5—figure 
supplement 1).

To test whether RNA::TEG- modified donors enhance precise editing in mouse zygotes, we targeted 
the Tyrosinase (Tyr) and Sox2 loci. First, we sought to convert the coat color of Swiss- Webster albino 
(Tyrc) mice to a pigmented phenotype (Tyrc- cor; cor: corrected) using a donor to replace the serine 103 
codon (TCT) with a cysteine (TGC) codon. The donor also introduces six silent mutations to prevent 
the guide RNA from directing cleavage of the edited locus (Figure  5B). We injected unmodified 
or RNA::TEG- modified donors with Cas9 RNPs into zygotes, transferred the embryos into pseudo- 
pregnant females, and quantified the repair efficiency by phenotyping the coat color of founder (F0) 
mice. The RNA::TEG- modified donor yielded more than twice as many pigmented F0 mice (37.9 % 
uniform or mosaic) compared to unmodified donor (17.4%) (Figure 5B, Figure 5—figure supplement 
2A). Strikingly, most (92%) of the edited founders produced by the RNA::TEG- modified donor had 
uniformly pigmented coats, whereas only 62.5 % of the edited F0 produced by the unmodified donor 
had a uniformly pigmented coat color (Figure 5C; Figure 5—figure supplement 2A), suggesting that 
the RNA::TEG- modified donor promotes editing during early zygotic divisions. Representative images 
of F0 litters with dark coat color are shown in Figure 5D. We confirmed that F0 mice with pigmented 
coat transmitted the corrected Tyrc- cor allele to F1 pups (Figure 5—figure supplement 2B, C). Taken 
together, these results show that RNA::TEG donors are at least 2- fold more efficient than unmodified 
donors in mouse zygote editing.

Next, we sought to insert a sequence encoding an in- frame V5 epitope immediately before the 
stop codon at the 3′-end of the Sox2 locus (Figure 5E). We injected unmodified or RNA::TEG- modified 
donors with Cas9 RNPs into zygotes, transferred the embryos into pseudo- pregnant mice, and geno-
typed F0 progeny by PCR across the Sox2 target site and Sanger sequencing. The V5 tag was precisely 

https://doi.org/10.7554/eLife.72216
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Figure 4. Modified donors promote precise editing in Caenorhabditis elegans. (A) Schematic showing end- modified double- stranded DNA (dsDNA) 
donors (25 ng/µl) with short (~35 bp) homology arms to insert gfp tag. (B) Number of green fluorescent protein (GFP) expressing animals among entire 
F1 brood of two representative P0 animals for each donor type are plotted for eft- 3p reporter locus. Fraction of F1 animals expressing GFP among (C) 
Roller and (D) non- Roller cohorts are plotted as percentage for eft- 3p locus. Similarly, (E) number of GFP expressing animals among two representative 
broods, fraction of F1 animals expressing GFP among (F) Roller and (G) non- Roller cohorts are plotted for csr- 1 locus. Open bars (Rollers) and closed 
bars represent (non- Rollers) median. Number of GFP expressing animals among total number of animals scored per cohort are shown above the 
bars. n ≥ 4 broods for each donor condition. p- Values were calculated using one- way ANOVA and in all cases end- modified donors were compared to 
unmodified donors (Tukey’s multiple comparisons test; ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Precise insertions are germline transmitted in Caenorhabditis elegans.

https://doi.org/10.7554/eLife.72216
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inserted into the Sox2 locus in only 5.7 % (n = 35) of F0 animals from the injection with unmodified 
donor. By contrast, the RNA::TEG- modified donor resulted in precise insertion of V5 in 33.3 % (n = 24) 
of the F0 animals—a greater than 5- fold increase in precise editing (Figure 5E and Figure 5—figure 
supplement 3A). All of the V5- positive founders tested (one F0 from the unmodified donor and six 
F0s from RNA::TEG- modified donor) transmitted the Sox2::V5 allele to F1 progeny and the insertion 
was confirmed by Sanger sequencing (Figure 5—figure supplement 3B, C). Thus, the 5′-RNA::TEG 
modification greatly improves the efficiency of precise genome editing in vertebrate model systems.

5′-Modifications suppress donor concatenation
Upon delivery into animal cells or embryos, linear DNA molecules are known to form extensive 
homology- mediated and ligation- dependent concatemers (Figure 6A; Perucho et al., 1980; Folger 
et al., 1982; Mello et al., 1991). We reasoned that 5′-modifications to the donor might suppress 

Figure 5. 2′- O- methyl (2′-OMe)- RNA- triethylene glycol (TEG) donors promote precise editing in vertebrate zygotes. (A) Unmodified, TEG, and 2′-OMe- 
RNA::TEG- modified double- stranded DNA (dsDNA) donors were injected into zebrafish zygotes. dsDNA donor design to knock- in Avi- tag is shown on 
the top and the fraction of Illumina reads containing precise knock- in are plotted as percentages. Mean ± s.d. for at least three independent replicates 
(two for unmodified donors) are plotted (B). Design of the dsDNA donors injected into mouse zygotes to precisely convert the coat color of albino mice 
(TyrC) to pigmented (TyrC- Cor) by editing C to G (underscored) along with six silent mutations (in red) is shown. Percentages of F0 founder mice with black 
coat are shown. (C) Percentages of animals among homology- directed repair (HDR)- positive F0s that have uniform dark coat or mosaic coat color are 
plotted for unmodified and 5′-modified donors. (D) Representative pictures of 10 - day- old F0 mice with pigmented (HDR) or white (wild- type [WT] or 
indel) coat color are shown. One mosaic mouse (third from left) can be seen among the pups obtained with end- modified donor. (E) Donor design to 
knock- in V5 tag at the C- terminus of Sox2 is shown on the top. Percentage of founder animals containing perfect V5 insertion at Sox2 locus are shown 
for each donor type. HA, homology arms. p- Values were calculated using one- way ANOVA (Tukey’s multiple comparisons test; ****p < 0.0001; ***p < 
0.001; **p < 0.01; *p < 0.05; ns, not significant).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Indel efficiencies in zebrafish zygotes.

Figure supplement 2. 5′-Modified donors improve targeted editing efficiency at the Tyr locus in albino mice.

Figure supplement 3. 5′-Modified donors improve targeted editing efficiency at the Sox2 locus in mouse zygotes.

https://doi.org/10.7554/eLife.72216
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the formation of concatemers, thereby making linear donors more available for HDR. To test this 
idea, we nucleofected 566 bp dsDNA donors into HEK293T cells, harvested cells over a course of 
3 days, and assessed the formation of concatemers by Southern blot analysis. We found that the 
unmodified dsDNA formed concatemers within 1  hr after nucleofection. These concatemers were 
composed of two to several copies of the DNA, inferred from the presence of a ladder of bands 
on the Southern blot (Figure 6B, Figure 6—source data 1). Concatemers of up to 10 copies were 
present within 3   hr after nucleofection and peaked in abundance by 12   hr. Concatemer levels 
declined over the next 12  hr but persisted at low levels until at least 72  hr after nucleofection. By 
contrast, the TEG- modified DNA showed a marked delay in the formation and levels of multimers 
(Figure 6B, Figure 6—source data 2). Dimers and trimers gradually formed over the first 12–24  
hr but were present at much lower levels than those formed by unmodified DNA. At late time 
points—24, 48, and 72  hr after transfection—we observed a greater fraction of TEG- modified DNA 
monomers than unmodified monomers (Figure 6B). These results suggest that the 5′-TEG modifica-
tion suppresses concatemer formation.

Figure 6. 5′-Modifications suppress donor ligation reactions. (A) Model for mechanisms of concatemer formation for unmodified donors is shown. 
(B) Southern blot of unmodified and triethylene glycol (TEG)- modified double- stranded DNA (dsDNA) (566 bp) nucleofected into HEK293T cells and 
collected at indicated time points. Concatemerization of unmodified DNA is visualized as ladders; 566 bp DNA and 13 kb long DNA are used as size 
markers (m). Number of GUIDE- seq reads with unmodified and TEG- modified short dsDNA (34 bp) integration for (C) whole genome and (D) on- target 
(ARHGEF9) and six previously validated off- target loci are plotted. Data from two biological replicates is shown.

The online version of this article includes the following figure supplement(s) for figure 6:

Source data 1. Uncropped full blot image of Figure 6B (0–24 hr).

Source data 2. Uncropped full blot image of Figure 6B (48–72 hr).

https://doi.org/10.7554/eLife.72216
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End-modifications suppress direct ligation of short DNA into DSBs
To determine if TEG modification suppresses the direct ligation of TEG- modified linear molecules 
into chromosomal DSBs, we performed GUIDE- seq analyses (Tsai et  al., 2015), which measures 
the incorporation of short (34- nt) dsDNA into on- target and off- target DSBs. Using the previously 
described dsDNA probe either with or without the TEG modifications, we targeted the ARHGEF9 
locus that was previously characterized for off- target editing (Amrani et  al., 2018). Strikingly, the 
TEG- modified DNA produced 19- fold fewer GUIDE- seq reads (genome wide) than did the unmodified 
DNA (Figure 6C). The number of TEG- modified DNA insertions obtained at the on- target cut site in 
the ARHGEF9 locus and at the top 6 off- target sites was dramatically reduced, ranging from 15- fold 
to 6- fold lower compared to insertions of the unmodified DNA (Figure 6D). Taken together these data 
suggest that TEG modifications suppress direct ligation of donor molecules both to each other and 
to chromosomal DSBs.

Discussion
Here, we have explored how several types of chemical modifications to the repair template DNA 
affect the efficiency of precise homology- dependent repair. In mammalian cells, donors containing 
simple modifications such as TEG or 2′OMe- RNA::TEG on their 5′-ends improved HDR efficacy. These 
modifications increased the potency of ssDNA and dsDNA (long and short) donors, allowing efficient 
editing at significantly lower amounts. Modifying the ends of the donors suppressed concatemer 
formation and reduced random integration of short dsDNA at chromosomal DSBs.

End modifications affected long and short donors differently in mammalian cells. On long donors 
end modification caused a ~2- to 5- fold increase in HDR frequency (total efficacy) compared to 
unmodified donors and did so without changing the donor concentration where efficacy reached 
its plateau. In contrast, on short donors end modifications did not increase the maximal efficacy of 
HDR, but instead dramatically reduced the amount of donor required to reach that maximal level. Put 
another way, long DNA donors exhibited both increased potency and maximal efficacy when modi-
fied, while short ssODN and dsDNA donors exhibited increased potency but no increase in maximal 
efficacy. This difference requires further study but could be explained if shorter donors and longer 
DNA donors experience different dose- limiting barriers. For example, the dose- limiting toxicity of 
ssODNs could be driven by total number of free DNA ends per cell, while longer molecules could 
encounter dose- limiting toxicity driven by total DNA mass. Consistent with this idea, unmodified long 
dsDNA donors begin to plateau in efficacy at nearly 4- fold more mass, but ~10  - fold lower molar 
amounts than ssODNs. When end- modified, both types of donor exhibit similar maximal efficacy in 
the 1–2 pmol range.

RNA::TEG- modified donors significantly increased the levels of precision editing in three different 
model organisms (C. elegans, zebrafish, and mice). In all three animals, high HDR efficiencies were 
achieved using end- modified dsDNA donors, which in some cases approached efficiencies previously 
observed for ssODN donors (Dokshin et al., 2018; Kan et al., 2017). Importantly, precise insertions 
were obtained with relatively short homology arms. For example, in mouse zygote injections, we used 
donors with homology arms of less than 90 bp, similar to typical arm lengths used for ssODN donors 
(Quadros et al., 2017) and at relatively low concentrations (1 ng/µl).

How do end modifications help increase the efficacy of the donors? Our findings suggest that 
they do so, in part, by suppressing non- homologous end- joining reactions. In several systems dsDNA 
donors have been shown to quickly form extrachromosomal arrays (Perucho et al., 1980; Folger 
et al., 1982; Mello et al., 1991) and may do so directly in the cytoplasm (Forbes et al., 1983). For 
example, DNA delivered into the cytoplasm of the C. elegans gonadal syncytium gains entry into 
oocytes over a 24  hr period in a manner more consistent with cytoplasmic flow than with direct 
nuclear uptake by germ nuclei (Ghanta and Mello, 2020), and transformants established in this way 
have been shown to contain concatenated arrays of injected DNA, several hundred kilobases in 
length, which then partition to progeny in a non- Mendelian fashion as extrachromosomal elements 
(Mello et al., 1991; Stinchcomb et al., 1985). Integration of similar extrachromosomal arrays into 
the host genome have been reported in zebrafish and mouse zygotes (Stuart et al., 1988; Lacy 
et al., 1983; Costantini and Lacy, 1981). Thus, the suppression of donor concatemer formation by 
5′-modified donors could increase the effective molar amounts of donor available for precise repair 

https://doi.org/10.7554/eLife.72216
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of the target DSB. Similarly, once in the nucleus, the suppression of direct ligation to chromosomal 
DNA through end- joining reactions could further increase precision repair. Perhaps consistent with 
suppression of concatenation as a major mechanism of action, it is intriguing that modification of a 
single end was nearly as effective as modifications to both ends of the donor. In principle, a single 
end modification would limit concatenation to dimer formation. Similarly, modification of a single 
end could prevent donors from ligating into circles which might then concatenate further through 
HDR.

In addition to increasing the amount of available donor molecules, another possible benefit of 
suppressing end- joining reactions is that the free ends of the donor might then be available to partic-
ipate in the HDR mechanism (e.g., by assembling elements of the DSB repair machinery directly on 
the free 3′-end of the donor). We found that a free unmodified 3′-end was required for efficient HDR. 
Thus, by suppressing ligation, the 5′-modification in effect maintains available 3′-ends, perhaps to 
prime repair synthesis.

In previous studies, fluorescent and amine modifications to the 5′- and 3′-termini of ssODN donors 
did not improve HDR efficacy over unmodified donors (Lee et al., 2017). Similarly, PS linkages were 
shown to improve HDR (Renaud et al., 2016). However, these studies were performed using much 
higher concentrations than the optimal concentrations for modified donors determined here. In our 
study, ssODNs with PS linkages did not improve HDR at doses where RNA::TEG- and TEG- modified 
donors were most efficacious. While our study was in preparation (Ghanta, 2018), three studies 
explored donors with 5′-end modifications. One study showed that the addition of biotin improved 
HDR and favored single copy insertion in the rice fish medaka (Gutierrez- Triana et al., 2018). The 
biotin moiety was attached to the donor via a polyethylene glycol (PEG) linker, but the study did not 
explore donors with PEG alone. Yu et al., 2020, showed that PEG10 with a 6- carbon linker boosted 
precise GFP insertions in vertebrate cells similar to those reported here for TEG- and RNA::TEG- 
modified donors, and at similar concentrations to those we employed (Yu et al., 2020). The third 
study describes the suppression of NHEJ- mediated insertions using donors with 5′-biotin::PEG or 
5′-ssDNA::PEG moieties in non- transformed cells (Canaj, 2019). Our studies are in agreement with 
these findings and extend them to additional modifications and to in vivo genome- editing applica-
tions in three animal systems.

Explorations of how modifications to the donor, both chemical and physical in nature, might alter 
HDR efficacy are far from complete. For example, a physical pre- treatment to the donor that enhanced 
HDR was discovered serendipitously when attempting to anneal oligonucleotides to the ends of a 
PCR donor. The act of simply melting and cooling long dsDNA PCR donors (~1 kb in length) improved 
HDR efficacy in C. elegans by an order of magnitude (Ghanta and Mello, 2020). Preliminary findings 
suggest that melting an 800 bp donor did not improve HDR efficiency in human cells (data not shown) 
but further studies are required to more rigorously test the impact of melting donors of greater length, 
and directed at more target sites, and of course to explore other physical perturbations.

The chemistry space for donor modification is also vast and remains largely unexplored. We do 
not know why donors modified with TEG and RNA::TEG performed similarly in C. elegans, while 
RNA::TEG was consistently superior to TEG alone in zebrafish and human cells. The C. elegans 
system is unique in that it targets meiotic pachytene nuclei. Perhaps TEG alone is sufficient to stabi-
lize donor molecules for HDR in meiotic cells that are actively engaged in DNA recombination, while 
increased stability is required to enable donors to persist longer and thus to engage a much less 
active HDR repair machinery in mitotic cells. The RNA::TEG modification might therefore facilitate 
editing in mitotic cells by providing this measure of improved protection from nuclease activity 
compared to TEG alone. PS linkages are known to protect against nuclease activity (Renaud et al., 
2016), and it will therefore be interesting to explore whether a combination of internal (e.g., PS 
linkages) and terminal (e.g., 5′-RNA::TEG or 5′-TEG) modifications can further increase HDR efficacy. 
Indeed, our results should incite the search for additional chemistries that could boost donor stability 
while still allowing the donor to serve as a template for repair polymerases; some such studies are 
underway in our laboratories. Future studies will also need to explore whether the incorporation of 
donor chemistries will synergize with other methods that stimulate HDR (Lin et al., 2014; Wienert 
et al., 2020; Chu et al., 2015; Maruyama et al., 2015; Gutschner et al., 2016; Yang et al., 2016; 
Ling et al., 2020).

https://doi.org/10.7554/eLife.72216
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Materials and methods
Synthesis of PNA-NLS peptide
PNA oligomers were synthesized at 2 µmol scale on Fmoc- PAL- PEG- PS solid support (Applied Biosys-
tems) using an Expedite 8909 synthesizer. Fmoc/Bhoc- protected PNA monomers (Link Technologies) 
were dissolved to 0.2 M in anhydrous N- methylpyrrolidinone. Amino acid monomers (Sigma Aldrich) 
and AEEA linker (Link Technologies) were dissolved to 0.2  M in anhydrous dimethylformamide. 
Coupling time was 8.5 min using HATU (Alfa Aesar) as activator; double coupling was performed on 
all PNA monomers and amino acids. PNAs were cleaved and deprotected by treating the resin with 
400 µl of 19:1 TFA:m- Cresol for 90 min at room temperature. The resin was then removed with a 
PTFE centrifugal filter and PNAs were precipitated from cold diethyl ether and resuspended in deion-
ized water. PNAs were purified by HPLC on a Waters XSelect CSH C18 5 µm column at 60 °C, using 
gradients of acetonitrile in water containing 0.1 % TFA, and were characterized on an Agilent 6530 
Q- TOF LC/MS system with electrospray ionization. The PNA::NLS sequence used was GCGCTCGG-
CCCTTCC-[AEEA linker]-PKKKRK.

Synthesis of PEGylated oligos
PEG- modified oligonucleotides were synthesized using standard phosphoramidite methods on an 
ABI 394 synthesizer. Phosphoramidites were purchased from ChemGenes. Coupling times for 2′OMe- 
RNA and spacer phosphoramidites were extended to 5  min. Oligonucleotides were deprotected 
in concentrated aqueous ammonia at 55 °C for 16 hr. Oligonucleotides were desalted using either 
Nap- 10 (Sephadex) columns or Amicon ultrafiltration. All the PEG- modified oligonucleotides were 
characterized on an Agilent 6530 Q- TOF LC/MS system with electrospray ionization. The 2′-OMe RNA 
sequence appended to the 5′-end of donor DNAs was GGAAGGGCCGAGCGC.

PEGylated oligos can also be purchased from commercial sources such as Integrated DNA Technol-
ogies (IDT) at 100 nmol scale with simple desalting.

dsDNA donor generation
Donor template sequences with the homology arms and the desired insert for knock- in (eg: gfp) were 
generated by PCR. PCR products were cloned into ZeroBlunt TOPO vector (Invitrogen, #450245) 
and plasmids were purified using Macherey- Nagel midi- prep kits (cat# 740412.50). Using the puri-
fied plasmids as templates and PEGylated oligos as primers, donor sequences were PCR- amplified 
with Q5 (NEB, C. elegans) or Q5 or Phusion polymerase (NEB, mammalian). Before use in C. elegans 
microinjections, the resulting PEGylated PCR products were excised from 0.8% to 1% TAE agarose 
gel and purified using spin columns (Omega, #D2501- 02). For use in mammalian cells, the PEGylated 
long PCR products were purified using spin columns (Qiagen, #28104) and short PCR products were 
gel- extracted (Omega, #D2501- 02) and then purified again with Ampure XP beads.

ssDNA donor generation
Long ssDNA donors were prepared using the protocol described by Li et al., 2019. Briefly, the donor 
template containing the T7 promoter was amplified using standard PCR and purified using SPRI 
magnetic beads (Core Genomics). T7 in vitro transcription was performed using the HiScribe T7 High 
Yield RNA Synthesis kit (NEB) and the RNA was purified using the SPRI magnetic beads. Finally, the 
ssDNA donor was synthesized by TGIRT- III (InGex)- based reverse transcription using the synthesized 
RNA as a template and a TEG- modified or -unmodified DNA primer. We then performed base treat-
ment to remove RNA. The donor was again purified using SPRI beads.

Expression and purification of SpyCas9
The pMCSG7 vector containing the 6xHis- tagged 3xNLS SpyCas9 was a gift from Scot Wolfe at UMass 
Medical School. This construct was transformed into the Rosetta 2 DE3 strain of Escherichia coli for 
protein production. Expression and purification of SpyCas9 was performed as described previously 
(Jinek et al., 2012). Briefly, cells were grown at 37 °C to OD600 of 0.6, at which point 1 mM IPTG 
(Sigma) was added and the temperature was lowered to 18  °C. Cells were grown overnight and 
harvested by centrifugation at 4000 g. The protein was purified first by Ni2+ affinity chromatography, 
then by cation exchange and finally by size- exclusion chromatography.

https://doi.org/10.7554/eLife.72216
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Illumina sequencing (mammalian cells)
Regions of interest were amplified from genomic DNA and sequenced on an Illumina MiniSeq plat-
form. PCR1 (98°C—2  min, 24 cycles of (98°C—15  s, 64°C—20  s, 72°C—15  s), 72°C—5  min) was 
performed using 200 ng gDNA, 1.25 µl of 10 µM forward and reverse primers that contain Illumina 
adapter sequences, 12.5 µl NEBNext UltraII Q5 Master Mix, and water to bring the total volume to 
25 µl. PCR2 (98°C—2 min, 10 cycles of (98° C—15 s, 64°C—20 s, 72°C—15 s), 72°C—5 min) was done 
using 1 µl of unpurified PCR1 reaction mixture, 1.25 µl of 10 µM forward and reverse primers that 
contain unique barcode sequences, 12.5 µl NEBNext UltraII Q5 Master Mix, and water to bring the 
total volume to 25 µl. PCR2 products were first analyzed using 2 % agarose gel electrophoresis, and 
then similar amounts were pooled based on the band intensities. Pooled PCR2 products were first 
purified by gel extraction (Qiagen) and purified again by PCR cleanup columns (Qiagen). Concentra-
tion of final purified library was determined by Qubit (High Sensitivity DNA assay). The integrity of 
library was confirmed by Agilent Tapestation using Agilent High Sensitivity D1000 ScreenTape kit. 
The library was then sequenced on an Illumina Miniseq platform according to the manufacturer’s 
instructions using MiniSeq Mid Output Kit (300 cycles). Sequencing reads were demultiplexed using 
bcl2fastq2 (Illumina) and CRISPResso2 (Clement et al., 2019) was used to align the reads and quantify 
editing efficiencies. Quantification window size was set as 30 to ensure the stringent analysis. HDR 
efficiency was calculated as percentage of (precise HDR reads)/(total reads).

GUIDE-seq experiment
Two PS linkages were incorporated between the first three and the last three nucleotides in the 
dsODN tags. Unmodified dsODN does not contain any further modifications whereas modified 
dsODN contains 5′ TEG (SP9) modification (IDT). Sequencing libraries were prepared as previously 
described (Tsai et al., 2015); 1 pmol of dsODN was used. Data was processed and analyzed using the 
GUIDE- seq analysis software (Tsai et al., 2015).

Cell culture and transfections
HEK293T cells were obtained from ATCC and were cultured in standard DMEM medium (Gibco, 
#11995) supplemented with 10 % fetal bovine serum (FBS) (Sigma, #F0392). HFF were maintained 
in DMEM medium supplemented with 20 % FBS. CHO cells (obtained from ATCC) were cultured in 
F- 12K medium (Gibco 21127022) supplemented with 10 % FBS, and K562 cells were cultured in IMDM 
medium (Gibco 12440053) supplemented with 10 % FBS. Traffic Light Reporter Multi- Cas Variant 1 
reporter cells were previously described (Iyer, 2019). Mycoplasma tests were performed prior to the 
experiments and all the cell lines tested negative for contamination. Electroporations were performed 
using the Neon transfection system (ThermoFisher). SpyCas9 was delivered either as a plasmid or 
as protein. For plasmid delivery of Cas9 and sgRNA, 10 µl of the mixtures containing appropriate 
amounts of plasmids and 100,000 cells in Neon buffer- R (ThermoFisher) were nucleofected (see manu-
facturer’s protocol). For RNP delivery of Cas9 (IDT), GFP- to- BFP assay (20 pmol Cas9 and 25 pmol of 
crRNA- tracrRNA), EMX1- HEK293T (5 pmol Cas9, 10 pmol sgRNA (IDT)), EMX1- K562 (10 pmol Cas9, 
20 pmol sgRNA), were mixed with buffer R. This mixture was incubated at room temperature for 
30 min followed by the addition of 100,000 cells that were already resuspended in buffer R; 10 µl of 
this mixture containing appropriate concentrations mentioned above were then electroporated using 
the 10 µl Neon tips. Electroporation parameters (pulse voltage, pulse width, number of pulses) were 
1150 V, 20 ms, 2 pulses for HEK293T cells, 1650 V, 10 ms, 3 pulses for CHO cells, 1400 V, 30 ms, 1 
pulse for HFF cells and 1600 V, 10 ms, 3 pulses for K562 cells. Electroporated cells were harvested for 
fluorescence- activated cell sorting (FACS) analysis 48–72 hr post electroporation unless mentioned 
otherwise. Donor amounts presented in the figures represent number of moles of donor nucleofected 
per 100,000 cells in 10 µl mixtures (e.g., 1 pmol of donor represents 0.1 µM used for nucleofection).

K562 GFP+ stable cell line generation
Lentiviral vector expressing eGFP was cloned using the Addgene plasmid #31482. The eGFP sequence 
was cloned downstream of the SFFV promoter using Gibson assembly. For lentivirus production, the 
lentiviral vector was co- transfected into HEK293T cells along with the packaging plasmids (Addgene 
12260 and 12259) in six- well plates using TransIT- LT1 transfection reagent (Mirus Bio) as recommended 
by the manufacturer. After 24  hr, the medium was aspirated from the transfected cells and replaced 

https://doi.org/10.7554/eLife.72216
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with fresh 1 ml of fresh DMEM media. The next day, the supernatant containing the virus from the 
transfected cells was collected and filtered through a 0.45 µm filter; 10 µl of the undiluted supernatant 
along with 2.5 µg of Polybrene was used to transduce ~1 million K562 cells in six- well plates. The 
transduced cells were selected using media containing 2.5 µg/ml of puromycin. Less than 20 % of the 
transduced cells survived, and these were then diluted into 96- well plates to select single clones. One 
of the K562 GFP+ clones was used for the analysis shown in this study. Cas9 was electroporated into 
the K562 GFP+ cells as RNP (20 pmol) with a crRNA targeting the GFP sequence. ssODN (66 nt) with 
or without end modifications was provided as donor template to convert the GFP coding sequence 
to the BFP coding sequence. % BFP(+) (HDR) and % GFP(-) BFP(-) (NHEJ) cells were quantified using 
flow cytometry.

Flow cytometry
The electroporated cells were analyzed on a MACSQuant VYB from Miltenyi Biotec. Cells were gated 
first based on forward and side scattering to select ‘live’ cells and then for single cells. GFP- positive 
cells were identified using the blue laser (488 nm) and 525/50 nm filter whereas for the detection 
of mCherry- positive cells, yellow laser (561 nm) and 615/20 nm filter were used. BFP- positive cells 
were identified using the violet laser (405 nm) and 450 ± 50 nm filter. The gating strategy is shown in 
Supplementary file 3.

Southern blotting to visualize donor concatemers dsDNA donors (566 bp) were prepared using 
DIG labeled dUTP nucleotide mix (Sigma Aldrich #11585550910); 1.5 pmol of gel- extracted DNA was 
nucleofected into HEK293T (100,000) cells (Cas9 or guide RNAs were not added to the mix). Nucle-
ofected cells were collected at various time points and pellets were frozen at –80 ° C until processed 
for DNA extraction. Total DNA was extracted using buffered phenol: chloroform: isoamyl alcohol and 
quantified using Qubit (HS- DNA). Total DNA (genomic+ exogenous) of 200 ng (0–24 hr) or about 
800 ng (48  and 72 hr) was used for agarose gel (0.8%) electrophoresis. Higher amounts of DNA were 
loaded for the later time points to blot for roughly equal amounts of exogenous DNA and to account 
for the increase in total cell number over the time course; 200 pg of 566 bp and 800 pg of 13 kb 
DIG labeled PCR DNA were used as size markers. After electrophoresis agarose gel was treated with 
0.25 N HCl (depurination) for 10 min followed by three washes with distilled water. The gel was then 
treated with denaturing solution (0.5 M NaOH and 1.5 M NaCl) for 20 min and another 30 min with 
fresh solution; followed by neutralization (2 washes 10 min each) with alkaline transfer buffer (5×SSC 
with 10 mM NaOH). Using alkaline transfer buffer, DNA was then transferred for 3  hr with upward 
capillary action onto positively charged nylon membrane (Amersham Hybond N+, RPN303B). After 
transfer, membrane was soaked in 5×SSC for 10 min and UV crosslinked. Blots were then processed 
using DIG Wash and Block buffer set (Sigma Aldrich #11585762001) according to the manufactur-
er’s protocol. Briefly, membrane was blocked in 1 × blocking solution with maleic acid for 30 min, 
incubated with 1:20,000 Anti- Digoxigenin- AP, Fab fragments (Sigma Aldrich #11093274910) in 1 × 
blocking solution for 1  hr, washed twice with 1 × wash buffer, incubated in 1 × detection buffer and 
developed using CDP- star (Sigma Aldrich #12041677001).

C. elegans microinjection and HDR screening
Microinjections were performed using Cas9 RNPs as previously described (Ghanta and Mello, 
2020). dsDNA donors were generated by PCR; 25 ng/µl of unmodified or end- modified dsDNA 
donors were used in each injection mixture. Donors were heated and quick- cooled as previously 
described (Ghanta and Mello, 2020). Starting strain that is homozygous for 3XFLAG::GlyGly-
Gly::TEV::CSR- 1 allele was used to knock- in gfp sequence between flag and glycine- linker. crRNA 
( CTATAAAGACGATGACGATA NGG) with PAM site in the glycine- linker and donor DNA with 
arms homologous to 35 bp of 3xflag and 30 bp of 3xglycine- linker::tev flanking the gfp sequence 
were used. Loss of function WM702 (eft3p::gfp(ne4807)) reporter strain was generated in EG6070 
(oxSi221 [eft- 3p::GFP+ Cbr- unc- 119(+)] II) strain background using CMG- 48 and CMG- 49 guides 
(see Supplementary file 1). Rol- 6 (su1006) plasmid was used as co- injection marker. This marker 
plasmid forms episomal non- integrating extrachromosomal elements that transiently mark a subset 
of progeny by causing them to exhibit an easily scored Roller phenotype. Under the conditions 
used, high- quality injections into both gonad arms yielded 20–40 Roller progenies from each 
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injected animal. For each donor type entire F1 broods from four or more injected animals were 
scored and tabulated the total number of GFP- positive progeny and the number of GFP- positive 
Roller progeny.

Zebrafish experiments
Fish care
Fish were maintained in accordance with the protocols set by the University of Massachusetts Medical 
School Institutional Animal Care and Use Committee. All the injections were performed into embryos 
derived from in- crosses of the EK wild- type (WT) line.

Zebrafish zygote microinjections
One cell- staged embryos were injected with 30  pg of either unmodified or end- modified donors 
together with 24  fmol RNP of modified Cas12a protein (Lb- 2C- Cas12a) and modified crRNA (dr 
crRNA) per embryo as described previously (Liu et al., 2019), targeting 5′-end of the hey2 coding 
sequence. Embryos were incubated for 24   hr post injection, genomic DNA was extracted, and 
libraries for amplicon sequencing were prepared. For library construction, linear amplification using 
a single primer containing UMI was performed first, followed by PCRs for exponential amplification 
and barcode stitching were performed as described previously (Liu et al., 2019). Quantification of the 
reads containing indels and precise knock- ins of Avi- tag was performed using the Python script depos-
ited at the GitHub repository: (https:// github. com/ locusliu/ PCR_ Amplicon_ target_ deep_ seq/ blob/ 
master/ CRESA- lpp. py; copy archived at swh:1:rev:4c1209cc15d1a90a1fa8a757677e23e59ba2ed44, 
Liu, 2021). All the experiments were performed in three independent replicates except injections 
with unmodified donors which were performed in duplicates.

Mouse experiments
Strains and microinjection
All the mouse experiments were conducted according the UMMS Institute Animal Care and Use 
Committee (IACUC). C57BL/6 J (Stock #000664) and Swiss- Webster (Stock #SW) were obtained from 
Jackson Laboratory and Taconic, respectively. All the animals were maintained in a 12 hr light/dark 
cycle. Superovulated females were mated, and their zygotes were collected at E0.5. Male pronu-
clei were injected with the injection mixtures described below. Finally, zygotes were transferred to 
pseudo- pregnant recipients and allowed to go to term.

Donor preparation
Using plasmids as templates and either unmodified or end- modified oligos as primers, donor 
sequences were PCR- amplified with Q5 polymerase (NEB). The resulting PCR products were excised 
from 0.8 % TAE agarose gel and purified using spin columns (Omega, #D2500). Gel- extracted DNA 
was further purified with 1.5 × AMPure XP (Beckman Coulter) beads according to the manufacturer’s 
protocol and eluted in nuclease- free water. Before use in microinjection mixes, dsDNA donors were 
subjected to heating and cooling protocol in thermal cycler as described previously (Ghanta and 
Mello, 2020).

Injection mixture preparation
Injections mixes were prepared with the following final concentrations: S.p. Cas9 Protein (50 ng/µl) 
(IDT); S.p. Cas9 mRNA (50 ng/µl) (TriLink; L- 7206); sgRNA (20 ng/µl) (IDT); dsDNA donor (1 ng/µl). 
Cas9 protein, sgRNA, and TE (pH 7.5) were incubated at 37 °C for 20 min. This mixture was then 
equally split into two tubes and the following components were added to each tube: Cas9 mRNA, 
dsDNA donor (either unmodified or 5′ 2′OMe- RNA::TEG modified), TE (pH 7.5) to bring the total 
volume to 50 µl. After pipetting well, the final injection mixtures were centrifuged at 14,000 g for 
2 min and 46 µl was taken from the top (to avoid particles that may clog the needles) and transferred 
to fresh tubes. All the steps were performed at room temperature. Mixtures were kept on ice and 
directly loaded into the needles for microinjection.

https://doi.org/10.7554/eLife.72216
https://github.com/locusliu/PCR_Amplicon_target_deep_seq/blob/master/CRESA-lpp.py
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Genotyping
Tail clips of Sox2- V5 founder animals were collected at P10, genotyped by PCR and Sanger- sequenced 
to confirm precise insertion. To confirm germline transmission, some of the HDR- positive F0 animals 
were mated with WT animals and tail clips of F1 animals were genotyped.

Oligo sequences
Sequences of all the guide RNAs used in this study are provided in Supplementary file 1 and 
sequences of all the primers used are provided in Supplementary file 2.

Statistical analyses
All the statistical analyses were performed using GraphPad Prism. The type of analysis performed and 
the p- value information can be found in respective figures and figure legends.
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