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MTOR (mechanistic target of rapamycin) is a widely recognized
integrator of signals and pathways key for cellular metabolism,
proliferation, and differentiation. Here we show that conditional
knockout (cKO) of Mtor in either primordial or growing oocytes
caused infertility but differentially affected oocyte quality, granu-
losa cell fate, and follicular development. cKO of Mtor in nongrow-
ing primordial oocytes caused defective follicular development
leading to progressive degeneration of oocytes and loss of gran-
ulosa cell identity coincident with the acquisition of immature
Sertoli cell-like characteristics. Although Mtor was deleted at the pri-
mordial oocyte stage, DNA damage accumulated in oocytes during
their later growth, and there was a marked alteration of the tran-
scriptome in the few oocytes that achieved the fully grown stage.
Although oocyte quality and fertility were also compromised when
Mtor was deleted after oocytes had begun to grow, these occurred
without overtly affecting folliculogenesis or the oocyte transcriptome.
Nevertheless, there was a significant change in a cohort of proteins in
mature oocytes. In particular, down-regulation of PRC1 (protein reg-
ulator of cytokinesis 1) impaired completion of the first meiotic divi-
sion. Therefore, MTOR-dependent pathways in primordial or growing
oocytes differentially affected downstream processes including fol-
licular development, sex-specific identity of early granulosa cells,
maintenance of oocyte genome integrity, oocyte gene expression,
meiosis, and preimplantation developmental competence.
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ongrowing primordial oocytes surrounded by flattened so-

matic cells form primordial follicles that develop perinatally,
persist throughout mammalian female reproductive life, and
serve as the source of growing follicles. Primordial oocytes are,
therefore, the storage form of oocytes and are sometimes consid-
ered quiescent or dormant, although processes needed to maintain
oocyte viability obviously must be sustained for prolonged
periods—for years in some species. Other potential activities of
primordial oocytes that may be necessary for fertility are unknown.
Oocyte and follicular development initiates with the transition of
the primordial oocytes to an active growing stage and the pro-
liferation of the surrounding somatic cells, the granulosa cells.
Then, together, the growing oocyte and proliferating granulosa
cells embark on a complex and coordinated program of oocyte
and follicular development that culminates in ovulation of a ma-
ture egg (1-3). The lineage, differentiation, and function of
granulosa cells, particularly those closely associated with oocytes,
is dependent upon paracrine factors secreted by oocytes (4-8),
although it is not clear whether the presence of the oocyte par-
ticipates in sustaining the sex-specific developmental and func-
tional identity of granulosa cells (9-11).

MTOR (mechanistic target of rapamycin) is widely recognized
as an integrator of signals and pathways key for cellular metabo-
lism, proliferation, and differentiation (12). It controls myriad life
processes by linking extra- and intracellular cues from nutrients,
stress, growth factors, and hormones, and its dysfunction is asso-
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ciated with an increasing number of pathological conditions, in-
cluding cancer, obesity, type 2 diabetes, and neurodegeneration
(12-14). In mouse ovarian follicles, the MTOR pathway is selec-
tively activated in cumulus cells, the granulosa cells surrounding
oocytes, before ovulation induction, and this specific activation is
partially attributable to oocyte-suppressing expression of Ddit4l, a
negative regulator of MTOR (15). This oocyte-enabled activation
of MTOR is crucial for the development and survival of both
cumulus cells and oocytes (15). Mror is also robustly expressed in
oocytes; however, its function, especially its specific roles in the
control of coordinated development and function of oocytes and
granulosa cells, was unknown. Here, we deleted Mtor specifically
in oocytes at two different developmental stages: primordial and
growing oocytes. Both conditional knockouts (cKOs) caused in-
fertility, demonstrating the crucial role of oocyte-expressed
Mtor in female reproduction; however, the resultant oocyte and
granulosa cell phenotypes differed in these two cKOs, reflecting
changing functions of the MTOR-dependent pathways during
oocyte development.

Significance

MTOR (mechanistic target of rapamycin), an integrator of path-
ways important for cellular metabolism, proliferation, and dif-
ferentiation, is expressed at all stages of oocyte development.
Primordial oocytes constitute a nonproliferating, nongrowing
reserve of potential eggs maintained for the entire reproductive
lifespan of mammalian females. Using conditional knockouts,
we determined the role of MTOR in both primordial and grow-
ing oocytes. MTOR-dependent pathways in primordial oocytes
are not needed to sustain the viability of the primordial oocyte
pool or their recruitment into the cohort of growing oocytes but
are essential later for maintenance of oocyte genomic in-
tegrity, sustaining ovarian follicular development, and fertil-
ity. In growing oocytes, MTOR-dependent pathways are required
for processes that promote completion of meiosis and enable
embryonic development.
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Results and Discussion

Oocyte-Specific Knockout of Mtor Compromises Oocyte Quality and
Female Fertility in Mice. MTOR was expressed in both the oocytes
and granulosa cells of all stages of follicles being examined (SI
Appendix, Fig. S1 A and B). To assess the function of oocyte-
expressed MTOR, we produced Mtor oocyte-cKO mice by crossing
female mice carrying the conditional allele of Mtor (Mtor™ <)
with male transgenic (Tg) mice [Tg(Gdf9-icre)5092Co0 and
Tg(Zp3-cre)93Knw mice] expressing the transgene for Cre recom-
binase specifically in oocytes at either primordial or early growing
stages (Fig. 14) (16). We refer to the Gdf9-CRE-mediated cKO in
primordial oocytes as “Mtor-GcKO” and the Zp3-CRE-mediated
cKO in growing oocytes as “Mtor-Z¢cKO.” Both immunofluores-
cence (IF) and Western blot analyses showed that MTOR was
nearly undetectable in primordial oocytes of Mtor-GcKO ovaries
and at all subsequent oocyte stages (Fig. 1B and SI Appendix, Fig.
S1C). In Mtor-ZcKO ovaries, MTOR was present at normal levels
in primordial oocytes, but only trace levels, probably residual pro-
tein from primordial follicles, were detected in growing oocytes (Fig.
1B and SI Appendix, Fig. S1C). These data confirmed the effec-
tiveness of the specific deletion of MTOR in the primordial and
growing oocytes, respectively, by these two cKOs. Furthermore,
Western blot analysis revealed that both MTOR and its down-
stream activities were barely detected in the fully grown oocytes
(FGOs) of both cKO mice (Fig. 1C), thus indicating the efficient
abrogation of the MTOR pathways.
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Fertility testing revealed that, unlike WT female mice that
produced about six litters per mouse during 8-10 mo of breeding,
with an average of about six mice per litter, Mftor-GcKO females
were completely infertile (Fig. 1D). Mtor-ZcKO females were
nearly infertile (Fig. 1D): Only one of the tested Mtor-ZcKO fe-
males conceived during the entire fertility testing period, and that
female produced only one litter with only one pup (Fig. 1D).
Therefore, oocyte MTOR is indispensable for female fertility in
mice. Mtor-GcKO and Mtor-ZcKO females ovulated an average
of 3 and 30 oocytes, respectively, compared with an average of
43 ovulated oocytes in WT females (Fig. 1D). Only about 20% of
the cKO-ovulated oocytes underwent successful fertilization and
development to the two-cell stage after in vitro fertilization (IVF)
with normal sperm (Fig. 1D), and 10% or less of the fertilized
cKO-oocytes developed to blastocysts in culture (Fig. 1D and ST
Appendix, Fig. S24). The latter result was repeated with the oocytes
that underwent in vitro maturation (SI Appendix, Fig. S2 B and C).
In sum, the ovulation rate was dramatically reduced when Mtor was
deleted at the primordial oocyte stage but was reduced only slightly
when Mtor was deleted at the growing oocyte stage. Oocyte de-
velopmental competence was severely compromised in both Mtor-
GcKO and Mtor-ZcKO oocytes (SI Appendix, Table S1).

Defective Development of the Follicles and Granulosa Cells in Mtor-GcKO
but Not Mtor-ZcKO Ovaries. Follicular development was quantified
to explore the basis for the reduced ovulation rate, particularly in
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Infertility and compromised oocyte quality in cKO mice. (A) Schematic illustration of the stages at which GDF9-Cre and ZP3-Cre are expressed. Ex-

pression of GDF9-Cre and ZP3-Cre starts in primordial and growing oocytes, respectively. (B) IF staining of MTOR in 21-d-old WT, Mtor-GcKO, and Mtor-ZcKO
ovaries. MTOR and DNA are stained in magenta and blue, respectively. Arrows point to oocytes in primordial follicles; asterisks indicate growing oocytes.
(Scale bars, 50 pm.) (C) Western blot analysis of the expression of MTOR and the activated form of its major downstream effectors—pRPS6KB1, pRPS6,
pEIFAEBP1, and p»AKTse"‘B—and the internal control ACTB in WT, Mtor-GcKO, and Mtor-ZcKO FGOs. (D) Number of pups born and number of oocytes
ovulated by WT and Mtor-cKO females and the rate of two-cell and blastocyst formation by ovulated WT and Mtor-cKO oocytes after IVF. *P < 0.05,
compared with the WT or control by student’s t test. Data represent the mean + SEM.
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Mtor-GcKO females. Neither of the cKOs affected the number
of primordial follicles when quantified in the ovaries of 21-d-
old mice (SI Appendix, Fig. S3); thus MTOR-dependent path-
ways were not necessary for the survival of the primordial oocyte
pool, at least to this age. However, there were fewer large sec-
ondary and more primary follicles in the ovaries of 21-d-old
Mtor-GecKO prepubertal mice (Fig. 24 and SI Appendix, Fig.
S3A4), indicating defective follicular development beyond the pri-
mary stage. Nevertheless, MTOR was not necessary for the im-
portant transition of primordial oocytes to the activated growing
oocyte stage. No aspect of follicular development in Mtor-ZcKO

females was different from controls (SI Appendix, Fig. S3B). Thus,
although MTOR deletion in primordial stage oocytes impacted the
development of advancing follicles and oocytes and the ovulation
rate, MTOR deletion in growing oocytes did not overtly affect
follicular development or ovulation rate, although it did impair the
developmental competence of the ovulated oocytes (SI Appendix,
Table S1).

There was progressive deterioration of follicular development
in Mtor-GcKO ovaries with aging: At 3 mo, there were fewer
normal follicles (SI Appendix, Fig. S4A4), while at 6 mo there were
essentially no normal developing follicles (SI Appendix, Fig. S4B).
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Fig. 2. Defective follicle and granulosa cell development in Mtor-GcKO ovaries. (A) Micrographs of periodic acid-Schiff (PAS)-stained 21-d-old WT and
Mtor-GcKO ovarian sections. (B, Upper) Photographs of whole bodies (Left) and ovaries (Right) of 6-mo-old WT and Mtor-GcKO mice. (Lower) Mi-
crographs of PAS-stained ovarian sections of 6-mo-old WT (Left) and Mtor-GcKO 9 (Right) mice. (C) gRT-PCR analyzing the expression of a cohort of
genes characteristic of ovarian granulosa cells (Top) and testicular Sertoli and/or Leydig cells (Bottom) in 6-mo-old WT and Mtor-GcKO ovaries. (D,
Upper) Transmission electron microscopic imaging of a 6-mo-old Mtor-GcKO mouse ovarian follicle with abnormal somatic cells that resemble im-
mature Sertoli-like cells. (Lower) Magnified view of the boxed area in the Upper image indicated as ectoplasmic specialization (ES). BM, basal
membrane; N, nucleus; Nu, nucleolus; TJ, tight junction. (E) IF staining of CLDN5 in 6-mo-old Mtor-GcKO ovaries. CLDN5, ZP2, and DNA are stained
magenta, green, and blue, respectively. (F, Upper) IF staining of yH2AX in 5-wk-old WT and Mtor-GcKO ovaries. yH2AX and DNA are stained green and
blue, respectively. (Lower) The bar graph shows the quantification of the yH2AX staining. *P < 0.05, compared with the WT or control by student’s

t test. Data represent the mean + SEM. (Scale bars, A, B, E, and F, 100 um.)
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The 6-mo ovaries were smaller and had many abnormal early-
stage growing follicles that were surrounded by a prominent basal
lamina and were devoid of normal oocytes (Fig. 2 B and D and S/
Appendix, Fig. S4B). The somatic cells within these abnormal
follicles showed some characteristics of immature Sertoli cells
rather than granulosa cells. They exhibited veil-like elongated
cytoplasm extending toward the center of the follicle and a round
nucleus locating near the basal membrane and formed tight
junctions with the adjacent partners (Fig. 2 B and D). There were
no tripartite nucleoli characteristic of mature Sertoli cells; rather,
the cells appeared similar to immature Sertoli cells of 7-d-old mice
(17). No typical tight junctions were found in the WT early-stage
growing follicles (SI Appendix, Fig. S54). Consistent with the
morphological similarity to Sertoli cells, transcriptomic analysis by
RNA sequencing (RNA-seq) (SI Appendix, Fig. S5B) revealed that
genes normally expressed by ovarian granulosa cells and essential
for granulosa cell development and steroidogenesis, i.e., Amh,
Cyp19al, Esr2, Fshr, Fst, Hsd17b1, Inhbb, and Nr5a2 (18-24), were
down-regulated (Fig. 2C), while genes characteristic of testicular
Sertoli and/or Leydig cells and normally not expressed by gran-
ulosa cells, i.e., Cldn5, Cldnil1, Cyp11b1, Cyp26bl, Gatal, Hsd3b6,
and Sox9 (25-30), were up-regulated in Mror-GcKO ovaries (Fig.
2C). Moreover, CLDNS, an essential component of tight junctions
that form the blood-testis barrier in testis, was robustly expressed
by these apparently transdifferentiated granulosa cells in a pattern
similar to that expressed by Sertoli cells but was barely detected in
granulosa cells of WT ovaries (Fig. 2E and SI Appendix, Fig. S6A4).
Given that no tight junctions have been observed in mouse early-
stage growing follicles (31), these data indicate that Mtor-GcKO
ovarian granulosa cells lost their unique female identity and ac-
quire male Sertoli cell-like characteristics. These Sertoli-like
structures were found only when Mtor was deleted in primordial,
but not in growing, oocytes.

In addition to oocyte loss, reduction of steroidogenic gene ex-
pression, and ovarian size, the levels of estradiol and progesterone
in circulation were low in 6-mo-old Mtor-GecKO females (ST Ap-
pendix, Fig. S6B). In contrast, follicular development in 6-mo-old
Mtor-ZcKO mice appeared normal (ST Appendix, Fig. S4C), and
steroid hormone levels were not changed (SI Appendix, Fig. S6C).

What factors contributed to oocyte loss and could give rise to the
immature Sertoli cell-like structures prevalent in Mtor-GcKO
ovaries? A similar transdifferentiation of ovarian cells to Sertoli-
like cells occurred after oocyte-lethal irradiation of rats (9). Oocyte
death is one consequence of a self-surveillance mechanism to de-
fend genome integrity against the accumulation of excessive DNA
damage (32, 33). We therefore assessed potential DNA damage in
Mtor-GcKO oocytes. IF staining of YH2AX revealed more DNA
double-strand breaks (DSBs) in Mtor-GcKO oocytes of the early-
stage growing follicles (Fig. 2F). No increase in yH2AX staining
was evident in Mftor-ZcKO oocytes at the similar stage (SI Ap-
pendix, Fig. S4D). Hence, Mtor deletion in primordial oocytes may
result in progressive accumulation of DSBs in developing oocytes
and acute loss of these oocytes with age in Mfor-GcKO ovaries.
While DNA damage may instigate oocyte death that leads to the
loss of granulosa identity, there are probably other factors down-
stream of MTOR deletion that contribute to the phenotype of
defective granulosa cell development. Indeed, oocyte death does
not necessarily always cause identity loss in its associated granulosa
cells. Although irradiation induces oocyte loss in rat primordial
follicles and leads to the subsequent transdifferentiation of gran-
ulosa cells into Sertoli-like cells in the early-stage growing follicles
(9), ablation of mouse oocytes at the similar stages by expressing
diphtheria toxin does not result in the same phenotype (11). De-
spite this conundrum, our observations suggest that a unique
MTOR-dependent pathway exists in primordial oocytes that sus-
tains the sex-specific developmental and functional identity of
granulosa cells during the later growth stage of these oocytes.
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Fig.3. Defective meiotic progression to Mll in ovulated oocytes of both cKO
mice. (A) First polar body (PB1) rate in ovulated oocytes. (B) Quantification of
the meiotic stages of ovulated oocytes. Tl, telophase I. (C) Micrographs
showing typical meiotic stages prevalent in WT (a), Mtor-GcKO (b-d), and
Mtor-ZcKO (e-h) ovulated oocytes. (a) Normal Ml stage. (b and e) Abnormal
MiIl with a deformed spindle and misaligned chromosomes. (c, d, g, and h)
Stages with defective cytokinesis. (f) Telophase I. Microtubules, chromo-
somes, and F-actin are stained green, blue, and magenta, respectively. (Scale
bars, 20 um.) *P < 0.05, compared with the WT or control by student's t test.
Data represent the mean + SEM.

Oocyte-Specific Knockout of Mtor Impairs Completion of the First
Meiotic Division in Oocytes. Meiotic errors reduce egg quality
(34). Oocyte meiotic progression was therefore determined to
assess possible mechanisms for the diminishment of egg quality
in cKO females. Even though Mtor-cKO mutant oocytes pro-
duced the first polar body with nearly the same frequency as WT
oocytes (Fig. 34), oocytes ovulated by both cKOs did not com-
plete the first meiosis normally (Fig. 3 B and C): 78.2% and
65.5% of Mtor-GecKO and Mtor-ZcKO oocytes, respectively, ei-
ther formed abnormal metaphase II (MII) spindles (Fig. 3 C, b
and e) or did not complete cytokinesis and remained at telophase
I (Fig. 3 C, ¢, d, and f~h). These defects were recapitulated when
cKO oocytes underwent maturation in vitro (SI Appendix, Fig.
S7), as shown by live imaging of spindles and chromosomes of
fluorescent protein-tagged tubulin and histone (SI Appendix, Fig.
S8). Therefore, the failure of meiotic progression to MII reflects
the diminished quality of both cKO oocytes even though the
deletion of Mtor occurred in much earlier-stage oocytes. These
meiotic defects could be far-downstream consequences of the
initial MTOR deficiency.

Differential Effect of Mtor Deletion at the Primordial and Growing
Oocyte Stage on Transcriptomic Integrity of FGOs. Transcriptomic
differences in steady-state levels of mRNAs expressed by both
cKO FGOs were assessed by RNA-seq analyses. A remarkable
difference was observed between the transcriptomes of Mtor-
GcKO and Mror-ZcKO FGOs: 979 transcripts were expressed
differentially between them (Fig. 44). Compared with WT
FGOs, the transcriptome was changed more profoundly in Mtor-
GcKO FGOs, with a significant difference in the expression of
447 transcripts, while in Mror-ZcKO oocytes the changes were
relatively minor; only 85 transcripts were differentially expressed
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Fig. 4. Differential effect of Mtor cKO on the integrity of transcriptome of FGOs. (A) Venn diagram illustrating the relationship of the changed transcripts
identified by RNA-seq in Mtor-GcKO and Mtor-ZcKO FGOs. WT-GcKO: WT vs. Mtor-GcKO; WT-ZcKO: WT vs. Mtor-ZcKO; GecKO-ZcKO: Mtor-GeKO vs. Mtor-
ZcKO. The total number of changed transcripts is indicated in parentheses. (B) Venn diagram illustrating the relationship of up- and down-regulated tran-
scripts identified by RNA-seq in Mtor-GcKO and Mtor-ZcKO FGOs. WT-GcKO_Up: up-regulated in Mtor-GcKOs compared with WT; WT-ZcKO_Up: up-
regulated in Mtor-ZcKOs compared with WT; WT-GcKO_Down: down-regulated in Mtor-GcKOs compared with WT; WT-ZcKO_Down: down-regulated in
Mtor-ZcKOs compared with WT. The number of changed transcripts in each group is shown in parentheses. (C) Real-time gRT-PCR validating changes in
representative transcripts selected from RNA-seq data. (D) Heatmaps illustrating the enriched terms (GO/KEGG terms or canonical pathways) associated
significantly with changed transcripts identified by RNA-seq in Mtor-GcKO and Mtor-ZcKO FGOs. GcKO-ZcKO: Mtor-GecKO vs. Mtor-ZcKO; WT-GcKO: WT vs.
Mtor-GcKO; WT-ZcKO: WT vs. Mtor-ZcKO. (E) Heatmaps illustrating differences between WT and Mtor-GcKO FGOs in the expression of a cohort of transcripts

involved in various processes.

(Fig. 44 and SI Appendix, Tables S3 and S4). Moreover, among
transcripts changed in either cKO, there were very few that were
in common (Fig. 4B). Likewise, Gene Ontology (GO) terms
associated with changed transcripts had little in common (Fig. 4D).
The changes in the expression of a group of representative tran-
scripts were validated by real-time RT-PCR (Fig. 4C). Interest-
ingly, it has been reported that the transition from primordial to
growing oocytes produces the most dramatic changes in oocyte
gene expression, both in the level of transcript expression and their
diversity (35). Since the immediate effects of MTOR are primarily
posttranscriptional (36), the transcriptomic changes reported here
reflect downstream consequences of MTOR action with deletion
of Mtor at the primordial stage having greater transcriptional im-
pact for oocyte and follicular development.

The greater impact of Mror-GcKO on the downstream tran-
scriptome of FGOs paralleled the greater severity of phenotypic
differences in oocyte and follicular development. Gene-enrichment
analysis revealed some of the transcriptomic changes in Mtor-GcKO
oocytes that could bring about the observed defects in oocyte
and follicular development. These include genes controlling key
oogeneic processes, oocyte mRNA decay, epigenetic and tran-
scriptional control, cell cycle, and microtubule-related processes
(Fig. 4 C and E). For example, down-regulation of the expression
of genes involved in oocyte—granulosa communication (i.e., Gja4
and Oospl, -2, -3) and the development and survival of oocytes
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(i.e., Aldhla2) in Mtor-GcKO oocytes could potentially affect the
development and functions of oocyte-companion granulosa cells
(37-42). In addition, up-regulation of several genes for mRNA
decay could dysregulate the transcript dosage of certain fac-
tors key for oocyte and follicle development. These include
Ythdf2 and Lsm1, both of which are implicated in the control
of oocyte maturation processes and are essential for female
fertility (38, 43).

Mtor Deletion in Growing Oocytes Alters the Oocyte Proteome. Mei-
otic progression in transcriptionally silent FGOs is exquisitely co-
ordinated with selective translation of some maternal transcripts
that are synthesized and stored during oocyte growth (44, 45). This
coordination is essential for oocyte completion of the first meiotic
division and supporting preimplantation development (44, 46).
Since MTOR has a crucial role in the control of cellular trans-
lation (36), and Mror deletion in growing oocytes has only a minor
impact on oocyte transcriptome, the defects of meiotic and de-
velopmental competence observed in Mtor-ZcKO oocytes could be
caused by aberrant oocyte translation during maturation. We
therefore compared the protein-expression profile of Mtor-ZcKO
oocytes with that of WT oocytes by liquid chromatography-mass
spectrometry (LC-MS).

About 4,000 ovulated oocytes of each genotype (WT and
Mtor-ZcKO) were collected and used for proteomic analysis. A
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Fig. 5. Proteomic analysis of Mtor-ZcKO ovulated oocytes. (A4) Distribution of significantly changed proteins at various magnitudes of difference in ex-
pression levels between Mtor-ZcKO and WT ovulated oocytes detected by LC-MS. The number of changed proteins in each category of fold change is in-
dicated above each bar. (B) Western blot analysis of RICTOR, TRIM36, PRC1, and ACTB expression in WT and Mtor-ZcKO (cKO) ovulated oocytes. (C) Venn
diagrams illustrating the relationship of the proteomic dataset with polysome RNA array datasets on mRNAs translated in WT FGOs at all stages, i.e., GV, M,
and Ml stages, indicated as “Polysome” (Left) or translated in oocytes only during the transition from GV to Mll, indicated as “Polysome_Up"” (Right) (44). (D)
Heatmaps illustrating differences between WT and Mtor-ZcKO ovulated oocytes in the expression of proteins that are in common between the Proteomics

dataset and the Polysome_up dataset.

total of 4,172 proteins were detected, of which 237 were dif-
ferentially expressed by Mror-ZcKO (Fig. 54 and SI Appendix,
Table S5). Changes were validated by Western blot analysis of
selected representatives, i.e., RICTOR, TRIM36, and PRCl1
(protein regulator of cytokinesis 1) (Fig. 5B). Gene-enrichment
analysis revealed that the 149 down-regulated and the 88 up-
regulated proteins participate in different processes (SI Ap-
pendix, Fig. S9). In particular, the processes “mRNA metabolic
process” and “actin filament bundle assembly” are among the
GO terms associated with down-regulated proteins. Since se-
lective degradation of maternal transcripts is an important part
of the oocyte cytoplasmic maturation process (43, 47, 48), and
actin dynamics drive oocyte meiotic division (49, 50), down-
regulation of the expression of proteins involved in these two
processes is likely detrimental to oocyte maturation and con-
tributes to the defects observed in Mror-ZcKO oocytes.
Deleted in azoospermia-like (DAZL) is reported to drive the
translation of a specific subset of maternal mRNAs (e.g., Tpx2,
targeting protein for Xenopus kinesin xklp2) during oocyte meiotic
maturation (44). This oocyte maturation-requiring translational
program is thought to be mediated by the PI3K-AKT-MTOR
pathway (46). Surprisingly, our proteomic analysis did not detect
significant changes of either DAZL or TPX2 proteins in ovulated
Mtor-ZcKO oocytes (SI Appendix, Table S5). This suggests that
the oocyte meiotic progression-associated translation of DAZL
and TPX2 is not dependent on MTOR and that meiotic defects
in Mtor-ZcKO oocytes were not caused directly by the alter-
ation of DAZL and TPX2 expression. This unexpected obser-
vation prompted us to ask which MTOR-dependent proteins
are produced during maturation. To address this, we compared
the proteins expressed differentially in WT and Mtor-ZcKO
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oocytes with those identified by Chen et al. (44) on polysome-
bound mRNA in oocytes during maturation. Accordingly,
translation of 169 proteins in germinal vesicle (GV), metaphase
I (MI), or MII oocytes was apparently MTOR dependent (Fig.
5C, Left). Of these, 37 were selectively translated in MII oo-
cytes (Fig. 5C, Right). Therefore, MTOR signaling in growing
oocytes controls the translation of 37 proteins downstream
during the GV-to-MII transition in oocytes. Of these, 36 were
expressed at lower levels in Mtor-ZcKO oocytes compared with
WT oocytes (Fig. 5D), indicating that their expression was
promoted downstream during oocyte maturation by the MTOR
pathway expressed during the oocyte growth phase. Identifi-
cation of these MTOR-controlled proteins provided candidates
for further investigation of their role in control of oocyte
maturation and preimplantation development.

MTOR-Dependent Expression of PRC1 Is Crucial for Oocyte Completion
of the First Meiotic Division. Levels of PRC1 were down-regulated in
Mtor-ZcKO oocytes (Fig. 5B). Given the indispensable role of
PRC1 in controlling cytokinesis during somatic cell division (51),
we assessed potential effects of PRC1 down-regulation in Mtor-
ZcKO oocytes on oocyte maturation. PRC1 was distributed
throughout the cytoplasm of normal GV-stage oocytes (Fig. 64
and SI Appendix, Fig. S10) and localized to microtubules around
chromosomes at prometaphase I, MI, and MII (Fig. 64 and S/
Appendix, Fig. S10). It was concentrated in the central spindle
region at anaphase I and accumulated at midbodies at telophase
I (Fig. 64 and SI Appendix, Fig. S10). To determine if PRC1
functions during oocyte meiotic progression, Prcl expression
was knocked down in WT oocytes using PrcI morpholinos. This
led to meiotic defects similar to those observed in ovulated
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Fig. 6. Localization and function of PRC1 in oocytes during meiotic
maturation. (A) PRC1 localization in WT oocytes at different meiotic
stages. (B) Effect of PRC1 knockdown on oocyte meiotic progression in
WT cells. (Upper Left) Knockdown of PRC1 by Prc1-morpholino (MO).
(Lower Left) The graph shows the percentage of oocytes in which meiosis
progressed normally to MIl. (Right) Micrographs demonstrate typical
cytokinesis defects in PRC1-knocked-down oocytes. PRC1/F-actin, mi-
crotubules, and chromosomes are stained magenta, green, and blue,
respectively. (C and D) Rescuing cytogenesis defects of Mtor-ZcKO oo-
cytes by PRC1 overexpression. Mtor-ZcKO GV oocytes were micro-
injected with PrcT mRNA and matured in vitro for 18 h. Meiotic status
was then analyzed by IF staining of chromosomes and spindles. (C,
Upper) The Western blot gel image detecting PRC1 expression. (Lower)
The graph shows the quantification of Western blot results. (D) The
quantification of oocytes at normal MIl stage. “+mRNA" indicates mi-
croinjection with Prc1 mRNA. *P < 0.05, compared with the cKO-group
by student'’s t test. (Scale bars, 20 pm.)

Mtor-ZcKO oocytes (Fig. 6B). Very few (~10%) Prcl morpholino-
injected oocytes reached the MII stage (Fig. 6B, Lower Left), and
most of them displayed defective cytokinesis (Fig. 6B, Right).
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Moreover, microinjection of polyadenylated Prcl mRNA into Mtor-
ZcKO oocytes partially rescued their defects in the first meiotic di-
vision (Fig. 6 C and D). Therefore, PRC1 is an MTOR pathway-
dependent protein essential for the progression of meiosis to
metaphase II in oocytes. cKO of the MTOR pathway in growing
oocytes has downstream effects on oocyte maturation and fer-
tility caused, at least in part, by decreasing PRC1 levels.

Conclusion

Using oocyte stage-specific cKOs of Mtor, we distinguished the
roles of MTOR-dependent pathways in primordial and growing
oocytes in controlling downstream oocyte and follicular develop-
ment and revealed some of the mechanisms by which each causes
infertility (SI Appendix, Table S1). When MTOR was deleted in
primordial oocytes, it was also deleted in the later stages of growing
oocytes and FGOs (Fig. 14). Therefore, an overlap in the pro-
cesses affected in both cKOs would be expected. In fact, meiosis
and developmental competence were affected in both. However,
other phenotypes, such as aberrant follicular development, trans-
differentiation of granulosa cells to immature Sertoli-like cells,
and DNA damage, were exhibited in Mtor-GcKO, but not in Mtor-
ZcKO, ovaries. Thus, additional processes affected in Mtor-GcKO
ovaries are attributable to MTOR-dependent pathways having
different functional impacts in primordial oocytes and in growing
oocytes, even though these phenotypes were not manifest until
later in oocyte and follicular development. Once oocyte growth
begins, MTOR promotes the completion of the first meiotic di-
vision and preimplantation embryogenesis and no longer appears
to be involved in oocyte genomic protection, granulosa cell fate
determination, or follicular development.

Materials and Methods

Mice. Mtor-floxed and Gdf9-, Zp3-Cre mice were obtained from The Jackson
Laboratory and were maintained on identical C57BL/6J genetic backgrounds.
The procedures of mouse breeding, genotyping, and fertility testing are
detailed in S/ Appendix. All mouse procedures and protocols were approved
by the Animal Care and Use Committee at Nanjing Medical University and
were conducted in accordance with the institutional guides for the care and
use of laboratory animals.

Chemicals and Reagents. Unless otherwise specified, all chemicals and re-
agents were purchased from Sigma-Aldrich Co.

Hormone Assays. Sera were collected as described previously (52), and hor-
mones in them were measured using the methods detailed in S/ Appendix.

Histology, Inmunohistochemistry, and Western Blot Analysis. These anal-
yses and follicle count were carried out as described previously (15, 53—
56) and are detailed, along with information about the antibodies used,
in SI Appendix.

Oocyte Isolation, in Vitro Manipulation, and Imaging. These were carried out as
described previously (15, 56) and are detailed in S/ Appendix.

Proteomic, RNA-Seq, and qRT-PCR Analyses. About 4,000 WT and Mtor-ZcKO
ovulated oocytes were collected for the proteomic analysis. Transcriptomic
analyses were carried out using RNA-seq. Real-time gPCR analysis was car-
ried out as described previously (48). Detailed procedures are described in S/
Appendix. RNA-seq data have been deposited in the Gene Expression Om-
nibus (datasets GSE98497 and GSE98548), and proteomics data have been
deposited in the ProteomeXchange Consortium (dataset PXD006408).
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