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INTRODUCTION 

Fluid management is part of the basic care in many clini-

cal situations. Perioperative fluid therapy in patients un-

dergoing neurosurgery is a vital component of anesthetic 

practice and critical care. There is increasing evidence that 

intraoperative fluid therapy may influence postoperative 

outcomes [1–3]. 

The main purpose of fluid management in neurosurgical 

anesthesia is to prevent brain damage caused by inadequate 

cerebral perfusion and provide a good surgical environment. 

Therefore, it is essential to maintain hemodynamic stability 

and proper cerebral perfusion pressure during neurosur-

gery. 

Hemodynamic alterations and electrolyte imbalances of-

ten occur during neurosurgery because of the frequent use 

of diuretics to relieve increased intracranial cerebral pres-

sure and edema. In addition, depending on the type of sur-
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gery, large amounts of fluids may need to be administered 

to correct preoperative hypovolemia and perioperative un-

stable hemodynamics, and prevent cerebral vasospasm. 

An extensive debate about the choice and optimal dose of 

fluid for hemodynamic stability and improved outcomes ex-

ists. This review is intended to assist in the clinical applica-

tions and research on fluid therapy during neurosurgery by 

reviewing recent issues and literature on perioperative fluid 

therapy in various surgical fields, including neurosurgery. 

CHOICE OF FLUID IN NEUROSURGICAL 
PATIENTS 

The general principle of fluid therapy for neurosurgery is 

to maintain normal blood volume and prevent a decrease in 

plasma osmolarity. In a normal blood-brain barrier (BBB), 

the movement of water between the plasma and brain is 

mainly influenced by the osmotic gradient. Therefore, in 
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neurosurgery, the osmolarity of the fluid is the most import-

ant factor to prevent cerebral edema.  

A crystalloid fluid contains small molecular substances 

without high molecular substances, and it is classified as 

hypotonic, isotonic, or hypertonic according to its osmo-

larity. Lactated Ringer’s solution (LR), a commonly used 

crystalloid, is hypotonic at 273 mOsm/L. Low plasma os-

molarity can cause cerebral edema. Therefore, hypotonic 

solutions, such as LR, are avoided, while normal saline 

(NS) has traditionally been used as the main fluid in pa-

tients with neurosurgery [4].  

Since a reduction in oncotic pressure without changing 

the osmolarity increases cerebral edema in animal models 

of brain injury [5], colloid solutions have been known to 

prevent the severe reduction of colloidal oncotic pressure 

when used appropriately. However, the European Society 

of Intensive Care Medicine (ESICM) task force recom-

mended against the use of colloids in patients with brain 

injury [6], continuing the debate about the use of colloids 

in neurosurgery. 

Crystalloid solutions 

Hypotonic solutions, such as the LR solution, are avoid-

ed in neurosurgical patients to minimize cerebral fluid ac-

cumulation. In contrast, NS, an isotonic crystalloid, has 

been widely used in neurosurgery because it is thought to 

reduce the risk of cerebral edema [7]. However, since NS 

has equal amounts of sodium and chloride (154 mEq/L), 

hyperchloremic metabolic acidosis occurs when a large 

amount of NS is administered because its chloride concen-

tration is higher than the normal plasma chloride concen-

tration (96–106 mEq/L). 

Numerous laboratory and clinical studies have reported a 

dose-dependent association between hyperchloremia and 

the use of NS [8–10]. Hyperchloremic acidosis is associated 

with acute kidney injury (AKI) during abdominal surgery [9]. 

In a large, propensity-matched retrospective study of 22,851 

patients who underwent a non-cardiac surgery, postopera-

tive hyperchloremia resulted in acute metabolic acidosis, 

leading to increased 30-days mortality and length of hospital 

stay [10]. A large retrospective study on abdominal surgery 

showed that patients treated with balanced crystalloids had 

better outcomes, including mortality, postoperative infec-

tion, need for renal replacement therapy (RRT), need for 

transfusions, electrolyte imbalance, and acidosis than those 

treated with NS [9]. 

Meanwhile, the adverse outcomes of NS were not ob-

served in a randomized control study of critically ill patients 

[11,12], non-critically ill patients [13], and postoperative pa-

tients who underwent neurosurgery [14]. In a recent me-

ta-analysis, the balanced crystalloid solution was beneficial 

in significantly reducing postoperative hyperchloremia and 

metabolic acidosis, but the evidence was insufficient to 

compare the effects of buffered and non-buffered crystal-

loids on mortality and organ failure [15]. 

In contrast, balanced salt solutions (BSSs) replace chlo-

ride ions with lactate, acetate, and gluconate, which pre-

vents the occurrence of hyperchloremic metabolic acidosis 

[16]. A BSS is the most common choice of resuscitation fluid 

in clinical practice [17]. In patients who underwent craniot-

omy, the NS group had higher sodium and chloride levels 

and had more patients with marked acidosis than in the 

BSS group [18]. 

However, though LR is a balanced crystalloid solution, it 

is hypotonic. A decrease of 1 mOsm/L in the plasma osmo-

lality results in an increase of 19 mmHg in the pressure of 

fluid movements across the BBB, and a 3% decrease in the 

plasma osmolarity results in cerebral edema with a 3% in-

crease in the brain volume and 30% decrease in the intra-

cranial blood cerebrospinal fluid volume [16,19]. Prehospi-

tal resuscitation with LR compared to NS was associated 

with increased mortality in patients with traumatic brain 

injuries (TBI) [20]. Therefore, LR is not suitable for neuro-

surgical patients. Instead, isotonic BSS, excluding hypotonic 

solutions, such as LR, has emerged as a fluid of choice for 

patients undergoing neurosurgery [21]. 

An isotonic balanced solution reduces the incidence of 

hyperchloremic metabolic acidosis and electrolyte imbal-

ances in patients with brain injury, but the intracranial pres-

sure is not different compared with NS [22]. Although a bal-

anced solution has a clear benefit of reducing hyperchlor-

emic metabolic acidosis, its advantage of reducing morbidity 

and mortality is not clear and requires evaluation. 

High-quality data comparing NS and balanced solutions 

in perioperative and neurosurgical patients are not yet 

available. Based on the above evidence, although evidence 

is still lacking, an isotonic balanced solution is preferred 

over NS in neurosurgical patients because of the lower risk 

of metabolic acidosis and renal injury. 

Colloid solutions 

Large insoluble molecules in colloid solutions increase 
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brain injury, oncotic pressure reduction without changing 

the osmolarity increased cerebral edema [5]. Colloid solu-

tions have commonly been used to decrease cerebral edema 

and improve hemodynamics during neurosurgery [23]. 

1. Hydroxyethyl starch (HES) 

Several randomized trials have shown that HES has ad-

verse effects on kidney function. The routine clinical appli-

cation of HES in patients with severe sepsis in the VISEP 

study [24] was associated with higher rates of acute renal 

failure and RRT than LR. Similarly, two large trials compar-

ing colloids and crystalloids in patients with severe sepsis, 

the 6S trial [25] and CHEST trial [26], showed an increased 

incidence of AKI and need for RRT. 

In contrast, there was no difference in the incidence of re-

nal failure and mortality between saline and HES 130/0.4 in 

patients with severe sepsis in the CRYSTMAS trial [27]. 

Likewise, the CRISTAL study, a large, randomized trial, [28], 

compared the effects of colloids and crystalloids in critically 

ill patients with hypovolemia and found no significant dif-

ferences in the 28-day mortality and need for RRT. 

Due to the conflicting results, a systematic review and 

meta-analysis that included the above trials concluded that 

HES significantly increased the risk of mortality and AKI in 

critically ill patients [29]. The ESICM task force on colloid 

volume therapy in critically ill patients recommended 

against the use of 6% HES 130 in patients with severe sepsis 

or at risk of AKI. They also recommended not to use col-

loids in patients with head injuries [6]. Based on accumu-

lating evidence, the European Medicines Agency has re-

stricted the use of HES in critically ill patients, and the Unit-

ed States Food and Drug Administration has added a black 

box warning. A recent meta-analysis comparing colloids 

versus crystalloids for fluid resuscitation in critically ill pa-

tients showed little or no difference in mortality with moder-

ate-certainty evidence, though starches slightly increased 

the need for blood transfusion and RRT [30]. However, the 

heterogeneity of protocols and results in the aforementioned 

research continues to cause controversy on the recommen-

dations on HES restrictions. 

There is some opposing evidence on the restricted use of 

HES in patients with neurosurgery. 

Some animal models and in vitro studies have shown pro-

tective effects of HES on the BBB [31–33]. Two early random-

ized control trials comparing HES with crystalloid solutions 

in patients with ischemic stroke reported no differences in 

the safety, hemodynamic efficacy, and complication rates 

[34,35]. 

HES has been sometimes used to maintain an optimal 

volume status to prevent delayed cerebral ischemia (DCI) 

due to cerebral vasospasm following a subarachnoid hem-

orrhage (SAH) as a component of the triple H-therapy. Com-

pared to the standard therapy group, the goal-directed fluid 

therapy (GDFT) with a HES bolus group showed reduced 

frequencies of vasospasm and cardiopulmonary complica-

tions [36]. A recent retrospective study compared SAH pa-

tients who received HES with those who received crystal-

loids and found no significant difference in RRT [37]. Anoth-

er retrospective study showed no positive correlation be-

tween the cumulative doses of HES and serum creatinine in 

SAH patients who had a normal renal function and conclud-

ed that the administration of HES 6% 130/0.4 is safe in SAH 

patients without pre-existing renal insufficiency. However, 

caution is warranted in the period of repetitive administra-

tion of contrast media [38]. It is noteworthy that the inci-

dence of AKI did not increase despite the substantial 

amount of HES used in the above trials. 

However, there is still no evidence of the superiority of 

the use of HES in patients undergoing neurosurgery. The 

possible negative effects, such as renal injury and coagu-

lopathy, should be considered, and HES should be used 

with caution in neurosurgical patients, in line with the do 

not harm principle. 

2. Albumin 

In animal studies, high-concentration albumin therapy 

improved local cerebral blood flow (CBF), reduced infarct 

size and brain swelling, and improved neurological function 

[39–41]. In a retrospective study of patients with SAH, there 

was a higher proportion of patients with good outcomes at 3 

months in the albumin group than in the non-albumin 

group, although there was no significant difference in the in-

cidence of symptomatic vasospasm [42]. 

However, the SAFE trial, a multicenter, randomized, dou-

ble-blinded trial, compared 4% albumin and NS in critically 

ill patients and showed no significant difference in the out-

comes, such as mortality, proportions of organ failures, du-

ration of intensive care unit (ICU) stay, duration of hospital 

stay, duration of mechanical ventilation, and duration of 

RRT [43]. However, in the subgroup analysis, the relative risk 

(RR) of death of trauma patients in the albumin group com-

pared to the saline group (RR =  1.36) was higher than that in 

the patients without trauma (RR =  0.96). This difference in 
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the RR of death was because more brain injury patients were 

assigned to the albumin group than to the saline group. 

A post-hoc analysis of a subgroup of patients with TBI in 

the SAFE trial, the SAFE-TBI study, showed that the 2-year 

mortality of patients with severe brain injury was signifi-

cantly higher in the albumin group than in the saline group 

[44]. A post-hoc follow-up analysis of severe TBI suggested 

that increased intracranial pressure may have contributed 

to the high mortality in the albumin group [7]. The results of 

the SAFE trial and post-hoc analysis continue to influence 

albumin use in patients with TBI [45]. 

However, these results should be considered with cau-

tion. The SAFE-TBI trial has its own limitations in post hoc 

subgroup analysis. The mortality of TBI patients was not the 

primary endpoint of the SAFE trial, and the trial design was 

not randomized for TBI analysis. Furthermore, the 4% hu-

man albumin used in the SAFE study is a hypo-osmolar 

solution that may potentially increase the intracranial pres-

sure and cause cerebral edema [46]. 

Experimental SAH models on animals have demonstrat-

ed the beneficial effects of albumin [39,47,48], and there has 

been some evidence on the beneficial effects of albumin in 

SAH patients [49,50]. 

The ALISAH trial [49], designed to determine the feasibil-

ity and safety of albumin administration in SAH patients, 

was terminated as two serious complications of pulmonary 

edema were reported. Patients receiving 1.25 g/kg/d of 25% 

albumin for 7 days demonstrated better neurological out-

comes than those receiving a lower dose. Follow-up analy-

sis of the ALISAH trial showed that higher doses of albumin 

were associated with a lower incidence of vasospasm, DCI, 

and cerebral infarction [50]. However, these results should 

be interpreted with caution. The said trial had an inadequate 

sample size and insufficient power because it was not de-

signed to study the beneficial effects of albumin. 

The ALIAS pilot trial suggested that high-dose albumin 

therapy has potential neuroprotective effects after ischemic 

stroke [51]. However, the ALIAS part 1 trial was suspended 

after safety analysis revealed an increased incidence of pul-

monary edema and mortality [52]. The ALIAS part 2 trial, 

which was modified by adding exclusion criteria and safety 

measures, was also suspended because of the high inci-

dence of pulmonary edema in the albumin group [53]. The 

pooled analysis of the data from the ALIAS part 1 and 2 trials 

showed no difference in the 90-day neurological outcomes 

and mortality between the 25% albumin and saline groups. 

However, there was an increased risk of pulmonary edema 

and intracerebral hemorrhage in the patients administered 

with albumin 25% at 2 g/kg [54]. Based on this evidence, the 

ESICM recommends against the use of high-dose albumin 

in patients with acute ischemic stroke and the use of low-

(4%) or high-dose (20–25%) albumin in neurointensive care 

patients [55]. 

Although controversies still exist based on the above evi-

dence, the use of albumin in the perioperative period of 

neurosurgery remains questionable. The potential risks and 

benefits of albumin administration should be assessed on a 

case-by-case basis. 

HOW TO ADMINISTER THE 
OPTIMAL AMOUNT OF FLUIDS IN 

NEUROSURGICAL PATIENTS 

The primary goal of perioperative fluid management 

during neurosurgery is to maintain hemodynamic stability 

and an adequate CBF. There is a growing body of evidence 

that intraoperative fluid therapy influences postoperative 

outcomes [1–3]. 

Restrictive versus liberal fluid therapy in major 
surgeries 

Traditional intraoperative fluid regimens, which include 

preoperative dehydration, third space loss, and insensible 

loss, tend to induce a positive fluid balance that is related to 

postoperative complications [1]. 

In the recent decade, several randomized controlled stud-

ies have compared restricted fluid therapy with liberal fluid 

therapy in patients undergoing major abdominal surgeries. 

Brandstrup et al. [2] showed that patients in the liberal group 

gained body weight and had more complications than the 

restrictive group. 

After this trial, numerous studies on abdominal surgery 

showed positive results for restricted fluid therapy, leading 

to a gradual shift to the trend of using fluid restriction during 

surgery with the concept of zero-balance. However, in two 

large observational studies, the zero-balance concept has 

been concerning due to the possibility of worse outcomes, 

including AKI associated with excessive restriction [56,57]. 

Recently, RELIEF trial compared restrictive fluid therapy 

while maintaining perioperative zero balance with liberal 

fluid therapy [3]. The results showed that the patients in the 

restriction group had increased rates of surgical site infec-

tion and high risks of AKI. 
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comes have been observed in patients with both overhydra-

tion and excessive fluid restriction. Therefore, fluid optimi-

zation is essential for perioperative fluid management. It 

should also be noted that the amounts of administered vol-

ume in the liberal and restricted volume therapies were in-

consistent and slightly different for each study [58]. In par-

ticular, the postoperative weight gain of the restrictive group 

in an earlier study by Brandstrup et al. [2] was comparable to 

the liberal group of the RELIEF study [3]. As such, an exces-

sive restriction can result in worse outcomes, such as AKI. 

GDFT based on dynamic parameters 

To achieve the optimal fluid volume status, it is essential 

to avoid overhydration and excessive restriction and develop 

individually optimized fluid regimens using objective pa-

rameters. These objective parameters should be targeted 

preoperatively and measured perioperatively. 

GDFT, a recently emerging fluid regimen, is a type of fluid 

administration that optimizes pre-defined targets based on 

directly measured hemodynamic parameters (Fig. 1), such 

as the cardiac output, stroke volume (SV), stroke volume 

variation (SVV), pulse pressure variation (PPV), systolic 

pressure variation (SPV), pleth variability index (PVI), and 

other factors [1]. 

Favorable outcomes and decreased costs have been 

shown for patients who underwent GDFT during a major 

abdominal surgery [59–61]. Although the certainty of the ev-

idence was very low, a meta-analysis comparing GDFT and 

restrictive fluid therapy in major non-cardiac surgeries 

showed that the mortality was slightly low in the GDFT 

group, and there were no differences between the two 

groups in the complication rate and length of hospital stay 

[1]. Unlike other studies, including this meta-analysis, one 

study [62] found that the total infused volume was higher in 

the restrictive group (basal crystalloid infusion ranging from 

4 to 10 ml/kg/h) than in the GDFT group. A limitation of this 

meta-analysis was the lack of a definition of restrictive fluid 

therapy. GDFT consists of a given basal infusion and repeat-

Fig. 1. Dynamic parameters derived from the arterial pressure wave. Mechanical ventilation induces periodic changes in the arterial 
waveform. Various parameters are derived from this periodic change. Pulse pressure (PP) is the difference between the systolic and 
diastolic pressures. The area under curve of the arterial pressure wave represents the stroke volume (SV). Systolic pressure variation (SPV) 
is the difference between the maximum and minimal systolic pressures. SPV consists of two components, delta up (Δup) and delta down 
(Δdown), by reference pressure (Pref). Pref is the systolic pressure measured at the end of expiration or during apnea. PPV: pulse pressure 
variation, SVV: stroke volume variation.
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ed boluses of fluids (usually colloids) to achieve a predefined 

target. The basal infusion rate is particularly important to 

compare GDFT with other fluid regimens. 

GDFT during neurosurgery 

In two retrospective studies of patients with SAH, a posi-

tive net fluid balance was independently associated with 

poor outcomes [63,64]. However, as it is difficult to compare 

restrictive and liberal fluid therapies in neurosurgical pa-

tients who must maintain euvolemia, recent studies on 

GDFT have been conducted. There have been some studies 

to optimize fluid administration using continuously mea-

sured dynamic parameters, such as SVV, PPV, and PVI for 

patients undergoing neurosurgery. 

The SVV is a sensitive predictor of fluid responsiveness 

before and during brain surgery [65–67]. After the induction 

of anesthesia and before the start of the surgical procedure, 

the SVV more sensitively predicted an increase of more than 

10% in the SV by LR solution infusion compared to the mean 

arterial pressure, heart rate, cardiac output, and central ve-

nous pressure (CVP) in neurosurgical patients [65]. An SVV 

of 9.5% was concluded as the optimal threshold (sensitivity: 

78.6%, specificity: 93%) for predicting a >  5% increase in the 

SV after a 100-ml colloid solution infusion [66]. The target of 

the SVV of GDFT can affect clinical outcomes for supraten-

torial brain tumor resection [67]. Comparing two GDFT regi-

mens for supratentorial tumor resection (with threshold 

SVV values set at 10 for the low SVV group and at 18 for the 

high SVV group), the low SVV group had lower postoperative 

serum lactate levels, shorter length of ICU stay, and a lower 

incidence of postoperative neurologic events than the high 

SVV group [67]. Comparing the GDFT group managed fluid 

by hemodynamic parameters including the SVV with the 

control group managed fluid by the therapeutic decision of 

the attending anesthesiologist, the former had less adminis-

tered fluids, shorter length of ICU stay, lower ICU costs, and 

lower lactate levels than the control group [68]. 

The PPV and PVI have also been reported to be good pre-

dictors of fluid reactivity during brain surgery [69–72]. Be-

tween the CVP group, which maintained a CVP of 5–10 cm-

H2O, and the PPV group, which maintained a PPV below 

13%, in patients undergoing a brain tumor surgery, the latter 

had better postoperative hemodynamic stability and less 

postoperative fluid requirement [69]. The PPV-guided GDFT 

during supratentorial tumor resection had a comparable 

brain relaxation scale, low serum lactate levels, more intra-

operative fluids, and higher urine output than the standard 

care group [70]. In the sitting position for neurosurgery, 

measuring the PPV and PVI with an ear sensor predicted 

fluid responsiveness well, but the PVI could not be predicted 

with a finger sensor. However, the PVI measured with an ear 

sensor was limited by an unreliable signal in 26% of the pa-

tients [71]. 

A study on children undergoing neurosurgery showed dif-

ferent results. Comparing the PVI, ΔVpeak (respiratory vari-

ations in aortic blood flow peak velocity), arterial pressure, 

CVP, heart rate, inferior vena cava diameter, SPV (including 

delta up [Δup] and delta down [Δdown]), and PPV in pediat-

ric patients undergoing neurosurgery, the PVI and ΔVpeak 

predicted the fluid response well, but the PPV and other 

static and dynamic parameters were reported to be unpre-

dictable [72]. 

Considering that hemodynamic changes are relatively 

common in neurosurgery, GDFT, which provides individu-

alized optimal fluid status, is a promising fluid management 

strategy.  

CONCLUSION
 

Despite numerous studies on perioperative fluid man-

agement, there is insufficient evidence to draw definitive 

conclusions regarding fluid management in neurosurgical 

patients. 

Although evidence is still lacking, isotonic balanced crys-

talloid solutions should be considered the first-choice fluid, 

while hypotonic solutions should be avoided. Furthermore, 

colloid solutions should be used with caution, and their po-

tential risks and benefits should be considered. 

To achieve an optimal fluid volume status while avoiding 

overhydration and excessive restriction, the amount and 

duration of fluid administration should be considered, and 

an individualized fluid strategy is recommended using 

GDFT based on dynamic fluid parameters. 
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