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A B S T R A C T   

Neurodevelopmental research has traditionally focused on development of individual structures, yet multiple 
lines of evidence indicate parallel development of large-scale systems, including canonical neural networks (i.e., 
default mode, frontoparietal). However, the relationship between region- vs. network-level development remains 
poorly understood. The current study tests the ability of a recently developed multi-task coactivation matrix 
approach to predict canonical resting state network engagement at baseline and at two-year follow-up in a large 
and cohort of young adolescents. Pre-processed tabulated neuroimaging data were obtained from the Adolescent 
Brain and Cognitive Development (ABCD) study, assessing youth at baseline (N = 6073, age = 10.0 ± 0.6 years, 
3056 female) and at two-year follow-up (N = 3539, age = 11.9 ± 0.6 years, 1726 female). Individual multi-task 
co-activation matrices were constructed from the beta weights of task contrasts from the stop signal task, the 
monetary incentive delay task, and emotional N-back task. Activation-based predictive modeling, a cross- 
validated machine learning approach, was adopted to predict resting-state canonical network engagement 
from multi-task co-activation matrices at baseline. Note that the tabulated data used different parcellations of the 
task fMRI data (“ASEG” and Desikan) and the resting-state fMRI data (Gordon). Despite this, the model suc-
cessfully predicted connectivity within the default mode network (DMN, rho = 0.179 ± 0.002, p < 0.001) across 
participants and identified a subset of co-activations within parietal and occipital macroscale brain regions as key 
contributors to model performance, suggesting an underlying common brain functional architecture across 
cognitive domains. Notably, predictive features for resting-state connectivity within the DMN identified at 
baseline also predicted DMN connectivity at two-year follow-up (rho = 0.258). These results indicate that multi- 
task co-activation matrices are functionally meaningful and can be used to predict resting-state connectivity. 
Interestingly, given that predictive features within the co-activation matrices identified at baseline can be 
extended to predictions at a future time point, our results suggest that task-based neural features and models are 
valid predictors of resting state network level connectivity across the course of development. Future work is 
encouraged to verify these findings with more consistent parcellations between task-based and resting-state 
fMRI, and with longer developmental trajectories.   

1. Introduction 

Adolescence is a time of significant neural change (Casey et al., 2019; 
Kilford et al., 2016; Larsen and Luna, 2018; Meruelo et al., 2017). While 
research has traditionally focused on development of individual struc-
tures, significant research over recent years indicates parallel 

development of large-scale systems (Morgan et al., 2018; Power et al., 
2010), such as the default mode network (Fan et al., 2021; Sherman 
et al., 2014; Supekar et al., 2010), the frontoparietal network and the 
salience network (Fair et al., 2007; Wendelken et al., 2016). These three 
networks all exhibit significant change during childhood and adoles-
cence and together subserve critical processes including development of 
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executive control and affective/salience encoding processes (Fair et al., 
2008; Marek and Dosenbach, 2018; Snyder et al., 2021; Wendelken 
et al., 2016). In addition, while many studies have sought to characterize 
developmental trajectories of task-based activation patterns (Lamm 
et al., 2014; Padmanabhan et al., 2011) and of resting state networks 
(Grayson and Fair, 2017; Scheinost et al., 2015) separately, very little is 
known about the relationship between these two developmental pro-
cesses. The current study explores the relationship between canonical 
network engagement and task-based activation patterns using a recently 
developed multi-task, predictive modeling approach (Li et al., 2021), 
with a special focus on young adolescents when significant neural 
change takes place. Specifically, we test the ability of individual-level 
task-based coactivation patterns to predict individual-level resting--
state network connectivity at two time points using data from a large 
cohort of young adolescents (N ~ 6000) from the Adolescent Brain and 
Cognitive Development (ABCD) Study (Bjork et al., 2017; Volkow et al., 
2018). 

Multi-task co-activation matrices were chosen for our analysis as a 
tool to summarize whole-brain functional activity across performance of 
different cognitive tasks targeting different cognitive domains (Laird 
et al., 2013; Li et al., 2021). Constructed from task effect estimates 
across different cognitive domains, multi-task co-activations identify 
consistently correlated or anti-correlated activity between pairwise 
brain regions across tasks. Thus, unlike functional connectivity matrices – 
which are traditionally computed using nodal time-courses without 
consideration of specific events of interest – functional co-activation 
matrices provide a simple method for summarizing individual partici-
pant whole-brain patterns of functional engagement across diverse 
cognitive events. Further, previous meta-analyses have suggested that, at 
the group level, multi-task co-activations capture brain activity common 
to different cognitive domains and represent fundamental components 
of brain’s functional architecture, and studies have demonstrated that 
the structure of group-level multi-task co-activations matches the or-
ganization of many resting-state networks (RSNs) (Laird et al., 2013; 
Smith et al., 2009). This work can therefore also identify such funda-
mental components and investigate whether such components can pre-
dict resting-state network connectivity. 

The current study highlights a few innovations and improvements 
upon existing work. First, the study is the first to investigate the rela-
tionship between task-based co-activations and resting-state network 
connectivity and their co-development at an individual level. To achieve 
this goal, we extended a previously validated connectome-based pre-
dictive modeling (CPM) approach (Finn et al., 2015; Shen et al., 2017) to 
conduct activation-based predictive modeling (APM). As with CPM, 
APM uses cross-validation to identify predictive features within the 
co-activation matrices, lowering the chance of overfitting. The distri-
bution of predictive features can be easily visualized, enabling high 
interpretability. We report APM performances on predictions of 
resting-state connectivity and cognitive measures at baseline, as well as 
the performance of the baseline model at two-year follow-up. Given 
parallel development trajectories of individual brain regions and 
large-scale networks, we anticipated that the relationship between 
whole-brain co-activations and resting-state connectivity would remain 
relatively stable with neural development, even if considerable changes 
would occur within the co-activations and resting-state connectivity 
themselves. Additionally, a practical advantage of our approach is that it 
may be easily implemented using publicly available curated data, 
without requiring individual labs to compute connectivity matrices from 
raw data (e.g., ABCD’s curated data release includes task beta weights 
for ROIs but does not include timeseries data). Thus, we anticipate that 
this approach will be more easily accessible to smaller labs without 
significant computational resources. 

Second, the current study constructed co-activation matrices by 
examining interactions between all possible pairs of brain regions. As a 
comparison, existing multi-task co-activation research use a seed-based 
approach to construct the matrices (Laird et al., 2013; Li et al., 2021), 

which only captures the interactions between one specific brain region 
(the “seed”) with the rest of the brain and does not represent all possible 
interactions between brain regions. The current study’s approach in-
cludes much more information and can therefore draw conclusions with 
much more confidence. 

Third, while previous analysis suggested multi-task co-activations as 
a representation of the “core” functional architecture of the brain and 
discovered structural similarity between task-based co-activations and 
resting-state networks (Laird et al., 2013; Smith et al., 2009), it was 
conducted on group-level data only. Here, we extend this work to focus 
on co-activation patterns at the individual level (unlike prior 
meta-analytic work that has focused on co-activation patterns across 
individuals). We hypothesized that individual whole-brain co-activation 
matrices would successfully predict canonical network engagement at 
rest and that predictive performance would be strongest for models built 
using data from all three available ABCD tasks (reward, inhibition and 
affective working memory tasks). For comparison, we also examined the 
performance of whole-brain multi-task co-activation matrices for pre-
dicting a measure of general cognitive ability. Within this context, we 
hypothesized that, if multi-task co-activations indeed capture general 
brain functions, they should be able to reliably predict general cognitive 
ability. 

2. Materials and methods 

2.1. The adolescent brain cognitive development study 

Data used in this study were obtained from the Adolescent Brain 
Cognitive Development (ABCD) study release 3.0 (https://nda.nih. 
gov/abcd, DAR ID #7566, see Supplementary materials Table S1 for 
access dates). The ABCD study is an ongoing longitudinal cohort study 
including 21 unique data collection sites across the United States and 
comprises 11,878 children aged 9–10 at baseline (Bjork et al., 2017; 
Volkow et al., 2018). The study will track biological and behavioral 
development through adolescence into young adulthood, and the cur-
rent release includes data from the full cohort from the baseline, 
six-month follow-up, and one-year follow-up, and data from part of the 
full cohort from the 18-month follow-up and the two-year follow-up. 

2.2. Neuroimaging data 

The ABCD study includes three fMRI tasks (Casey et al., 2018): the 
monetary incentive delay task (MID) (Knutson et al., 2000), the stop 
signal task (SST) (Logan, 1994), and the emotional N-back task (EnBack) 
(Cohen et al., 2016). The MID measures domains of reward processing, 
including the anticipation and receipt of rewards and losses. The SST 
engages domains of impulsivity and impulse control. The EnBack task 
engages working memory using emotional stimuli. 

The curated ABCD study release 3.0 (which includes the corrected 
data from Philips scanners) includes mean beta weights for 98 brain 
regions of interest (ROIs) covering the cortex, subcortex and cerebellum 
for each task across different task contrasts (e.g., correct stop versus 
correct go for the SST, reward anticipation versus neutral for the MID, 
emotional faces versus neutral faces for the EnBack). These mean beta 
weights were used to construct multi-task co-activation matrices for 
each participant, as described below and summarized in Fig. 1A. 

All image pre-processing and first-level analytic steps (e.g., the 
calculation of beta weights for a given task) were conducted by the 
ABCD Consortium and are briefly described in the Supplemental Mate-
rials and Methods. For more details on image collection, preprocessing, 
and analysis, please refer to the official ABCD publication (Hagler et al., 
2019). 

2.3. Construction of multi-task co-activation matrices 

Quality control was conducted using the ABCD imaging inclusion 
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recommendations (package name: abcd_imgincl01) for 11,788 par-
ticipants at baseline and 5700 participants at two-year follow-up with 
data at the time of access. Details on inclusion criteria can be found in 
ABCD 3.0 Release Notes (https://nda.nih.gov/study.html?id=901) - 
MRI Quality Control Recommended Inclusion. For functional MRIs, this 
includes a series of automated and manual quality control steps such as 

checking the average framewise displacement as well as the number of 
seconds with framewise displacements less than 0.2, 0.3, or 0.4 mm, 
according to recommendations by Power et al. (2012). At each time-
point, only participants whose fMRI data on the SST, MID, and EnBack 
tasks followed the ABCD imaging inclusion recommendations were 
considered for the construction of the multi-task co-activation matrices, 

Fig. 1. Data processing and modeling pipeline. (A) Multi-task co-activation matrices were constructed by calculating the Pearson correlation between brain regions 
across task contrasts. (B) Adapted from connectome-based predictive modeling (Shen et al., 2017), activation-based predictive modeling consists of four steps: select 
predictive features, sum edge weights, fit predictive model, and apply model to novel data. Note: All pre-processing and computation of task beta-weights was 
conducted by the ABCD Consortium, details in Supplemental Materials. 
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which resulted in 6075 participants at baseline, and 3539 participants at 
two-year follow-up. 

Fig. 1 A provides a schematic overview of the construction of co- 
activation matrices. Beta weights were downloaded for task-based 
fMRI in 30 subcortical (“ASEG”) and 68 cortical (“APARC”) ROIs 
(Desikan et al., 2006; Fischl et al., 2002) averaged across all runs 
(package names: mrisst02, nback_bwroi02, midaparc03, and 
midaparcp203). Eighty-six ROIs remained after exclusion of cerebral 
white matter, cerebellum white matter, ventricles, brain stem, and ce-
rebrospinal fluid (Supplementary materials Table S2). Twelve task 
contrasts were selected (Table 1), and the corresponding beta weights 
were extracted for each ROI. Using these data, an 86 by 86 multi-task 
co-activation matrix was constructed for each participant by calcu-
lating the Pearson correlation between regional task contrasts (Fig. 1A). 
Two participants had missing contrast data at baseline and were 
excluded. A total of 6073 matrices at baseline (10.0 ± 0.6 years, female: 
3056) and 3539 matrices at two-year follow-up (11.9 ± 0.6 years, fe-
male: 1726) were generated. The number of participants remaining after 
each step of preprocessing is also summarized in Supplementary mate-
rials Table S3. 

2.4. Activation-based predictive modeling (APM) 

Predictive models were run using an adapted version of connectome- 
based predictive modeling (CPM). CPM is a cross-validated machine- 
learning approach that takes whole-brain connectomes as input and 
identifies positive and negative features in the connectomes that are 
predictive of target variables, such as behavioral measurements (Shen 
et al., 2017). Although traditionally run using functional connectivity 
matrices as input, CPM may also take other types of imaging data as 
input (Shen et al., 2017). We therefore extended this approach to 
include multi-task functional co-activation matrices as input for the first 
time (Fig. 1B), hereafter referred to as activation-based predictive 
modeling (APM). For both CPM and APM, participant-level differences 
in the input matrices and the target variables drive the training and 
evaluation of the predictive models. 

APM was used to generate predictive models of average resting-state 
connectivity within the default mode network (DMN), salience network 
(SAL), and fronto-parietal network (FP) (obtained from the curated 
ABCD study release, package name: abcd_betnet02). The canonical 
networks are based on the Gordon parcellation, a functionally defined 
parcellation based on resting-state functional connectivity patterns 
(Gordon et al., 2016). Details on the preprocessing of resting-state im-
aging data, as well as the calculation of average connectivity within 
networks, can be found in Supplemental materials and Methods and the 
official ABCD publication (Hagler et al., 2019). Not all participants with 
co-activation matrices also had resting-state connectivity data. Overall, 
5605 participants had both co-activation matrices and resting-state 
connectivity data at baseline that met the ABCD image inclusion 
criteria (package name: abcd_imgincl01), and the co-activation 
matrices of these participants were entered into APMs to predict 

resting state network connectivity (10.0 ± 0.6 years, female: 2888). 
To identify co-activation patterns associated with cognitive mea-

sures, a common target for CPM, we also ran APMs on the three general 
neurocognitive components identified by Thompson et al. (2019) using 
data from the ABCD neurocognitive battery (Luciana et al., 2018). The 
components were determined by running Bayesian principal component 
analysis on nine neurocognitive measures, including measures from 
seven NIH Toolbox tests (e.g., the Picture Vocabularty Task, the List 
Sorting Working Memory Test) as well as the Rey Auditory Verbal 
Learning Test and the little man task, as reported previously (Thompson 
et al., 2019). The three principal components (PCs) were shown to 
encompass general cognitive ability (PC1), executive function (PC2), 
and learning/memory (PC3). These principal components were obtained 
through the ABCD release 3.0 RDS file (https://nda.nih.gov/study.html? 
id=1042). Overall, 5689 participants had both co-activation matrices 
and cognitive PCs data at baseline and these participants were entered 
into APM (10.0 ± 0.6 years, female: 2852). 

All APM analyses were conducted using custom scripts in Python, 
based on Shen et al. (2017). The scripts and the code used to generate 
task-based coactivation matrices are available at our GitHub repository 
https://github.com/fye92/abcd_fy. A 10-fold cross-validation APM was 
adopted for all analyses. For each fold, 90 % of the participants was 
assigned as training data and the remaining 10 % was assigned as testing 
data. During training, Pearson correlation coefficient (r) was calculated 
across participants between edge weights in the input co-activation 
matrices and a target measure, e.g., DMN connectivity. Edges that 
positively correlated with the target measure with p < 0.05 were iden-
tified as the positive features (“positive edges”), whereas edges that 
negatively correlated with the target measure with p < 0.05 were 
identified as the negative features (“negative edges”). A summary sta-
tistic was then calculated for each individual by subtracting the sum of 
negative edge weights from the sum of positive edge weights, and a 
linear regression model was trained on this statistic to predict the target 
measure. The predictive features identified in the training data were 
then extracted from the co-activation matrices from the testing data, and 
the trained models were then applied to the summary statistic of the 
testing data to generate predictions. Model performance was quantified 
as the Spearman correlation (rho) between the testing-data predictions 
and actual values across the whole sample. To further improve the 
reliably of our results, 10-fold APM was repeated 100 times to generate 
100 Spearman rho values, where subject order is randomly shuffled for 
each iteration. To prevent over-fitting to a given iteration, the final 
predictive network retains only positive and negative features that were 
shared across every fold and every iteration. 

2.5. Statistical analysis 

Permutation testing was adopted to measure the significance of the 
observed Spearman rho values. For 1000 iterations, the target measures 
(resting-state connectivity or cognitive PCs) were permuted and then fed 
into 10-fold APM. The resulting 1000 Spearman rho values formed a null 
distribution and a one-tailed p-value was calculated by contrasting the 
actual Spearman rho against the null distribution: 

p =
Number of nullrho > rhoactual

Number of nullrhoavailable 

Note that one-tailed p-values were chosen over two-tailed p-value 
because rhoactual was expected to be positive (see Table 2 in the Results 
section), and only null-model rhos more positive than rhoactual were 
considered significant. 

2.6. Model stability from age 10 to age 12 

To determine the stability of identified predictive models, the pre-
dictive ability of successful models derived at baseline were tested at 
two-year follow-up. As the cognitive PCs are not yet available for two- 

Table 1 
List of contrasts used to construct multi-task co-activation matrices.  

Task Contrast 

SST correct stop versus correct go 
incorrect stop versus correct go 
correct stop versus incorrect stop 
incorrect go versus correct go 

MID all anticipation of loss versus neutral 
all anticipation of reward versus neutral 
all loss positive versus negative feedback contrast 
all reward positive versus negative feedback 

EnBack 2 back versus 0 back 
face versus place 
negative face versus neutral face 
positive face versus neutral face  
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year follow-up, these analyses were constrained to models that suc-
cessfully predicted average connectivity within resting-state networks. 
For these analyses, predictive features identified in baseline APMs were 
extracted from two-year follow-up co-activation matrices. For each 
participant, the summary statistic of the predictive features was calcu-
lated, and a prediction of age-12 average resting-state connectivity was 
made by entering the summary statistic into a linear regression model 
using the mean slope and intercept obtained during training at age 10. 
Spearman correlation was then calculated across participants between 
the prediction and the actual age-12 average resting-state connectivity. 

2.7. Post-hoc testing 

To gauge the contribution of each individual task to the models’ 
predictive performance, co-activation matrices were re-computed 
removing one task at a time. Excluding participants with missing data, 
removing the SST and removing the EnBack both resulted in 6074 
matrices at baseline, and removing the MID resulted in 6073 matrices at 
baseline. APMs were run using task-removed co-activation matrices to 
predict baseline average resting-state connectivity and cognitive PCs. 
Overall, 5605 participants had both MID-removed/EnBack-removed co- 
activation matrices and resting-state connectivity data at baseline (10.0 
± 0.6 years, female: 2888), and 5606 participants had both SST- 
removed co-activation matrices and resting-state connectivity data at 
baseline (10.0 ± 0.6 years, female: 2888). For prediction of general 
cognitive measures, 5689 participants had both MID-removed co-acti-
vation matrices and cognitive PCs at baseline (10.0 ± 0.6 years, female: 
2852), and 5690 participants had both SST-removed/EnBack-removed 
co-activation matrices and cognitive PCs at baseline (10.0 ± 0.6 years, 
female: 2852). Identical to previous analyses, 10-fold APM was run with 
p-value threshold 0.05 and was repeated 100 times to generate 100 
Spearman rho values. To test for between-model differences in accuracy, 
Steiger’s test for dependent correlations was used to quantify the sig-
nificance of the differences between rhos. 

To quantify how each macroscale brain region contributed to the 
predictive power of APM models, “virtual lesioning” (Lichenstein et al., 
2021; Yip et al., 2020) was carried out by removing one macroscale 
brain region at a time from the multi-task co-activation matrices and 
re-running APM. The 86 ROIs were assigned to nine macroscale brain 
regions, based on FreeSurfer’s classification (Klein and Tourville, 2012): 
cerebellum, cingulate, frontal, insula, limbic, occipital, parietal, stria-
tum, and temporal networks (Supplementary Table S2). For these 

analyses, the cohort remained the same as in the original APM analysis 
(N = 5605 for resting-state connectivity and N = 5689 for cognitive 
PCs). As done in previous analyses, 10-fold APM was run with a p-value 
threshold of 0.05 and was repeated 100 times. For each “lesioned” 
macroscale brain region, performance of the “lesioned” co-activation 
matrices was quantified by the 100 Spearman rho values. Steiger’s test 
for dependent correlations was used to quantify the significance of the 
differences between rhos (i.e., to test for between-model differences in 
accuracy). 

2.8. Data and code availability 

The data that support the findings of this study are openly available 
in the ABCD study release 3.0 (https://nda.nih.gov/abcd, see Supple-
mentary materials Table S1 for package names and access dates). The 
code for APM is available at our GitHub repository https://github. 
com/fye92/abcd_fy. The list of participant IDs used in the analysis 
will be available upon direct request to the corresponding author and 
review by all authors. 

3. Results 

3.1. Activation-based modeling using multi-task co-activation matrices 

Model performance of APMs run using multi-task co-activation 
matrices are summarized in Fig. 2 and Table 2. Multi-task co-activation 
matrices successfully predicted average DMN connectivity across par-
ticipants (rho = 0.1792 ± 0.0022, p-value < 0.001). While prediction of 
other canonical networks was also statistically significant, effect sizes 
(rho) were smaller (FP: rho = 0.1207 ± 0.0065, p < 0.001; SAL: 
rho = 0.0443 ± 0.0017, p = 0.001). 

Among the three principal components identified by Thompson et al. 
(2019), the co-activation matrices were best at predicting PC1 “general 
ability” (rho = 0.1404 ± 0.0060, p < 0.001). While prediction of the 
other two PCs was also statistically significant, effect sizes (rho) were 
smaller (PC2 “executive function”: rho = 0.0592 ± 0.0016, p < 0.001; 
PC3 “learning/memory” rho = 0.0803 ± 0.0018, p < 0.001). 

3.2. Distribution of significant features in macroscale brain regions 

Here, we focus on the best performing models for resting-state con-
nectivity (DMN) and cognition (PC1), respectively. Fig. 3 summarizes 
the distribution of positive and negative features identified from pre-
dictions of DMN connectivity and cognitive PC1 in and across macro-
scale brain regions, based on FreeSurfer’s classification (Klein and 
Tourville, 2012). 

For prediction of average DMN connectivity (Fig. 3A), more positive 
features (i.e., edges in the co-activation matrices that were significantly 

Table 2 
APM model performance across 100 iterations.   

#Iter of 
null 
model 

#Iter of 
true 
model 

Spearman rho One-tailed 
p-value 

Average resting-state 
connectivity - 
DMN  

1000  100  0.1792 (0.0022) < 0.001 

Average resting-state 
connectivity – FP  

1000  100  0.1207 (0.0065) < 0.001 

Average resting-state 
connectivity - SAL  

1000  100  0.0443 (0.0017) 0.001 

Cognitive PC1 
(general ability)  

1000  100  0.1404 (0.0060) < 0.001 

Cognitive PC2 
(executive 
function)  

1000  100  0.0592 (0.0016) < 0.001 

Cognitive PC3 
(learning/ 
memory)  

1000  100  0.0803 (0.0018) < 0.001 

Results reported here use both positive and negative features (i.e., combined 
model performance). Model performance is quantified as the Spearman corre-
lation (rho) between the test-set predictions and actual values across the whole 
sample. Standard deviations are shown in parentheses. Bold font indicates the 
best performing models for each domain. 

Fig. 2. APM model performance across 100 iterations. From left to right: for 
prediction of DMN connectivity, FP connectivity, SAL connectivity, cognitive 
PC1 (general ability), PC2 (executive function), and PC3 (learning/memory). 
Gray circles represent mean, boxes represent lower to upper quartile, and 
whiskers represent range. 
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positively correlated with DMN connectivity) were identified than 
negative features (i.e., edges in the co-activation matrices that were 
significantly negatively correlated with DMN connectivity). Positive 
features are those for which increased co-activation between brain re-
gions is a positive predictor of DMN strength and negative features are 
those for which decreased co-activation between brain regions is a 
positive predictor of DMN strength. Positive features were more 
frequently distributed between the frontal and temporal networks (116 
features), the frontal and limbic networks (101 features), and between 
the temporal and limbic networks (61 features). Negative features were 
primarily between the frontal and parietal networks (26 features) and 
within the parietal network (23 features). Fig. 3B further summarizes 
predictive features as the ratio of total edges within and between 
macroscale brain regions. The occipital network contributed the most to 
positive features, with 64 % of its connections being statistically sig-
nificant. The parietal network contributed the most to negative features, 
with 51 % of its connections being statistically significant. The cere-
bellum and insula only contain two ROIs and therefore the ratio of 
significant features within these regions are either 0 or 1 and thus un-
informative. The importance of each macroscale brain region to the 
prediction of DMN connectivity was further investigated in Section 3.5. 

For the prediction of cognitive PC1 (“general ability”, Fig. 3C), 
positive features are those for which increased co-activation between 
brain regions is a positive predictor of general cognitive ability and 
negative features are those for which decreased co-activation between 
brain regions is a positive predictor of general cognitive ability.. Positive 
features were primarily identified between the frontal network and 
cerebellum (19 features), the frontal and parietal networks (19 fea-
tures), the parietal network and cerebellum (14 features), the frontal 
and occipital networks (13 features), and the parietal network and 
cingulate (11 features). Negative features were distributed primarily 
within the frontal network (21 features), between the frontal and tem-
poral networks (17 features), the frontal and limbic networks (12 fea-
tures), the frontal and parietal networks (12 features), within the 
parietal network (12 features), and between the parietal and limbic 
networks (10 features). Fig. 3D further summarizes predictive features 

as the ratio of total edges within and between macroscale brain regions. 
Connections between the parietal network and cerebellum (70 %) and 
between the frontal network and cerebellum (43 %) contributed the 
most to positive features, whereas the parietal network contributed the 
most to negative features (27 %). The importance of each macroscale 
brain region to the prediction of general cognitive ability was further 
investigated in Section 3.5. 

3.3. Model performances at two-year follow-up 

For the prediction of resting-state connectivity within the DMN, the 
predictive network derived at baseline was also successful at predicting 
the DMN connectivity at two-year follow-up (N = 3383, age = 12.0 
± 0.6 years, 1676 female). The Spearman correlation between predic-
tion of year-two DMN connectivity and actual year-two DMN connec-
tivity was rho = 0.258 (Fig. 4). The prediction was generated by 
applying baseline predictive network and linear regression model to 
year-two co-activation matrices. Predictions of the FP and SAL connec-
tivity at two-year follow-up are shown in Supplementary Fig. S1. 

3.4. Model performances after task removal 

Tasks used to construct the co-activation matrices affected the per-
formances of APM models (Fig. 5). Removing the MID significantly 
lowered the model performances for prediction of resting-state DMN 
connectivity (Δrho = − 0.0304, Steiger’s p = 1.08e-5), and removing the 
EnBack significantly lowered the model performances for cognitive PC1 
(Δrho = − 0.0583, Steiger’s p = 3.69e-6). Removing the MID also low-
ered model performances for the prediction of cognitive PC1 and 
removing the EnBack also lowered model performances for the predic-
tion of DMN connectivity, though the differences were not statistically 
significant. 

In contrast, removing the SST significantly improved model perfor-
mances for the prediction of cognitive PC1 (Δrho = 0.0308, Steiger’s 
p = 0.0015), while removing the SST task mildly lowered model per-
formances for the prediction of DMN connectivity. The difference 

Fig. 3. Distribution of positive and negative predictive features in and across macroscale brain regions. Top panel: (A) Absolute number of edges and (B) ratio of 
edges, from prediction of average resting-state connectivity within the DMN. Bottom panel: (C) Absolute number of edges and (D) ratio of edges, from prediction of 
cognitive PC1. 
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between the SST-removed and the original models was not statistically 
significant. 

Model performances after task removal for predictions of rs-fMRI 
SAL, rs-fMRI FP, cognitive PC2, and cognitive PC3 can be found in 
Supplementary materials Fig. S2. Model performances using only posi-
tive or negative features are provided in Supplementary materials 
Fig. S3. In general, removing the MID or EnBack hindered model per-
formance, whereas removing the SST usually kept model performance 

relatively unchanged, or even improved model performance. 

3.5. Model performances after removal of macroscale brain regions 

For the prediction of resting-state DMN connectivity, the “virtual 
lesioning” analyses revealed that removing the parietal network from 
the co-activation matrices decreased the performance of APM the most 
(rho = 0.1551 ± 0.0013, Steiger’s p = 3.33E-15). Removing the occipi-
tal network also decreased the performance of APM considerably 
(rho = 0.1644 ± 0.0015, Steiger’s p = 9.39E-8). For the prediction of 
cognitive PC1, removing the parietal network from the co-activation 
matrices decreased the performance of APM the most (rho = 0.1232 
± 0.0047, Steiger’s p = 0.0033). 

The “virtual lesioning” results for all macroscale brain regions and 
the corresponding p-values can be found in Supplementary materials 
Fig. S4, and Table S4-S7. Reversed “virtual lesioning” analyses were also 
conducted by keeping one macroscale brain region at a time in the co- 
activation matrices, and results can be found in Supplementary mate-
rials Fig. S5, and Table S8-S11. 

4. Discussion 

This study tested the hypothesis that multi-task co-activation 
matrices could be used to predict canonical resting-state network con-
nectivity and cognitive function in large sample of youth. To that end, 
we adapted an existing pattern learning algorithm – connectome-based 
predictive modeling—to create activation-based predictive modeling 
(APM). This novel approach was successful in generating accurate pre-
dictive models of individual participant resting-state patterns of DMN 
connectivity and general cognitive ability in young adolescents (~10 
years). Moreover, predictive features for resting-state connectivity 
identified at baseline also predicted connectivity at two-year follow-up 
(~12 years), suggesting the validity of the predictive features and 
models over the course of development. 

Our approach builds on prior work. Meta-analytic functional brain 
co-activations across multiple tasks spanning different cognitive do-
mains were first introduced in a PET study by Koski and Paus (2000) and 
were subsequently applied to task-based fMRI (Laird et al., 2013). While 
earlier research focused on specific brain regions of interest (Koski and 
Paus, 2000; Postuma and Dagher, 2006), Toro et al. extended the 
concept of multi-task co-activation to the whole brain (Toro et al., 2008) 
and utilized a large amount of experiments available in the BrainMap 
database (Fox and Lancaster, 2002; Laird et al., 2005; http://brainmap. 
org). Despite differences in the exact approach used to construct 
co-activation maps, these meta-analyses generally suggest that—at the 
group level—multi-task co-activations capture brain activity common to 
different cognitive domains and represent fundamental components of 
brain’s functional architecture (Laird et al., 2013). Moreover, studies 
have demonstrated that the structure of group-level multi-task 
co-activations matches the organization of many resting-state networks 
(RSNs) (Laird et al., 2013; Smith et al., 2009). Such convergence be-
tween task-based activations (whether single-task or multi-task) and 
resting-state connectivity implies that there may be a “core” network 
active in the brain’s functional architecture, regardless of whether the 
subjects are in an internally induced mind-wandering state or an 
externally stimulated state such as during task-based fMRI (Laird et al., 
2013). Our findings are consistent with this theory and for the first time 
demonstrate this relationship between multi-task co-activations and 
resting-state connectivity at an individual level and in a developmental 
cohort using a robust, cross-validated approach. 

Consistent with recent prior work in ABCD, overall effect sizes were 
somewhat modest. Studies have shown that such values are expected in 
a large study with thousands of participants and that these effect sizes 
are more reliable than the inflated effect sizes reported in much smaller 
samples (e.g., N < 100) (Chaarani et al., 2021; Marek et al., 2022; 
Owens et al., 2021; Rapuano et al., 2020). Here we follow the recently 

Fig. 4. Using age-ten predictive network to predict age-twelve average resting- 
state connectivity within the DMN. The predictive network was identified by 
running APM between baseline co-activation matrices and baseline average 
resting-state connectivity within the DMN (N = 5605, age = 10.0 ± 0.6 years, 
2888 female). This prediction was generated by applying baseline predictive 
network and linear regression model identified at baseline to year-two co- 
activation matrices: mean slope (m = 8.57e-5) and intercept (b = 0.22). Data 
shown using hexagonal binning plots for which color scale indicates the number 
of individuals represented by each hexagon. 

Fig. 5. Model performances after task removal. Y axis marks the relative dif-
ferences in the mean Spearman correlation coefficient across 100 iterations 
between the task-removed models and the original models. The bar plots 
describe the relative model performance with MID removed (yellow), with 
EnBack removed (light green), and with SST removed (dark green). The anal-
ysis only included subjects present in the original analysis and all three task- 
removed analyses. Left: Model performances for predicting resting-state con-
nectivity within the DMN (N = 5605, age = 10.0 ± 0.6 years, 2888 female). 
Right: Model performance for predicting cognitive PC1 (N = 5689, age = 10.0 
± 0.6 years, 2852 female). The asterisks right above each bar mark the statis-
tical significance of the difference between the task-removed rho and the 
original rho. The asterisks above the brackets mark the statistical significance of 
the difference between the task-removed rhos. *: 0.01 < p < 0.05, **: 
0.001 < p < = 0.01, ***: p < = 0.001. 
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proposed guidelines indicating that effects from in the ABCD study 
corresponding to r ≥ 0.10 are in fact “above average” effect sizes 
(Owens et al., 2021). Thus, findings from the highest performing models 
meeting or exceeding this threshold within each domain (i.e., models 
predicting DMN connectivity and cognitive PC1) are focused on below. 

Our findings demonstrated that individual participants’ task-based 
fingerprints could be used to predict the same participant’s resting- 
state DMN connectivity at age ten, and we speculate that the predic-
tive network identified by APM captures the aforementioned “core” 
network of the brain. This speculation is further supported by our 
finding that the co-activations are better at predicting general cognitive 
ability (PC1) than domain-specific behaviors (PC2 and PC3). The model 
did not work as well in predicting resting-state FP and SAL connectivity 
at the same age. One possible explanation is that the DMN, a network 
traditionally considered active “at rest” during processes such as 
remembering and envisioning the future (Buckner and DiNicola, 2019), 
may be most consistent with what the multi-task co-activations were 
designed to capture – the backbone of essential brain functions active 
regardless of brain states. The FP network, which is critical for cognitive 
control (Marek and Dosenbach, 2018), and the SAL network, which 
detects and integrates emotional and sensory stimuli (Seeley, 2019), 
may only be activated during specific brain states. However, further 
work is needed to test this specific theory within the context of the ABCD 
dataset. 

Post-hoc, virtual lesioning analyses revealed that removing parietal 
(including bilateral inferior parietal regions, precuneus, postcentral re-
gions, superior parietal regions, and supramarginal regions) and occip-
ital (including bilateral cuneus, lateral occipital regions, lingual regions, 
and pericalcarine) regions had the greatest impacts on predictive model 
performance. This is consistent with the distribution of predictive edges 
identified by APM (Fig. 2), where occipital regions contributed the most 
to positive features (64 % of its edges) and parietal regions contributed 
the most to negative features (51 % of its edges). While some regions in 
the parietal and occipital networks overlap with the DMN (parts of 
inferior and superior parietal regions, precuneus, supramarginal regions 
and lateral occipital regions), many do not. Additionally, removing 
frontal regions from co-activation matrices did not affect APM perfor-
mance, even though the frontal network also extensively overlaps with 
the DMN. This observation echoes the hypothesis that, although there is 
a convergence between the structure of multi-task co-activations and the 
organization of many of the resting-state networks, the “core” network 
identified by APM is different from both. Notably, parietal regions were 
essential for the prediction of both DMN activity and general cognitive 
ability, indicating the network may be an important component of the 
“core” network. 

Task-removal analyses indicated that the SST was not as important as 
the MID and EnBack for the prediction of DMN connectivity and general 
cognitive ability. From a developmental perspective, this may be 
explained by previous findings suggesting that inhibitory control de-
velops at a later stage than reward processing or working memory ca-
pacity (Casey, 2014; Yip and Potenza, 2018). Given that APM models 
were trained at age ten, it is likely that inhibitory control has not yet 
fully developed to become relevant at such an early stage and/or that 
individual differences in inhibitory control processes are not yet suffi-
ciently varied to yield robust predictions. While it is also possible that 
previously described design issues of the SST task in ABCD may have led 
to diminished predictive utility (Bissett et al., 2021), this possibility 
requires direct testing. 

Our approach has several advantages relative to prior work. First, 
while most of the existing literature focuses on seed-based methods (see, 
for example, (Bolton et al., 2020; De Marco et al., 2018; Laird et al., 
2013; Pelland et al., 2017)), the current study examined the 
co-activations between all possible pairs of brain regions. This pair-wise 
co-activation method is ideal for data-driven methods such as APM. 
Second, thanks to the recent coordinated efforts of establishing 
multi-site large-cohort studies, task contrasts data in the current study 

were obtained from a “single” dataset (ABCD), in the sense that it is a 
more unified effort than the previous meta-analyses where thousands of 
papers with very different experiment designs and research interests 
were pooled. This not only lowers undesired variability in the data due 
to different study protocols, but also enabled us to extract multi-task 
co-activations for each individual, instead of relying on activation 
maps summarized from each pooled experiment (see, for example, 
(Smith et al., 2009)). Furthermore, the ABCD dataset provides longitu-
dinal data for the same cohort of participants, allowing the investigation 
of the relationship between multi-task co-activations and resting-state 
connectivity across development. Practically, our approach is also 
relatively easy to implement as it may be done using publicly available 
curated data (e.g., summary metrics for different ROIs, as in the ABCD 
data release) without requiring individual labs to compute connectivity 
matrices from raw data (e.g., as would be needed for connectome-based 
modeling of ABCD data). Thus, we anticipate that this approach will be 
more easily accessible to smaller labs without significant computational 
resources and may therefore advance open science approaches to this 
unparalleled dataset. Finally, APM produces reliable results through 100 
iterations of 10-fold cross-validation, where subject order is randomly 
shuffled for each iteration. The method warrants representative sam-
pling of subjects during training and is effective in avoiding overfitting. 
Given that the distribution of site sizes in our sample is relatively even, it 
is unlikely that the successful predictions were merely driven by a spe-
cific site. 

Future work should further investigate the concept of the “core” 
network identified in this paper, especially in the developmental 
context. For example, do the identified predictive features and their 
associated developmental trajectories change with age? As age in-
creases, does APM become better at predicting PC2, PC3, FP network 
strength, and SAL network strength? It would also be interesting to study 
whether the identified predictive features and their predictive perfor-
mance differ between healthy and clinical populations. Additionally, 
future work should investigate if the SST task becomes more relevant at 
an older age, given previous findings that inhibitory control develops at 
a later stage than reward processing or working memory capacity 
(Casey, 2014; Yip and Potenza, 2018). While it is out of the scope of the 
current paper, it would also be interesting to see whether a model 
trained using age-10 data predicts change in network strengths between 
age 10 and age 12, or even further into the developmental trajectory. We 
also recognize that one inherent limitation with using the tabulated data 
from ABCD is the discrepancy in the parcellations of the task fMRI data 
(“ASEG” and Desikan) and the resting-state fMRI data (Gordon). Future 
work with the right resources should verify whether similar results can 
be obtained with more consistent parcellations between task-based and 
resting-state fMRI. 

5. Conclusions 

Evidence presented here suggests that, using activation-based pre-
dictive modeling (APM), multi-task co-activation patterns (based on the 
“ASEG” and Desikan parcellation) can predict resting-state DMN con-
nectivity (Gordon parcellation) and general cognitive ability at an in-
dividual level in a large cohort of young adolescents. Interestingly, 
predictive models identified at age ten can be applied to age-twelve co- 
activation patterns to predict age-twelve resting-state DMN connectiv-
ity, suggesting the validity of the predictive features and models even 
over the course of development. The identified predictive features and 
their associated developmental trajectories may advance our under-
standing of brain states and provide a new perspective on studying brain 
functions and their development in healthy and clinical populations. 

Funding 

This work was supported by National Institutes of Health grants 
R01AA027553, K08DA051667, and T32DA007238. 

F. Ye et al.                                                                                                                                                                                                                                       



Developmental Cognitive Neuroscience 58 (2022) 101160

9

CRediT authorship contribution statement 

Fengdan Ye: Conceptualization, Methodology, Software, Validation, 
Formal Analysis, Investigation, Data Curation, Writing – Original Draft, 
Writing – Review & Editing, Visualization Robert Kohler: Conceptu-
alization, Data Curation, Writing – Review & Editing Bianca Serio: Data 
Curation, Writing – Review & Editing Sarah Lichenstein: Conceptual-
ization, Data Curation, Writing – Review & Editing Sarah W Yip: 
Conceptualization, Methodology, Software, Validation, Formal Anal-
ysis, Investigation, Data Curation, Resources, Writing – Original Draft, 
Writing – Review & Editing, Supervision, Project administration. 

Data statement 

The data that support the findings of this study are openly available 
in the ABCD study release 3.0 (https://nda.nih.gov/abcd, see Supple-
mentary materials Table S1 for package names and access dates). The 
code for APM is available at our GitHub repository https://github. 
com/fye92/abcd_fy. The list of participant IDs used in the analysis 
will be available upon direct request to the corresponding author and 
review by all authors. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.dcn.2022.101160. 

References 

Bissett, P.G., Hagen, M.P., Jones, H.M., Poldrack, R.A., 2021. Design issues and solutions 
for stop-signal data from the adolescent brain cognitive development (ABCD) study. 
eLife 10. https://doi.org/10.7554/eLife.60185. 

Bjork, J.M., Straub, L.K., Provost, R.G., Neale, M.C., 2017. The ABCD study of 
neurodevelopment: identifying neurocircuit targets for prevention and treatment of 
adolescent substance abuse. Curr. Treat. Options Psychiatry 4, 196–209. https://doi. 
org/10.1007/s40501-017-0108-y. 

Bolton, T.A.W., Tuleasca, C., Wotruba, D., et al., 2020. TbCAPs: a toolbox for co- 
activation pattern analysis. Neuroimage 211, 116621. https://doi.org/10.1016/j. 
neuroimage.2020.116621. 

Buckner, R.L., DiNicola, L.M., 2019. The brain’s default network: updated anatomy, 
physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608. https://doi.org/ 
10.1038/s41583-019-0212-7. 

Casey, B.J., 2014. Beyond simple models of self-control to circuit-based accounts of 
adolescent behavior. Annu Rev. Psychol. 66, 295–315. https://doi.org/10.1146/ 
annurev-psych-010814-015156. 

Casey, B.J., Cannonier, T., Conley, M.I., et al., 2018. The adolescent brain cognitive 
development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. 
Neurosci. 32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001. 

Casey, B.J., Heller, A.S., Gee, D.G., Cohen, A.O., 2019. Development of the emotional 
brain. Neurosci. Lett. 693, 29–34. https://doi.org/10.1016/j.neulet.2017.11.055. 

Chaarani, B., Hahn, S., Allgaier, N., et al., 2021. Baseline brain function in the 
preadolescents of the ABCD study. Nat. Neurosci. 24, 1176–1186. https://doi.org/ 
10.1038/s41593-021-00867-9. 

Cohen, A.O., Conley, M.I., Dellarco, D.V., Casey, B.J., 2016. The impact of emotional 
cues on short-term and long-term memory during adolescence. Program No. 90.25 
Neuroscience Meeting Planner, San Diego, CA: Society for Neuroscience. 

De Marco, M., Meneghello, F., Pilosio, C., Rigon, J., Venneri, A., 2018. Up-regulation of 
DMN connectivity in mild cognitive impairment via network-based cognitive 
training. Curr. Alzheimer Res. 15, 578–589. https://doi.org/10.2174/ 
1567205015666171212103323. 

Desikan, R.S., Segonne, F., Fischl, B., et al., 2006. An automated labeling system for 
subdividing the human cerebral cortex on MRI scans into gyral based regions of 
interest. Neuroimage 31, 968–980. https://doi.org/10.1016/j. 
neuroimage.2006.01.021. 

Fair, D.A., Dosenbach, N.U., Church, J.A., et al., 2007. Development of distinct control 
networks through segregation and integration. Proc. Natl. Acad. Sci. USA 104, 
13507–13512. https://doi.org/10.1073/pnas.0705843104. 

Fair, D.A., Cohen, A.L., Dosenbach, N.U., et al., 2008. The maturing architecture of the 
brain’s default network. Proc. Natl. Acad. Sci. USA 105, 4028–4032. https://doi.org/ 
10.1073/pnas.0800376105. 

Fan, F., Liao, X., Lei, T., et al., 2021. Development of the default-mode network during 
childhood and adolescence: a longitudinal resting-state fMRI study. Neuroimage 
226, 117581. https://doi.org/10.1016/j.neuroimage.2020.117581. 

Finn, E.S., Shen, X., Scheinost, D., et al., 2015. Functional connectome fingerprinting: 
identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 
1664–1671. https://doi.org/10.1038/nn.4135. 

Fischl, B., Salat, D.H., Busa, E., et al., 2002. Whole brain segmentation: automated 
labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 
https://doi.org/10.1016/s0896-6273(02)00569-x. 

Fox, P.T., Lancaster, J.L., 2002. Opinion: Mapping context and content: the BrainMap 
model. Nat. Rev. Neurosci. 3, 319–321. https://doi.org/10.1038/nrn789. 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 
2016. Generation and evaluation of a cortical area parcellation from resting-state 
correlations. Cereb. Cortex 26, 288–303. https://doi.org/10.1093/cercor/bhu239. 

Grayson, D.S., Fair, D.A., 2017. Development of large-scale functional networks from 
birth to adulthood: a guide to the neuroimaging literature. Neuroimage 160, 15–31. 
https://doi.org/10.1016/j.neuroimage.2017.01.079. 

Hagler Jr., D.J., Hatton, S., Cornejo, M.D., et al., 2019. Image processing and analysis 
methods for the adolescent brain cognitive development study. Neuroimage 202, 
116091. https://doi.org/10.1016/j.neuroimage.2019.116091. 

Kilford, E.J., Garrett, E., Blakemore, S.J., 2016. The development of social cognition in 
adolescence: an integrated perspective. Neurosci. Biobehav Rev. 70, 106–120. 
https://doi.org/10.1016/j.neubiorev.2016.08.016. 

Klein, A., Tourville, J., 2012. 101 labeled brain images and a consistent human cortical 
labeling protocol. Front. Neurosci. 6, 171. https://doi.org/10.3389/ 
fnins.2012.00171. 

Knutson, B., Westdorp, A., Kaiser, E., Hommer, D., 2000. FMRI visualization of brain 
activity during a monetary incentive delay task. Neuroimage 12, 20–27. https://doi. 
org/10.1006/nimg.2000.0593. 

Koski, L., Paus, T., 2000. Functional connectivity of the anterior cingulate cortex within 
the human frontal lobe: a brain-mapping meta-analysis. Exp. Brain Res. 133, 55–65. 
https://doi.org/10.1007/s002210000400. 

Laird, A.R., Lancaster, J.L., Fox, P.T., 2005. BrainMap: the social evolution of a human 
brain mapping database. Neuroinformatics 3, 65–78. https://doi.org/10.1385/ni:3: 
1:065. 

Laird, A.R., Eickhoff, S.B., Rottschy, C., Bzdok, D., Ray, K.L., Fox, P.T., 2013. Networks of 
task co-activations. Neuroimage 80, 505–514. https://doi.org/10.1016/j. 
neuroimage.2013.04.073. 

Lamm, C., Benson, B.E., Guyer, A.E., et al., 2014. Longitudinal study of striatal activation 
to reward and loss anticipation from mid-adolescence into late adolescence/early 
adulthood. Brain Cogn. 89, 51–60. https://doi.org/10.1016/j.bandc.2013.12.003. 

Larsen, B., Luna, B., 2018. Adolescence as a neurobiological critical period for the 
development of higher-order cognition. Neurosci. Biobehav Rev. 94, 179–195. 
https://doi.org/10.1016/j.neubiorev.2018.09.005. 

Li, M., Dahmani, L., Wang, D., et al., 2021. Co-activation patterns across multiple tasks 
reveal robust anti-correlated functional networks. Neuroimage 227, 117680. 
https://doi.org/10.1016/j.neuroimage.2020.117680. 

Lichenstein, S.D., Scheinost, D., Potenza, M.N., Carroll, K.M., Yip, S.W., 2021. 
Dissociable neural substrates of opioid and cocaine use identified via connectome- 
based modelling. Mol. Psychiatry. https://doi.org/10.1038/s41380-019-0586-y. 

Logan, G.D., 1994. On the Ability to Inhibit Thought and Action: A Users’ Guide to the 
Stop Signal Paradigm Inhibitory Processes in Attention, Memory, and Language. 
Academic Press, San Diego, CA, US, pp. 189–239. 

Luciana, M., Bjork, J.M., Nagel, B.J., et al., 2018. Adolescent neurocognitive 
development and impacts of substance use: overview of the adolescent brain 
cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. 
Neurosci. 32, 67–79. https://doi.org/10.1016/j.dcn.2018.02.006. 

Marek, S., Dosenbach, N.U.F., 2018. The frontoparietal network: function, 
electrophysiology, and importance of individual precision mapping. Dialog-. Clin. 
Neurosci. 20, 133–140. 

Marek, S., Tervo-Clemmens, B., Calabro, F.J., et al., 2022. Reproducible brain-wide 
association studies require thousands of individuals. Nature 603, 654–660. https:// 
doi.org/10.1038/s41586-022-04492-9. 

Meruelo, A.D., Castro, N., Cota, C.I., Tapert, S.F., 2017. Cannabis and alcohol use, and 
the developing brain. Behav. Brain Res. 325, 44–50. https://doi.org/10.1016/j. 
bbr.2017.02.025. 

Morgan, S.E., White, S.R., Bullmore, E.T., Vertes, P.E., 2018. A network neuroscience 
approach to typical and atypical brain development. Biol. Psychiatry Cogn. Neurosci. 
Neuroimaging 3, 754–766. https://doi.org/10.1016/j.bpsc.2018.03.003. 

Owens, M.M., Potter, A., Hyatt, C.S., et al., 2021. Recalibrating expectations about effect 
size: a multi-method survey of effect sizes in the ABCD study. PLOS One 16, 
e0257535. https://doi.org/10.1371/journal.pone.0257535. 

Padmanabhan, A., Geier, C.F., Ordaz, S.J., Teslovich, T., Luna, B., 2011. Developmental 
changes in brain function underlying the influence of reward processing on 
inhibitory control. Dev. Cogn. Neurosci. 1, 517–529. https://doi.org/10.1016/j. 
dcn.2011.06.004. 

Pelland, M., Orban, P., Dansereau, C., Lepore, F., Bellec, P., Collignon, O., 2017. State- 
dependent modulation of functional connectivity in early blind individuals. 
Neuroimage 147, 532–541. https://doi.org/10.1016/j.neuroimage.2016.12.053. 

F. Ye et al.                                                                                                                                                                                                                                       

https://nda.nih.gov/abcd
https://github.com/fye92/abcd_fy
https://github.com/fye92/abcd_fy
https://doi.org/10.1016/j.dcn.2022.101160
https://doi.org/10.7554/eLife.60185
https://doi.org/10.1007/s40501-017-0108-y
https://doi.org/10.1007/s40501-017-0108-y
https://doi.org/10.1016/j.neuroimage.2020.116621
https://doi.org/10.1016/j.neuroimage.2020.116621
https://doi.org/10.1038/s41583-019-0212-7
https://doi.org/10.1038/s41583-019-0212-7
https://doi.org/10.1146/annurev-psych-010814-015156
https://doi.org/10.1146/annurev-psych-010814-015156
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.neulet.2017.11.055
https://doi.org/10.1038/s41593-021-00867-9
https://doi.org/10.1038/s41593-021-00867-9
https://doi.org/10.2174/1567205015666171212103323
https://doi.org/10.2174/1567205015666171212103323
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1073/pnas.0705843104
https://doi.org/10.1073/pnas.0800376105
https://doi.org/10.1073/pnas.0800376105
https://doi.org/10.1016/j.neuroimage.2020.117581
https://doi.org/10.1038/nn.4135
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1038/nrn789
https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1016/j.neuroimage.2017.01.079
https://doi.org/10.1016/j.neuroimage.2019.116091
https://doi.org/10.1016/j.neubiorev.2016.08.016
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1006/nimg.2000.0593
https://doi.org/10.1006/nimg.2000.0593
https://doi.org/10.1007/s002210000400
https://doi.org/10.1385/ni:3:1:065
https://doi.org/10.1385/ni:3:1:065
https://doi.org/10.1016/j.neuroimage.2013.04.073
https://doi.org/10.1016/j.neuroimage.2013.04.073
https://doi.org/10.1016/j.bandc.2013.12.003
https://doi.org/10.1016/j.neubiorev.2018.09.005
https://doi.org/10.1016/j.neuroimage.2020.117680
https://doi.org/10.1038/s41380-019-0586-y
http://refhub.elsevier.com/S1878-9293(22)00103-7/sbref30
http://refhub.elsevier.com/S1878-9293(22)00103-7/sbref30
http://refhub.elsevier.com/S1878-9293(22)00103-7/sbref30
https://doi.org/10.1016/j.dcn.2018.02.006
http://refhub.elsevier.com/S1878-9293(22)00103-7/sbref32
http://refhub.elsevier.com/S1878-9293(22)00103-7/sbref32
http://refhub.elsevier.com/S1878-9293(22)00103-7/sbref32
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1016/j.bbr.2017.02.025
https://doi.org/10.1016/j.bbr.2017.02.025
https://doi.org/10.1016/j.bpsc.2018.03.003
https://doi.org/10.1371/journal.pone.0257535
https://doi.org/10.1016/j.dcn.2011.06.004
https://doi.org/10.1016/j.dcn.2011.06.004
https://doi.org/10.1016/j.neuroimage.2016.12.053


Developmental Cognitive Neuroscience 58 (2022) 101160

10

Postuma, R.B., Dagher, A., 2006. Basal ganglia functional connectivity based on a meta- 
analysis of 126 positron emission tomography and functional magnetic resonance 
imaging publications. Cereb. Cortex 16, 1508–1521. https://doi.org/10.1093/ 
cercor/bhj088. 

Power, J.D., Fair, D.A., Schlaggar, B.L., Petersen, S.E., 2010. The development of human 
functional brain networks. Neuron 67, 735–748. https://doi.org/10.1016/j. 
neuron.2010.08.017. 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious 
but systematic correlations in functional connectivity MRI networks arise from 
subject motion. Neuroimage 59, 2142–2154. https://doi.org/10.1016/j. 
neuroimage.2011.10.018. 

Rapuano, K.M., Rosenberg, M.D., Maza, M.T., et al., 2020. Behavioral and brain 
signatures of substance use vulnerability in childhood. Dev. Cogn. Neurosci. 46, 
100878 https://doi.org/10.1016/j.dcn.2020.100878. 

Scheinost, D., Finn, E.S., Tokoglu, F., et al., 2015. Sex differences in normal age 
trajectories of functional brain networks. Hum. Brain Mapp. 36, 1524–1535. https:// 
doi.org/10.1002/hbm.22720. 

Seeley, W.W., 2019. The salience network: a neural system for perceiving and responding 
to homeostatic demands. J. Neurosci. 39, 9878–9882. https://doi.org/10.1523/ 
JNEUROSCI.1138-17.2019. 

Shen, X., Finn, E.S., Scheinost, D., et al., 2017. Using connectome-based predictive 
modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 
506–518. https://doi.org/10.1038/nprot.2016.178. 

Sherman, L.E., Rudie, J.D., Pfeifer, J.H., Masten, C.L., McNealy, K., Dapretto, M., 2014. 
Development of the default mode and central executive networks across early 
adolescence: a longitudinal study. Dev. Cogn. Neurosci. 10, 148–159. https://doi. 
org/10.1016/j.dcn.2014.08.002. 

Smith, S.M., Fox, P.T., Miller, K.L., et al., 2009. Correspondence of the brain’s functional 
architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 
13040–13045. https://doi.org/10.1073/pnas.0905267106. 

Snyder, W., Uddin, L.Q., Nomi, J.S., 2021. Dynamic functional connectivity profile of the 
salience network across the life span. Hum. Brain Mapp. 42, 4740–4749. https://doi. 
org/10.1002/hbm.25581. 

Supekar, K., Uddin, L.Q., Prater, K., Amin, H., Greicius, M.D., Menon, V., 2010. 
Development of functional and structural connectivity within the default mode 
network in young children. Neuroimage 52, 290–301. https://doi.org/10.1016/j. 
neuroimage.2010.04.009. 

Thompson, W.K., Barch, D.M., Bjork, J.M., et al., 2019. The structure of cognition in 9 
and 10 year-old children and associations with problem behaviors: Findings from the 
ABCD study’s baseline neurocognitive battery. Dev. Cogn. Neurosci. 36, 100606 
https://doi.org/10.1016/j.dcn.2018.12.004. 

Toro, R., Fox, P.T., Paus, T., 2008. Functional coactivation map of the human brain. 
Cereb. Cortex 18, 2553–2559. https://doi.org/10.1093/cercor/bhn014. 

Volkow, N.D., Koob, G.F., Croyle, R.T., et al., 2018. The conception of the ABCD study: 
from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7. 
https://doi.org/10.1016/j.dcn.2017.10.002. 

Wendelken, C., Ferrer, E., Whitaker, K.J., Bunge, S.A., 2016. Fronto-parietal network 
reconfiguration supports the development of reasoning ability. Cereb. Cortex 26, 
2178–2190. https://doi.org/10.1093/cercor/bhv050. 

Yip, S.W., Potenza, M.N., 2018. Application of research domain criteria to childhood and 
adolescent impulsive and addictive disorders: implications for treatment. Clin. 
Psychol. Rev. 64, 41–56. https://doi.org/10.1016/j.cpr.2016.11.003. 

Yip, S.W., Kiluk, B., Scheinost, D., 2020. Toward addiction prediction: an overview of 
cross-validated predictive modeling findings and considerations for future 
neuroimaging research. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 748–758. 
https://doi.org/10.1016/j.bpsc.2019.11.001. 

F. Ye et al.                                                                                                                                                                                                                                       

https://doi.org/10.1093/cercor/bhj088
https://doi.org/10.1093/cercor/bhj088
https://doi.org/10.1016/j.neuron.2010.08.017
https://doi.org/10.1016/j.neuron.2010.08.017
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.dcn.2020.100878
https://doi.org/10.1002/hbm.22720
https://doi.org/10.1002/hbm.22720
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
https://doi.org/10.1038/nprot.2016.178
https://doi.org/10.1016/j.dcn.2014.08.002
https://doi.org/10.1016/j.dcn.2014.08.002
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1002/hbm.25581
https://doi.org/10.1002/hbm.25581
https://doi.org/10.1016/j.neuroimage.2010.04.009
https://doi.org/10.1016/j.neuroimage.2010.04.009
https://doi.org/10.1016/j.dcn.2018.12.004
https://doi.org/10.1093/cercor/bhn014
https://doi.org/10.1016/j.dcn.2017.10.002
https://doi.org/10.1093/cercor/bhv050
https://doi.org/10.1016/j.cpr.2016.11.003
https://doi.org/10.1016/j.bpsc.2019.11.001

	Task-based co-activation patterns reliably predict resting state canonical network engagement during development
	1 Introduction
	2 Materials and methods
	2.1 The adolescent brain cognitive development study
	2.2 Neuroimaging data
	2.3 Construction of multi-task co-activation matrices
	2.4 Activation-based predictive modeling (APM)
	2.5 Statistical analysis
	2.6 Model stability from age 10 to age 12
	2.7 Post-hoc testing
	2.8 Data and code availability

	3 Results
	3.1 Activation-based modeling using multi-task co-activation matrices
	3.2 Distribution of significant features in macroscale brain regions
	3.3 Model performances at two-year follow-up
	3.4 Model performances after task removal
	3.5 Model performances after removal of macroscale brain regions

	4 Discussion
	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Data statement
	Declaration of Competing Interest
	Data availability
	Appendix A Supporting information
	References


