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Background: Low-dose computed tomography (LDCT) is a diagnostic imaging technique designed to 
minimize radiation exposure to the patient. However, this reduction in radiation may compromise computed 
tomography (CT) image quality, adversely impacting clinical diagnoses. Various advanced LDCT methods 
have emerged to mitigate this challenge, relying on well-matched LDCT and normal-dose CT (NDCT) 
image pairs for training. Nevertheless, these methods often face difficulties in distinguishing image details 
from nonuniformly distributed noise, limiting their denoising efficacy. Additionally, acquiring suitably paired 
datasets in the medical domain poses challenges, further constraining their applicability. Hence, the objective 
of this study was to develop an innovative denoising framework for LDCT images employing unpaired data.
Methods: In this paper, we propose a LDCT denoising network (DNCNN) that alleviates the need for 
aligning LDCT and NDCT images. Our approach employs generative adversarial networks (GANs) to learn 
and model the noise present in LDCT images, establishing a mapping from the pseudo-LDCT to the actual 
NDCT domain without the need for paired CT images.
Results: Within the domain of weakly supervised methods, our proposed model exhibited superior 
objective metrics on the simulated dataset when compared to CycleGAN and selective kernel-based cycle-
consistent GAN (SKFCycleGAN): the peak signal-to-noise ratio (PSNR) was 43.9441, the structural 
similarity index measure (SSIM) was 0.9660, and the visual information fidelity (VIF) was 0.7707. In 
the clinical dataset, we conducted a visual effect analysis by observing various tissues through different 
observation windows. Our proposed method achieved a no-reference structural sharpness (NRSS) value 
of 0.6171, which was closest to that of the NDCT images (NRSS =0.6049), demonstrating its superiority 
over other denoising techniques in preserving details, maintaining structural integrity, and enhancing edge 
contrast.
Conclusions: Through extensive experiments on both simulated and clinical datasets, we demonstrated 
the superior efficacy of our proposed method in terms of denoising quality and quantity. Our method 
exhibits superiority over both supervised techniques, including block-matching and 3D filtering (BM3D), 
residual encoder-decoder convolutional neural network (RED-CNN), and Wasserstein generative adversarial 
network-VGG (WGAN-VGG), and over weakly supervised approaches, including CycleGAN and 
SKFCycleGAN.
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Introduction

Low-dose computed tomography (LDCT) has clinical 
value due to its ability to mitigate risks related to radiation 
exposure during patient screening and diagnosis (1). 
Excessive ionizing radiation from X-rays may be potentially 
harmful, necessitating their strategic implementation. 
However, the reduction of X-ray radiation dose through 
adjustments in tube current (2) introduces unwanted noise 
and streaks, adversely impacting clinical diagnostics and 
compromising the quality of reconstructed CT images. 
Consequently, LDCT denoising has emerged as a pivotal 
research focus in medical imaging. However, constructing 
a statistical model for removing noise and artifact from 
LDCT images is challenging when their distribution 
patterns resemble image details of normal human tissues 
and low-density lesions. Hence, effective CT denoising 
methods are indispensable in clinical practice. Various 
studies have proposed strategies to enhance LDCT image 
quality, and these include sinogram filtering, iterative 
reconstruction, and image postprocessing algorithms (3-6).  
Despite their capacity to enhance CT image quality 
to a certain degree, these methods often exhibit slow 
computational convergence and yield oversmoothed images.

In recent years, supervised deep learning reconstruction 
have enabled low-dose imaging while preserving image 
quality (7). The residual encoder-decoder convolutional 
neural network (RED-CNN) (8), employing a CNN 
and residual learning, has demonstrated remarkable 
LDCT denoising outcomes. Similar approaches, such 
as the structurally sensitive multiscale deep neural 
network (SMGAN) (9) and the wavelet residual network 
(WavResNet) (10), also use neural networks for LDCT 
denoising. However, a limitation of these methods is 
their dependence on paired LDCT and normal-dose CT 
(NDCT) data for training, as these may be challenging 
to obtain in real medical settings. The difficulty arises 
from factors such as voluntary breathing and scan position 
variations during consecutive scans, hindering consistent 
pixel-to-pixel correspondence. The shortage of well-

matched data poses a significant challenge in the LDCT 
denoising field. To address this issue, unsupervised GAN 
variations have been proposed. Examples of these include 
CycleGAN (11)—which employs cycle consistency for 
unsupervised learning—selective kernel-based cycle-
consistent GAN (SKFCycleGAN) (12), unsupervised dual 
learning for image-to-image translation (DualGAN) (13), 
conditional GAN (CGAN) (14), and deep convolutional 
GAN (DCGAN) (15), which utilize unpaired data for model 
training. Although CycleGAN and SKFCycleGAN have 
been applied to LDCT denoising, challenges persist. The 
complex network model and numerous hyperparameters of 
CycleGAN pose training difficulties, while SKFCycleGAN, 
based on CycleGAN, may introduce blurring in the 
generated noise due to network structure defects, resulting 
in new artifacts. Moreover, the SKFCycleGAN model has 
issues with training stability. Despite addressing LDCT 
denoising to some extent, these unsupervised methods are 
not yet on par with existing supervised learning approaches.

Deep learning denoising methods effectively bypass the 
uncertainty of noise distribution, enabling the learning 
of high-level features and representations from local 
image patches. Consequently, numerous CNN-based 
LDCT denoising methods have been proposed, aiming 
to identify the pixel-level relationships between LDCT 
and corresponding NDCT images (16). Early adopters, 
such as Chen et al. (17), pioneered the integration of 
CNNS for LDCT denoising, presenting a model that not 
only reduced computational overhead but also surpassed 
previous methodologies. In a subsequent work, they 
introduced RED-CNN, a conventional LDCT image 
denoising network combining autoencoder and residual 
learning strategies (8), further enhancing the denoising 
performance. Seeking more effective image detail recovery, 
Wolterink et al. (18) incorporated the use of GANs. 
Their approach involved generating synthetic NDCT 
images through generators and training discriminators 
to distinguish between authentic and synthetic NDCT 
images. The Wasserstein GAN (WGAN) (19), proposed 
by Yang et al. (20), and the perceptual loss-based LDCT 
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denoising algorithm WGAN-VGG proposed by Kim  
et al. (21), employ the VGG19 (22) network to extract 
CT image features, enhancing perceptual loss through 
an improved generative adversarial loss function from 
WGAN (23). This approach significantly advanced the 
representation of details in denoised CT images. Singh  
et al. (24) proposed a CNN denoising method based on 
noise, employing a three-layer CNN network to handle 
residual components between noisy CT images and 
denoised images. Yang et al. (25) proposed an LDCT 
denoising network that employs hierarchical feature 
refinement and multiscale dynamic convolution to enhance 
denoising performance, with the purpose of fully exploiting 
hierarchical features. Yan et al. (26) introduced transfer 
learning densely connected convolutional dictionary 
learning (TLD-CDL), a convolutional denoising network 
that enhances feature extraction by integrating multiscale 
inception modules and dense connections. 

As supervised learning algorithms require strictly aligned 
CT images which are difficult to obtain, unpaired image 
denoising methods (27-29) have emerged as a promising 
alternative. Weakly supervised learning is a comprehensive 
term encompassing various approaches to constructing 
predictive models under weak supervision. Three principal 
categories are present in weakly supervised learning: 
incomplete supervision, wherein merely a subset of training 
data is provided with labels; inexact supervision, where the 
training data are furnished solely with coarse-grained labels; 
and inaccurate supervision, wherein the provided labels 
may not consistently represent the ground truth (30). Kang  
et al. (31) proposed a weakly supervised low-dose CT image 
denoising model based on the CycleGAN framework. This 
method does not require one-to-one training data and 
relies on cycle loss for training on unpaired datasets, which 
enables the model to learn the mapping from LDCT to 
NDCT images. To progressively improve the denoising 
effect, the SKFCycleGAN (12) was proposed, which injects 
a two-sided network into selective kernel network (SK-
NET) to adaptively select features and uses the patchGAN 
discriminator to generate CT images with more detail 
maintenance, which is aided by added perceptual loss. 
However, this approach struggles to preserve the original 
information of the image while separating noise, and it has a 
large network model, which makes training challenging. To 
address these issues, the unpaired image denoising network 
(UIDNet) (32) was proposed as an end-to-end unpaired 
image denoising framework that uses CGAN to learn the 
noise distribution and generate clean pseud noise pairs 

for training. WGAN gradient penalty (WGAN-GP) (33)  
loss, a modified version of WGAN with a gradient 
penalty, was used to ensure training stability. Moreover, 
an image-sharpening technique was employed to better 
capture texture information. Liao et al. (34) proposed an 
unsupervised artifact separation network (ADN) that can 
separate artifacts from CT images in the potential space. 
ADN leverages generative models and decomposition 
networks to construct noisy images in the absence of paired 
CT data and achieves excellent results. The denoising 
algorithms based on the previously mentioned GANs 
all use noise simulators to generate pseudo-LDCT data. 
For example, the generative networks in CycleGAN and 
UIDnet can be used for both LDCT denoising and the 
denoising of natural images, showcasing relatively complex 
model architectures and superior performance in simulating 
noise in natural images (35). Zhao et al. (36) introduced a 
dual-scale similarity-guided cycle GAN (DSC-GAN) for 
unsupervised LDCT denoising, which leverages similarity-
based pseudopairing to enhance denoising performance. 
However, simpler generator structures are adequate for 
simulating noise in CT images, which accelerates the 
model training process while achieving satisfactory noise 
simulation effects.

To address the aforementioned challenges, we propose 
an innovative approach for denoising LDCT images using 
unpaired data. Our method is characterized by its swift 
training process and minimal number of parameters. It 
is important to note that we refer this form of unpaired 
learning as weakly supervised since it does not rely on 
precise label information. In unpaired scenarios, there is no 
direct correlation or matching between the input data and 
its corresponding output. In this paper, we introduce a novel 
denoising framework. Initially, a CT noise simulator GAN 
(NGAN) (Figure 1A), which is trained to learn the noise 
characteristics of LDCT, generating pseudo-LDCT images. 
Subsequently, the generated pseudo-LDCT images undergo 
denoising using a CT denoiser CNN (DCNN) (Figure 1B). 
A full-size discriminator is also introduced, which effectively 
suppresses artifacts and noise while recovering detailed 
information from LDCT images. This denoising method 
learns noise through a generative algorithm, leading to 
more effective LDCT image denoising. In essence, our 
model trains the CT denoiser by constructing training data 
pairs through the addition of noise to NDCT images rather 
than solely learning a direct mapping relationship from 
LDCT to NDCT. Detailed information about the model is 
provided in the Methods.



Liao et al. Weakly supervised low-dose CT denoising based on GANs5574

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(8):5571-5590 | https://dx.doi.org/10.21037/qims-24-68

In summary, our main contributions are as follows:
	We propose an autoencoder-based ful l-s ize 

discriminator to effectively guide the generator to 
produce more realistic images.

	We propose a DNCNN model that adopts a 
weakly supervised approach to training the model 
on unpaired data, thereby avoiding the challenge 
of directly learning the mapping from LDCT to 
NDCT.

	We demonstrate that our proposed DNCNN model 
achieves better results as compared to other weakly 
supervised methods while using fewer parameters.

Methods

Datasets

Our model undergoes training and testing on two datasets. 
The first dataset, known as the Mayo simulation dataset, 
comprises well-paired LDCT and NDCT images. During 
the experiment, the Mayo data are partitioned, with 90% 
allocated for training and 10% for testing. The second 

dataset, referred to as the CHCD clinic data from the 
Sixth People’s Hospital of Chengdu, consisted of clinical 
data with a radiation dose of 30 mA, lacking paired LDCT 
and NDCT images; the same dataset was used for the 
partitioning approach. We conducted a comprehensive 
qualitative and quantitative evaluation of our weakly 
supervised denoising method on both simulated and clinical 
datasets. Despite the absence of strong supervision, our 
denoising method successfully produces high-quality CT 
images, comparable to those obtained using fully supervised 
learning methods. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
publicly available NIH-AAPM-Mayo Clinic Low Dose CT 
Grand Challenge dataset used in this study was originally 
collected from the Mayo Clinic with approval from their 
institutional review board. The CHCD Clinic low-dose 
CT data used in this study were collected from the physical 
examination population at the Sixth People’s Hospital 
of Chengdu (2022–2023) and approved by the hospital 
(No. 2023-L-04). Individual consent for this retrospective 
analysis was waived.

Figure 1 The overall structure of the proposed DNCNN framework is as follows. During the training process, (A) initially, unpaired LDCT 
input x and NDCT y are provided, where NGAN is employed to learn noise from unpaired data and establish paired data (x', y). The 
generator (G) is used to generate pseudo-LDCT image x', which is paired with the input NDCT image y. Subsequently, the discriminator 
(D) is employed to differentiate between the generated pseudo-LDCT image x' and the real LDCT image x, guiding the generator (G) 
to produce images x' that closely resemble the real LDCT image x. (B) Paired images (x', y) generated by NGAN are used for denoising 
training. During the testing process, the denoiser DCNN is applied to the input LDCT image for denoising, and thus the denoised image 
is obtained. ⊕, element-wise sum. NGAN, noise simulator GAN; GAN, generative adversarial network; LDCT, low-dose computed 
tomography; NDCT, normal-dose computed tomography; MSE, mean-squared error; DCNN, denoiser convolutional neural network.
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Mayo clinic dataset
The performance evaluation of our method relied on the 
clinical dataset of low-dose CT officially endorsed by the 
Mayo Clinic (37). This dataset serves as a pivotal benchmark 
in contemporary research on low-dose CT image denoising 
algorithms. Comprising the standard-dose CT images 
from 10 patients and the corresponding simulated low-dose 
CT images, the dataset encompasses a total of 5,936 sets 
of meticulously aligned CT images. In the simulation of 
quarter-dose LDCT scans, Poisson noise was intentionally 
introduced, thereby generating a noise distribution akin 
to that observed in authentic LDCT images. The original 
dimensions of the images were 512×512, with a slice 
thickness of 1 mm.

CHCD clinic data
The clinical CT image dataset employed in our experiments 
originated from a real-world CT medical examination 
setting in China, consisting of three distinct low-dose CT 
datasets labeled as 10, 20, and 30 mA. All images within 
these datasets pertain to chest examinations and possess an 
original size of 512×512, with a slice thickness of 1 mm. 
The standard CT image dose was set at 160 mA. Unlike 
the Mayo Clinic dataset, these datasets lack an alignment 
relationship between LDCT and NDCT images, rendering 
supervised learning unfeasible.

This clinical CT image dataset, integral to our study, 
encompassed CT images from a wide array of patients. 
The 10-mA dataset included CT images from 6 patients, 
contributing to a total of 1,707 pairs of LDCT images and 
NDCT images. In the 20-mA dataset, CT images from 20 
patients were included, totaling 5,545 LDCT images paired 
with an equivalent number of NDCT images. The 30-mA 
dataset consisted of CT images from 10 patients, resulting 
in a total of 2,834 pairs of LDCT and NDCT images.

Overall structure of the proposed method

In the proposed method,  the projection data are 
conventionally acquired via tube currents that minimize 
noise while preserving clinical efficacy, and the data are 
subsequently processed logarithmically to approximate 
additive Gaussian noise (38). Nevertheless, distinct 
reconstruction algorithms may yield images with differing 
noise levels, potentially resulting in heightened noise in CT 
images. Although the consideration of reconstruction noise 
is beyond the scope of this paper, we posit that the noise 
model for CT images can be encapsulated as follows:

X Y N= +  [1]

where X ∈ Rm×n denotes the image with noise (i.e., the low-
dose image_, Y ∈ Rm×n is the original image to be recovered 
(i.e., the high-dose image), and N is the additive noise. It is 
worth noting that N does not necessarily follow a normal 
distribution even for regular dose CT images.

Building upon the previously outlined noise model, we 
added a GAN to acquire an understanding of the noise 
(N in Eq. [1]) present in LDCT images. Subsequently, 
this learned noise is introduced to the unpaired NDCT 
images, resulting in the creation of a set of paired images, 
comprising clean and noisy CT images, which serves as the 
training dataset for the denoiser. The denoising process 
involves using the DCNN to generate a clean image from 
its noisy counterpart. Under the assumption that X ∈ Rm×n 

is the LDCT images and Y ∈Rm×n is the unpaired NDCT 
images, the problem can be formally expressed as follows:

( ),NGANX F X Y Y= +′  [2]

( )ˆ
DCNNY F X= ′  [3]

where FNGAN : R
m×n → Rm×n denotes the real noise simulated 

by using unpaired CT images, X' denotes the generated 
pseudo-LDCT image, FDCNN : Rm×n → Rm×n denotes the 
denoising process, and Ŷ  denotes the reconstructed LDCT 
image.

In our endeavor to effectively mitigate noise and artifacts 
in LDCT images, we propose an innovative framework 
centered on a GAN. The comprehensive architecture of 
our framework is depicted in Figure 1 and comprises two 
pivotal modules. Aligned with previous studies on CT 
image denoising (8,15,39), our framework incorporates 
DCNN, a CNN module dedicated to the denoising 
process. This module undergoes training on pairs of LDCT 
and NDCT images as synthesized by the NGAN, with 
the aim of restoring the normal-dose images from their 
noisy counterparts. A detailed description of the network 
architecture is provided later in this paper.

Within our framework, an additional module employs 
a GAN, denoted as NGAN, for the generation of self-
optimized noisy images through the collaborative learning 
of generators and discriminators. The primary objective 
of the NGAN module is to augment the network’s 
responsiveness to diverse features present in LDCT images. 
Specifically, the generator within this module is tailored 
to amplify the network’s capacity for discerning crucial 
features within LDCT images. In pursuit of heightened 
discriminative prowess and improved stability of the 
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GAN, the discriminator is formulated as a pixel-to-pixel 
discriminator. This strategic design choice contributes to 
the overall stability during network training.

In the training phase, NDCT images are inputted into 
the NGAN generator, and the resulting output is used 
to train the DCNN, facilitating the learning process for 
LDCT image denoising. The NGAN module’s generator 
produces associated noisy images, which are subsequently 
assessed by the discriminator to produce more authentic 
synthetic images. Conversely, in the inference phase, only 
the DCNN is needed to execute image deblurring.

In summary, our network comprises two sequential 
steps: noise addition and denoising. In the noise addition 
step, the NDCT image undergoes processing within the 
NGAN module, producing a pseudo-LDCT image. This 
pseudo-LDCT image retains the fundamental structure and 
noise distribution characteristics observed in actual LDCT 
images. Subsequently, in the denoising step, the pseudo-
LDCT image serves as the input to the DCNN module, 
resulting in the generation of an NDCT image closely 
resembling the authentic counterpart.

The NGAN module

The NGAN module is a critical component of our proposed 

framework, as it discerns the noise patterns in LDCT and 
produces paired data conducive to the training of the DCNN 
module. Following the convention of other GAN-based 
models, the NGAN module comprises both a generator 
network and a discriminator network. In this section, a 
comprehensive examination of the architecture and loss 
functions employed by the NGAN module is provided.

Generator
The primary purpose of this network is to produce pseudo-
LDCT images. As previously noted, LDCT images can 
be conceptualized as NDCT images affected by noise 
corruption. Consequently, the network is specifically 
configured to judiciously omit certain detailed information 
while preserving the structural edge characteristics of 
the initial NDCT image. This design ensures that the 
generated pseudo-LDCT images uphold structural 
information equivalent to that of the NDCT images.

We further introduced a nimble residual encoder-
decoder network designed to overcome the challenges 
posed by NGAN tasks. The generator network employed 
in the NGAN module is illustrated in Figure 2. In order 
to guarantee that the noise distribution map acquired by 
the network aligns with the structural content of the initial 
NDCT image, the generator embraces residual learning 

NDCT

1 2 3

pseudo-LDCT

Conv layer Upsampling layer ReLU layer
Element-wise 

sum

Res block structure

Block structure Block structure

Figure 2 Network structure of the generator of the NGAN. NDCT, normal-dose computed tomography; LDCT, low-dose computed 
tomography; ReLU, rectified linear unit; NGAN, noise simulator GAN; GAN, generative adversarial network.
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LDCT

pseudo-LDCT

Evaluation matrix

Conv layer Upsampling layer ReLU layer Batch normalization layer

Figure 3 Network structure of the discriminator of NGAN. LDCT, low-dose computed tomography; ReLU, rectified linear unit; NGAN, 
noise simulator GAN; GAN, generative adversarial network.

comprehensively. This strategy ensures the inclusion of 
surplus information within the network, thereby facilitating 
the more effective learning of noise distribution.

The network architecture employs a 3×3 convolution 
with a stride of 2 for down-sampling and extracting 
image features, eschewing the use of pooling layers. 
Given the relatively straightforward composition of the 
CT images, the network restricts the downsampling to 
two stages, preserving more valuable information in the 
extracted feature map. Following these downsampling 
stages, three residual blocks are employed to modify 
the feature map, facilitating subsequent upsampling for 
partial information recovery. The generator uses residual 
learning to comprehend the LDCT noise distribution 
map, eschewing direct mapping of the entire network, 
and integrates the input NDCT image to generate the 
pseudo-LDCT image.

Discriminator
Drawing inspiration from the autoencoder architecture (38), 
we considered enhancing the discriminative capability of the 
discriminator network by incorporating a decoder network. 
The decoder is tasked with decoding and reconstructing the 
feature maps extracted by the encoder network. Specifically 
designed to take feature maps as input and regenerate the 
original image, the decoder’s output plays a pivotal role in 
discerning the authenticity of the input image regardless 
of whether it is real or generated. The structure of the 
proposed discriminator network is depicted in Figure 3.

The discriminator network architecture is structured as 
a fully convolutional encoder-decoder, with the encoder 
handling downsampling and image feature extraction 

and the decoder executing upsampling to recover feature 
information. To prevent excessive downsampling, which 
may result in the loss of high-frequency information and 
detrimentally impact network performance, the network 
restricts itself to two downsampling and two upsampling 
layers. With 3×3 convolution kernels, all kernels, except 
for the last convolutional layer, are set to 64. Incorporating 
zero-padding is essential to preserving the image size and 
preventing information loss. Batch normalization (BN) (40) 
is implemented postconvolution to expedite convergence 
and enhance network performance by aligning data within a 
specific distribution range. The chosen activation function 
is leaky rectified linear unit (LeakyReLU). The final layer of 
the network generates a full-size evaluation matrix, guiding 
the training of the generator.

Loss function
In the design of GANs, the discriminator assumes a pivotal 
role in guiding the generator toward producing high-quality 
images through an adversarial interplay. Consequently, 
the discriminators’ design significantly influences the 
enhancement of denoised image quality. The discernment 
of image quality is chiefly executed by the discriminators 
exerting a profound impact on both the network’s 
performance and stability.

In a standard GAN model, the architecture involves a 
minimization operation between a generator G, where its 
parameters map the sample z from the noise distribution 
pz(z), and a discriminator D, responsible for indicating 
the probability that the sample x belongs to the real data 
distribution pdata(x). The optimization function of the initial 
GAN model is expressed as follows:
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LDCT

Block structure Res block structure Block structure Block structure

Denoised image

Global skip block

1 2 3

UpSampling layerConv layer ReLU layer Average pooling Dense block
Element-wise 
sum

Element-wise 
concatenate

Element-wise 
multiply

Figure 4 Network structure of DCNN. LDCT, low-dose computed tomography; ReLU, rectified linear unit; DCNN, denoiser 
convolutional neural network.

( ) ( ) ( ) ( )( )( )
data

min max log log 1
zx p x z p zG D

D x D G z∼ ∼
  = + −      [4]

In this study, we adopted the least squares GAN 
(LSGAN) (41) as the primary loss function. Two key 
considerations underlie this choice. First, LSGAN employs 
the least squares loss for both discriminators and generators, 
compelling the generated pseudo-samples toward the 
decision boundary. In essence, the LSGAN loss effectively 
produces samples that closely approximate real data. 
Second, the use of LSGAN loss enhances training stability 
by penalizing samples based on their distance from the 
decision boundary, yielding a more informative gradient. 
The formulation of the LSGAN loss is expressed as follows:

( ) ( ) ( )

( ) ( )( )

data

2

2

1min log( )
2
1 log( )
2 z

LSGAN x p x
D

z p z

L D D x b

D G z a

∼

∼

 = − + 

 − 




 [5]

( ) ( ) ( )( ) 21min log( )
2 zLSGAN z p z

G
L G D G z c∼

 = −   [6]

where pdata(x) signifies the authentic noise distribution, 
and pz(z) represents the distribution of random noise. As 
in other frameworks (42), the constants a, b, and c are 
assigned values of 1, 0, and 1, respectively. Notably, due to 

our discriminator’s output being a two-dimensional tensor, 
the variables a, b, and c also manifest two-dimensionally, 
necessitating padding with values 1, 0, and 1, respectively. 
Following the computation of the loss, the resultant output 
undergoes an averaging process to transition from a two-
dimensional tensor to a scalar value.

The DCNN module 

A pivotal element contributing to the efficacy of our 
framework is a denoising submodule. The NGAN module 
is designed with the objective of emulating authentic 
LDCT images and encompassing a broad spectrum of noise 
scenarios. Its overarching aim is to enhance the effectiveness 
of the DCNN module in the recovery of NDCT images 
from their low-dose counterparts. The architecture of the 
DCNN is illustrated in Figure 4.

The denoising network, in essence, mirrors the structure 
of the generator. Both entities employ a consistent design, 
featuring only two downsampling and two corresponding 
upsampling layers. A distinctive choice is the use of a 3×3 
convolution with a stride of 2 to extract image features, 
eschewing the conventional pooling layer for downsampling. 
Within the denoiser structure, a notable component is the 
integration of a global residual module within its residual 
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skip connections. This module comprises a global average 
pooling layer and two dense layers, with the dense layers 
specifically operating across the channel dimension. The 
final step involves an element-wise multiplication between 
the module’s input and output.

Loss function
In pursuit of enhanced denoising outcomes, we incorporated 
the mean-squared error (MSE) into the DCNN. MSE is 
a widely adopted metric used for assessing the accuracy in 
image processing via the measurement of the pixel-level 
discrepancy between LDCT and corresponding ground truth 
image pairs. It functions as a per-pixel loss metric. However, 
prior research indicates that sole reliance on MSE during 
training, as observed in models such as RED-CNN (8),  
may lead to the oversmoothing of tissues along the edges 
of CT images. Nevertheless, maintaining the use of MSE 
within a defined range yields improved metric results and 
can be mathematically expressed as follows:

2

2
ˆDCNN xL y y= −  [7]

The comprehensive loss function of the framework is 
formulated as the amalgamation of the denoiser loss and the 
LSGAN loss as follows:

( ) ( )DNCNN LSGAN LSGAN DCNNL L D L G L= + +  [8]

Image quality assessment metrics

To evaluate image quality in the Mayo dataset, we used 
peak signal-to-noise ratio (PSNR), structural similarity 
index measure (SSIM), and visual information fidelity 
(VIF) as metrics. Due to the absence of paired LDCT and 
NDCT images in the clinical dataset, objective quantitative 
indicators are inadequate for assessing the experimental 
impact. Therefore, subjective visual perception becomes 
essential for analysis, entailing the observation of various 
tissues under different viewing conditions. The lack of 
reference images during testing necessitated the use of the 
no-reference structural sharpness (NRSS) metric (43) for 
image quality evaluation, which has proven to be highly 
effective in assisting radiologists in assessing medical images.

Experimental design

We commenced by conducting experiments to assess 
the efficacy of the NGAN network in the domain of CT 
image denoising and to clarify its influence on subsequent 

reconstruction procedures. Initially, we employed the 
NGAN network to generate synthetic LDCT images 
mimicking realistic noise distributions, which could serve as 
benchmarks to steer subsequent CT image reconstruction. 
To ascertain the network’s proficiency in learning 
comparable noise distributions, we presented noise images 
acquired through the NGAN network in the experiments, 
exhibiting them with predefined window settings for 
validation.

Following this, our objective was to assess the efficacy 
of various discriminator types within the proposed model 
and ascertain their influence on network performance. 
We conducted comparisons of PSNR, SSIM, and VIF as 
evaluation metrics across various discriminators using the 
Mayo dataset. Furthermore, visual analysis was performed 
on regions of interest. We performed comparative 
experiments involving the conventional GAN discriminator, 
PatchGAN discriminator (44)—which includes the LSGAN 
discriminator—the WGAN-GP discriminator, and our full-
size discriminator constructed on the UNet architecture, 
which were designated as DNCNN-LS, DNCNN-W, 
DNCNN-Patch, and DNCNN-Unet, respectively. The 
experimental outcomes were also examined under specific 
window settings.

To assess the efficacy of the proposed CT image 
denoising model, we conducted a comprehensive evaluation 
using the Mayo dataset. We used PSNR, SSIM, and VIF 
as evaluation metrics, comparing the model’s performance 
with that of other state-of-the-art methods. The benchmark 
methods included block-matching and 3D filtering 
(BM3D) (45), RED-CNN, WGAN-VGG, CycleGAN, and 
SKFCycleGAN. BM3D represents a conventional approach 
for image noise processing, while RED-CNN utilizes MSE 
loss for image reconstruction. In contrast, the WGAN-
VGG network integrates perceptual loss and adversarial 
loss. CycleGAN and SKFCycleGAN are exemplary types 
of weakly supervised deep learning methods. Supervised 
learning offers significant advantages over weakly supervised 
learning, primarily due to the data quality and label 
completeness. In supervised learning, models are trained 
using meticulously labeled data, facilitating a more in-depth 
exploration of feature-data relationships, thereby enhancing 
accuracy and reliability. Consequently, we anticipated that 
RED-CNN’s metrics would surpass those of the weakly 
supervised methods in subsequent experimental results. For 
the CHCD Clinic dataset, to provide a rough evaluation 
of image quality, we employed NRSS, a gradient-based 
structural similarity metric, in which NRSS values 
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correspond to reduced noise and smoother images. 
Finally, experiments were conducted on the Mayo 

dataset to evaluate the relationship between the denoising 
performance and the computational complexity of different 
algorithms. The evaluation metric was the time taken for 
training and testing.

Implementation details

To facilitate network model training, the original CT 
data were stored in npy format and underwent min–max 
normalization, followed by clipping to normalize Hounsfield 
Unit (HU) values within the range of 0 to 1. The minimum 
and maximum HU values in CT images were set to −1,000 
and 2,000, respectively. Images were viewed using an 
observation window [e.g., (−150, 250)]. Additionally, due 
to device memory and CT data constraints, the original 
512×512 CT images were cropped into multiple 128×128 
images. LDCT and NDCT blocks were then constructed 
as training data using random pairing. To facilitate image 
quality assessment, the test set remained well-matched.

During model training on the Mayo Clinic and CHCD 
Clinic datasets, weights were initialized using a he-normal 
distribution with a standard deviation of 0.02. This he-
normal distribution, introduced by He et al. in 2015 (46), 
refers to a method for initializing the weights of neural 
networks commonly employed in CNNs within the realm 
of deep learning. Weight updates occur after learning 
batches of size 48 in each iteration. The Adam optimizer 
was employed for training the entire network model 
during the network training phase, with hyperparameters 
set to β_1=0.5 and β_2=0.9. The learning rate of the 
proposed method undergoes annealing, starting at 1e−4 and 
decreasing to 1e−6 once the training loss has converged, 
with a total of 100 epochs for training iterations. The 
hyperparameters λ_a and λ_b in the total loss of the model 
were set to 1 based on previous research (32) and multiple 
experimental iterations. The proposed method operates 
on a patch-by-patch basis, promoting more efficient 
learning of the generated distribution. Specifically, random 
128×128 patches are cropped from any position within 
the images, effectively increasing the number of training 
samples. Additionally, these images undergo random flips to 
further augment the sample pool. The parameters for these 
comparison methods were set based on recommendations 
from original papers.

Python 3.8 (Python Software Foundation, Wilmington, 
DE, USA) and Tensorflow 2.5 (Google, Mountain View, 

CA, USA) were used for the experiments. The model was 
trained and tested on an Intel-Core i9 9960k processor 
(Intel, Santa Clara, CA, USA) and a GeForce 2080Ti 
graphics card (Nvidia Corp, Santa Clara, CA, USA) with  
11 GB.

Results

Results of the NGAN

To assess the network’s capability to learn a similar noise 
distribution, we analyze the noise images acquired by the 
NGAN network, displayed with a window setting of (−150, 
250), as depicted in Figure 5.

Results of the comparison with different discriminators

We further aimed to assess the efficacy of the discriminator 
within our proposed model. The experimental outcomes are 
depicted in Figure 6, illustrating the observed effect within 
the window (−150, 250). Furthermore, Figure 7 offers an 
enlarged view of the details within the red box in Figure 6.

Result of comparison with existing methods

Mayo clinic dataset
The quantitative evaluation of the experimental outcomes 
is presented in Table 1. Notably, the supervised learning 
approach, RED-CNN, demonstrated the most favorable 
evaluation metrics. Within the domain of weakly supervised 
methods, our proposed model exhibited superior objective 
metrics when compared to CycleGAN and SKFCycleGAN. 
Despite some variations in metrics between DNCNN and 
RED-CNN, the former showcased enhanced visual results. 
The experimental results are presented in Figures 8,9.

CHCD clinic dataset
The clinical dataset used in this experiment was nonaligned 
and lacked a genuine and reliable NDCT reference object 
for LDCT images. To provide a rough assessment of image 
quality, this study employed NRSS, with the experimental 
results being displayed in Figures 10,11.

Computational cost

To ascertain the connection between denoising performance 
and the computational complexity of diverse algorithms, we 
conducted a comparative analysis of the training and testing 
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LDCT DenoisedFake-LDCT NDCT

B C DA

Figure 5 Partial results of the NGAN training process, with Mayo data in the first row and clinical data in the second row. (A,D) The 
unpaired LDCT and NDCT images that are used for NGAN to learn the noise. (B) The generated results of NGAN, which with (D), can 
form the paired LDCT and NDCT images for DCNN training. (C) The results of DCNN after the generated noisy images were denoised. 
LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; NGAN, noise simulator GAN; GAN, generative 
adversarial network; DCNN, denoiser convolutional neural network.

times on the Mayo dataset, as depicted in Table 2.

Discussion

Results of the NGAN

Figure 5 showed the effectiveness of NGAN. The LDCT 
images generated by NGAN indicate its ability to assimilate 
a comparable noise distribution while preserving the 
structural content of the NDCT image, thereby minimizing 
interference with the subsequent denoising process. The first 
row of the figure shows the results of the experiment with the 
Mayo dataset and suggests that even in the absence of strict 
alignment in the training data, the network can learn a noise 
distribution similarly to weak supervision, as evident in the 
learned noise distribution in LDCT images. The generated 
synthetic LDCT images closely emulate real LDCT images, 
effectively retaining the structural content of the NDCT 
images. The second row of the figure are the results from 
the experiment conducted on an authentic clinical dataset. 
A comparison between Figure 5B and 5C reveals that despite 

the clinical dataset’s nonalignment, NGAN adeptly learns the 
noise distribution of actual LDCT images. Consequently, 
it produces synthetic LDCT images that closely resemble 
the visual characteristics of real LDCT images. Moreover, 
these generated images maintain the structural and edge 
information of the NDCT images. Thus, the noise image 
generated by NGAN proved effective in facilitating the 
training of subsequent denoising subnetworks.

Comparison with different discriminators

The experimental findings reveal a discernible impact of the 
NGAN discriminator on the denoising subnetwork’s image 
generation quality. This was demonstrated by solely altering 
the NGAN discriminator while maintaining consistent 
conditions. The results underscore the enhanced network 
performance facilitated by the proposed discriminator. The 
four distinct discriminator networks effectively guide the 
generator to assimilate various degrees of a similar noise 
distribution, as depicted in Figure 6. Specifically, Figure 6C  
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Figure 6 Results of comparison of different discriminators on the Mayo dataset (PSNR, SSIM, VIF). The red box indicates the region 
zoomed in from Figure 7. LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; LS, least squares 
generative adversarial networks discriminator; W, Wasserstein generative adversarial network with gradient penalty discriminator; Patch, 
patch generative adversarial network discriminator; UNet, U-shaped deep learning network architecture; PSNR, peak signal-to-noise ratio; 
SSIM, structural similarity index measure; VIF, visual information fidelity.
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Figure 7 Zoomed in the region of interest results from Figure 6. The red arrows and circles indicate the two obvious differences. 
LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; LS, least squares generative adversarial network 
discriminator; W, Wasserstein generative adversarial network with gradient penalty discriminator; Patch, patch generative adversarial 
network discriminator; UNet, U-shaped deep learning network architecture.

Table 1 Quantitative results from the different algorithms on the Mayo dataset

Category Method PSNR SSIM VIF

Supervised LDCT 39.8547 0.9049 0.6969

BM3D (45) 40.0178 0.9292 0.6960

RED-CNN (8) 44.1726 0.9684 0.8030

WGAN-VGG (20) 40.6627 0.9387 0.6971

Weakly supervised CycleGAN (11) 41.5457 0.9467 0.6983

SKFCycleGAN (12) 42.1581 0.9515 0.7069

Proposed 43.9441 0.9660 0.7707

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; VIF, visual information fidelity; LDCT, low-dose computed 
tomography; BM3D, block-matching and 3D filtering; RED-CNN, residual encoder-decoder convolutional neural network; WGAN-
VGG, Wasserstein generative adversarial network-VGG; SKFCycleGAN, selective kernel-based cycle-consistent GAN; GAN, generative 
adversarial network. 
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Figure 8 Results of comparison of different methods on the Mayo dataset (PSNR, SSIM, VIF). The red box indicates the region zoomed 
in from Figure 9. LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; BM3D, block-matching and 3D 
filtering; RED-CNN, residual encoder-decoder convolutional neural network; WGAN-VGG, Wasserstein generative adversarial network-
VGG; SKFCycleGAN, selective kernel-based cycle-consistent GAN; GAN, generative adversarial network; PSNR, peak signal-to-noise 
ratio; SSIM, structural similarity index measure; VIF, visual information fidelity.

portrays the denoising outcome under the influence of 
DNCNN-LS. The denoised image, generated by DCNN, 
exhibits smooth and blurred edges, indicating suboptimal 
performance in recovering detailed information and 
texture nuances. Conversely, as illustrated in Figure 6D, 
DNCNN-W does not yield a substantial improvement 
in network denoising performance. The denoised image 
generated by the network under the guidance of BM3D 
exhibits fewer artifacts than does the noisy input; however, 
it still retains an excessive amount of noise artifacts. 
Similarly,  the network guided by DNCNN-Patch 
significantly enhances the visual quality of the image, but 
the reconstructed CT image sacrifices more tissue, and the 
detail recovery is less effective compared to DNCNN. In 
contrast, the CT image reconstructed under the guidance 
of DNCNN closely resembles the standard dose CT image. 
It not only preserves relatively complete structural edge 
tissue information but also captures texture details more 
akin to the NDCT image, achieving a more comprehensive 

detail information recovery. These outcomes underscore 
the positive impact of the proposed discriminator on 
enhancing the quality of reconstructed images, confirming 
the effectiveness of our approach.

Comparison with existing methods 

Mayo clinic dataset
Figure 8 illustrates the impact within the observation window 
(−150, 250). A closer examination of the region enclosed in 
the red box in Figure 8 is provided in Figure 9. The results 
presented in Figure 8 demonstrate the superior performance 
of the method proposed in terms of reconstructed image 
quality, showcasing excellence in structural integrity, noise 
artifact suppression, and detail information retention. From 
Figure 8C and the corresponding details in Figure 9C, it is 
evident that BM3D struggles to fully preserve structure 
and suppress artifacts while effectively managing noise, 
often resulting in excessive blurring, and these results are 
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Figure 9 Zoomed in region of interest from the results in Figure 8. The red circle indicates one of the more obvious differences. LDCT, 
low-dose computed tomography; NDCT, normal-dose computed tomography; BM3D, block-matching and 3D filtering; RED-CNN, 
residual encoder-decoder convolutional neural network; WGAN-VGG, Wasserstein generative adversarial network-VGG; SKFCycleGAN, 
selective kernel-based cycle-consistent GAN; GAN, generative adversarial network.

Table 2 The training and testing time of the different algorithms 
from the Mayo dataset 

Method Training time/s Testing time/s

BM3D (45) – 133.08

RED-CNN (8) 2,248 0.10

WGAN-VGG (20) 78,349 0.22

CycleGAN (11) 55,635 0.25

SKFCycleGAN (12) 21,604 0.15

Proposed 17,872 0.05

BM3D, block-matching and 3D filtering; RED-CNN, residual 
encoder-decoder convolutional neural network; WGAN-VGG, 
Wasserstein generative adversarial network-VGG; SKFCycleGAN, 
selective kernel-based cycle-consistent GAN; GAN, generative 
adversarial network; 3D, three-dimensional.

consistent with the those of Tan et al. (12). Conversely, 
WGAN-VGG, as can be seen from Figure 8E,9E, adeptly 
suppresses noise and retains structural information but 
falters in preserving image details, occasionally leading to 
artifact production. Comparison with weakly supervised 
neural network algorithms, such as CycleGAN and 
SKFCycleGAN, revealed the superior performance of the 
proposed method in terms of structural integrity, detail 
information, and noise suppression, as evident in Figures 
8,9. The proposed method effectively enhances the quality 
of reconstructed images. Notably, DNCNN exhibits 
significant improvement in reconstructed image quality 
concerning details, edges, and structure compared to the 
aforementioned algorithms.

In comparison to RED-CNN, the proposed method 
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Figure 10 Experimental results of the 30-mA clinical dataset with display window (−1,000, 200). The red box indicates the region zoomed 
in from Figure 11. The value in brackets represents NRSS, with smaller NRSS values corresponding to reduced noise and smoother images. 
LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; BM3D, block-matching and 3D filtering; NRSS, 
no-reference structural sharpness; SKFCycleGAN, selective kernel-based cycle-consistent GAN; GAN, generative adversarial network; 3D, 
three-dimensional. 

represents a substantial advancement in detail information 
preservation and smoothing suppression in the reconstructed 
images, as demonstrated by the experimental results. 

CHCD clinic dataset
Using a 30-Aa clinical dataset, we compared the proposed 
method with other methodologies. Figures 10,11 show the 
experimental outcomes within the observation window 
(−1,000, 200), which allows for the clear observation 
of human tissue structures. The proposed method 
outperformed other denoising techniques in terms of 
detail, structural integrity, and edge contrast, as evident in  
Figure 10 and the detailed view in Figure 11. Alternative 
denoising methods struggle to effectively suppress noise 

artifacts, often exhibiting visible blurring. While the BM3D 
method can achieve partial noise suppression and retain 
relatively complete image edge and structural information, 
it sacrifices clarity, resulting in the poorest NRSS results. 
In contrast, the two weakly supervised algorithms, 
apart from the one proposed in this paper, enhance 
reconstructed image quality to a certain extent. However, 
CycleGAN exhibits suboptimal performance in noise 
artifact suppression and overall image quality, as depicted 
in Figure 10D, where images reconstructed by CycleGAN 
display noticeable artifacts, causing blurring and detail 
loss. Although SKFCycleGAN effectively suppresses noise 
artifacts, the denoised CT images exhibit blurred artifacts 
and indistinct edges. 
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Figure 11 Zoomed in the region of interest for the results from Figure 10. The red circle indicates one of the more obvious differences. 
LDCT, low-dose computed tomography; NDCT, normal-dose computed tomography; BM3D, block-matching and 3D filtering; 
SKFCycleGAN, selective kernel-based cycle-consistent GAN; GAN, generative adversarial network; 3D, three-dimensional.  

Smaller NRSS values correspond to reduced noise and 
smoother images. The method introduced in this paper 
exhibits NRSS values closest to those of NDCT images 
among the algorithms discussed. This confirm its outstanding 
performance in preserving structural integrity, enhancing 
edge contrast, and eliminating noise artifacts effectively.

Computational cost

The results revealed that RED-CNN requires the shortest 
training time among the five deep-learning algorithms. 
Notably, WGAN-VGG, CycleGAN, SKFCycleGAN, 
and the DNCNN proposed in this paper, all being 
grounded in GANs, necessitate more time for training in 
contrast to RED-CNN. Compared with RED-CNN and 
DNCNN, DNCNN has a shorter inference time. This is 
because in GAN-based denoising methods (11,12,20), the 
discriminator does not participate in the image denoising 

process after training is completed; instead, the process 
relies solely on the generator (16). CycleGAN is particularly 
challenging to train owing to the intricacies of its network 
architecture (11). In summary, the proposed model in this 
paper demonstrates efficiency in both training and inference 
durations, which can be attributed to its advantageous 
parameters and structure.

Conclusions

This study introduced an unpaired deep learning approach 
for LDCT image denoising. The method leverages a 
combination of GAN- and CNN-based denoising networks 
and maps NDCT images to LDCT images. In comparison 
to existing techniques, our model operates with minimal 
assumptions on noise distribution and data type, eliminating 
the need for additional prior knowledge. A significant 
advantage lies in its rapid convergence and efficacy, achieved 
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through the use of a lightweight generator and discriminator 
structure, coupled with the adoption of the LSGAN loss 
function. Vital to the model is the generation of realistic 
LDCT images. To facilitate this, we propose an encoder-
decoder network as a discriminator for NGAN, enhancing 
the overall model performance. The discriminator employs 
a full-size output matrix, allowing for a focused analysis of 
noise details in LDCT images for realistic noise simulation. 
The learned noise is incorporated into NDCT images, 
forming NDCT and pseudo-LDCT image pairs that are 
used to train a denoising network in similar fashion to that 
of previously developed methods based on paired images. 
All components are seamlessly integrated to enable end-to-
end training. Thorough evaluations conducted on synthetic 
and CHCD Clinic datasets demonstrated that our model 
surpasses previous unpaired data-based methods.

However,  there remains a discernible disparity 
between existing weakly supervised methods and their 
supervised counterparts. Optimal visual outcomes have 
yet to be attained. For instance, as depicted in Figure 9, 
this method moderately diminishes fine details. Hence, 
future research could follow two avenues: a transition 
from two-dimensional to three-dimensional CT images, 
wherein adjacent contextual slices could offer additional 
structural and contour data to preserve details during the 
reconstruction process; and the development of more 
efficient generative models, such as diffusion models, 
which replicate the noise diffusion process to progressively 
diminish noise and accomplish denoising. Moreover, the 
amalgamation of diverse generative models may further 
amplify the denoising efficacy.
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