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ABSTRACT
Background. Malignant mesothelioma (MM) is a rare and highly aggressive cancer.
Despite advances in multidisciplinary treatments for cancer, the prognosis for MM
remains poor with no effective diagnostic biomarkers currently available. The aim of
this study was to identify plasma metabolic biomarkers for better MM diagnosis and
prognosis by use of a MM cell line-derived xenograft (CDX) model.
Methods. The MM CDX model was confirmed by hematoxylin and eosin staining and
immunohistochemistry. Twenty female nude mice were randomly divided into two
groups, 10 for theMMCDXmodel and 10 controls. Plasma samples were collected two
weeks after tumor cell implantation. Gas chromatography-mass spectrometry analysis
was conducted. Both univariate and multivariate statistics were used to select potential
metabolic biomarkers. Hierarchical clustering analysis, metabolic pathway analysis,
and receiver operating characteristic (ROC) analysis were performed. Additionally,
bioinformatics analysis was used to investigate differential genes between tumor and
normal tissues, and survival-associated genes.
Results. The MM CDX model was successfully established. With VIP > 1.0 and P-
value < 0.05, a total of 23 differential metabolites were annotated, in which isoleucine,
5-dihydrocortisol, and indole-3-acetamide had the highest diagnostic values based
on ROC analysis. These were mainly enriched in pathways for starch and sucrose
metabolism, pentose and glucuronate interconversions, galactose metabolism, steroid
hormone biosynthesis, as well as phenylalanine, tyrosine and tryptophan biosynthesis.
Further, down-regulation was observed for amino acids, especially isoleucine, which is
consistent with up-regulation of amino acid transporter genes SLC7A5 and SLC1A3 in
MM.Overall survivalwas also negatively associatedwith SLC1A5, SLC7A5, and SLC1A3.
Conclusion. We found several altered plasma metabolites in the MM CDX model.
The importance of specific metabolic pathways, for example amino acid metabolism,
is herein highlighted, although further investigation is warranted.
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INTRODUCTION
Malignant mesothelioma (MM) is an uncommon but highly aggressive tumor that is
associated with asbestos exposure. The worldwide, age-adjusted mesothelioma mortality
rate has increased approximately 5.37% annually (Delgermaa et al., 2011). It is expected
that the age-adjusted mesothelioma incidence and related mortality rate will continue to
increase dramatically in the near future, especially in countries where asbestos is still widely
used (e.g., China, India, and the Russian Federation) (Carbone et al., 2019). The median
survival time for patients with MM is less than 12 months from onset (Ledda, Senia &
Rapisarda, 2018). Treatment is challenging for several reasons, but most important is the
difficulty of early stage diagnosis when the patient is typically asymptomatic. In addition,
symptoms tend to be vague and often resemble those of other more common diseases
such as chest infection (Ahmadzada, Reid & Kao, 2018). As a result, MM diagnosis is often
delayed resulting in inevitable tumor development. Therefore, MM patients urgently need
accurate, susceptive, and non-invasive procedures by which to predict, diagnose, and
prognosticate disease outcomes.

Although cancer is traditionally viewed as a disease of cellular proliferation, more recent
studies have proposed cancer as a metabolic disease (Seyfried et al., 2014). Tumors, being
highly proliferative, show significant alteration in metabolic pathways, especially in energy
production and the biosynthesis of macromolecules (Hammoudi et al., 2011). Therefore,
metabolites such as peptides, fatty acids, and steroids in tissues and body fluids (e.g., urine
and serum) can provide insight into important disease characteristics.

Metabolomics provides a comprehensive metabolite profile of any biological sample,
detecting metabolites involved in the pathophysiology of a disease and serving as a guide
for the identification of useful biomarkers (Clish, 2015). The most popular methods for
metabolomics analysis are gas chromatography-mass (GC-MS), liquid chromatography-
mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) spectroscopy.
Metabolomics has the capacity to detect thousands of feature ions at once, which has made
it increasingly popular in the cancer research field for biomarker identification (Beger,
2013). In one study of Asian triple negative breast cancer patients, global metabolomics
identified altered metabolites that enabled the construction of metabolite-based biomarker
panels (Li et al., 2020). As such, metabolomics can be a powerful and useful tool for cancer
research.

However, there are few metabolomics studies of MM. Therefore, the aim of this
study was to discover promising metabolite biomarkers to improve early MM diagnosis.
Such biomarkers would allow for customized and individualized patient treatment
increasing overall survival. In addition, potential survival-related genes were explored
by bioinformatics analysis based on the TCGA database. Identified biomarkers and genes
may prove to be promising therapeutic targets for the treatment of MM.
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MATERIALS AND METHODS
MM cell line
Ren cells, a human MM cell line established by Smythe et al. (1994), were cultured in
GibcoTM Dulbecco’s modified eagle medium (DMEM) with L-glutamine (Thermo Fisher
Scientific, Waltham, MA, USA), supplemented with 10% Fetal Bovine Serum (FBS)
(Thermo Fisher Scientific), 100 units/ml penicillin, and 100 µg/mL streptomycin (Thermo
Fisher Scientific). Cells were incubated at 37 ◦C in a 5% CO2 humidified atmosphere.
Trypsin was used for cell collection when confluence reached 80%.

Xenograft model construction
Animal experimentation was performed under project license (No. 2019-02-010) granted
by the Institutional Animal Care and Ethics Committee of Zhejiang Cancer Hospital, in
compliance with national or institutional guidelines for the care and use of animals. All
animals were housed in individual cages (five mice per cage), with full-value nutritional
granulated fodder and distilled water, at 21 ± 2 ◦C, at 40%–60% relative humidity, with
12-h light and dark periods.

Twenty female BALB/c nude mice (4-week-old) were purchased from Shanghai SLAC
laboratory Animal Co., Ltd. (Shanghai, China) and acclimated for one week before
experimentation. The mice were randomly divided into two groups of 10. For the cell-
derived xenograft (CDX)model, 200µL of PBS containing 3× 106 cells was subcutaneously
injected into the flanks of mice. The control group received no treatment. Two weeks after
transplantation, blood was obtained from the retro-orbital plexus with isoflurane-induced
anesthesia. A blood volume of 100 µL was collected into a heparinized tube, plasma was
separated at 3,000 rpm for 15 min at 4 ◦C, and samples were stored at−80 ◦C until analysis.
The anesthesia protocol was that provided with the anesthesia machine produced by RWD
Life Science Co., Ltd. (GuangDong, China). After experimentation, animal carcasses were
loaded into garbage bags and handled by the Institute of Laboratory Animals.

Immunohistochemistry (IHC)
Tumors were collected and preserved in 4% paraformaldehyde. IHC was performed
with formalin-fixed paraffin-embedded (FFPE) tissue of tumor samples. Slides were
deparaffinized and incubated in 3% hydrogen peroxide to inactivate endogenous
peroxidases. Slides were placed into citric acid repair solution (pH = 6) and boiled at
100 ◦C for 90 s for antigen retrieval. After addition of a protein blocking solution, slides were
incubated with antibodies (calretinin, CK5/6, WT1, D2-40, MOC31, SLC1A5, SLC7A5)
at 4 ◦C overnight, and then incubated with HRP-labeled secondary antibody (Agilent
DAKO, CA, USA, catalogue number #K5007), then the slides were further processed with
the DAB regent kit (Agilent DAKO, CA, USA, catalogue number #K5007). The following
antibodies were used: mouse anti calretinin monoclonal antibody (Leica Biosystems,
Wetzlar, Germany, catalogue number #PA0346), mouse anti CK5/6 monoclonal antibody
(MXB Biotechnologies, Fujian, China, catalogue number # MAB-0744), mouse anti WT1
monoclonal antibody (catalogue number #IR055; Agilent DAKO, Santa Clara, CA, USA),
mouse anti podoplanin (D2-40) monoclonal antibody (catalogue number #IR072; Agilent
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DAKO), mouse anti MOC31 monoclonal antibody (MXB Biotechnologies, Fujian, China,
catalogue number # MAB-0280), rabbit anti SLC1A5 monoclonal antibody (catalogue
number #8057; (Cell Signaling Technology, Danvers, MA, USA), and rabbit anti SLC7A5
polyclonal antibody (catalogue number # 13752-1-AP; Proteintech, Rosemont, IL, USA).
Histological features of MM were identified based on the guidelines for the diagnosis and
treatment of pleural MM (Van Zandwijk et al., 2013). Immunohistochemical analysis was
performed on FFPE tissue specimens from MM patients after ethical committee approval
(IRB-2018-82).

Gas Chromatography-Mass Spectrometry (GC-MS)-based
metabolomics profiling
Sample preparation
An aliquot of 50 µL plasma was mixed with 200 µL of methanol (HPLC grade; CNW
Technologies, Duesseldorf, Germany) containing 25 µmol/L 2-chloro-L-phenylalanine
(Shanghai Hengbai Biotech, Shanghai, China) as an internal standard, which was used for
normalization. After vortexing for 30 s, samples were ultra-sonicated in iced water for 10
min. After centrifugation at 12 000 rpm at 4 ◦C for 15 min, 180 µL of supernatant for each
sample were transferred into a new tube and dried in a vacuum concentrator. The residues
of each sample were then added with 20 µL of 20 mg/mL methoxyamine hydrochloride
(AR grade; TCI, OR, USA) in pyridine (HPLC grade; Adamas Pharmaceuticals, CA, USA).
The above samples were kept at 80 ◦C for 30 min, after which 40 µL of bis-(trimethylsilyl)
trifluoroacetamide (BSTFA) in 1% TMCS (REGIS Technologies, IL, USA) was added and
samples were incubated at 70 ◦C for 1.5 h. The samples were stored at room temperature
until analysis. Quality control (QC) samples were prepared by pooling an aliquot of 30 µL
from each sample.

GC-TOF-MS analysis
Metabolomics was performed on an Agilent 7890 gas chromatograph system equipped
with Pegasus HT time-of-flight mass spectrometer (LECO, St. Joseph, MI, USA).
Chromatographic separation was achieved on a DB-5MS capillary column (30 m
×0.25 mm, 0.25 µm film thickness; J&W Scientific, Folsom, CA, USA). The GC-TOF-MS
settings were as follows: 1 µL sample was loaded in a splitless mode, 3 mL/min for the
front inlet purge flow rate, 1 mL/min for the gas flow rate; the initial temperature was
50 ◦C, then increased to 310 ◦C with a rate of 20 ◦C/min, then kept at 310 ◦C for 6
min; the temperatures for injection, transfer line, and ion source were 280, 280, and
250 ◦C, respectively; the electron impact energy was set at 70 eV; full-scan mode with a
mass-to-charge ratio range from 50 to 500 was used in mass collection.

Metabolomics data analysis
GC-TOF-MS raw data were processed by Chroma TOF 4.3X software (LECO Corporation,
St. Joseph, MI, United States). The LECO-Fiehn Rtx5 database was used for data extraction
and analysis. Normalization was performed for each sample through calculating the ratios
of peaks of analytes and 2-chloro-L-phenylalanine, and relative quantification was applied
in further comparison between xenograft and control groups. Metabolite identification
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was achieved by matching both mass spectra and retention index of the detected metabolic
features. Peaks that were not detected in more than half of QC samples or peaks with RSD
> 30% in QC samples were removed, a dataset with 20 samples and identified metabolites
was obtained.

Both univariate and multivariate analysis were conducted to select the differential
metabolites. Log2 (Fold change) (Log2(FC)) of each metabolite between xenograft and
control groups were calculated through dividing their average values. -Log10 (P-value)
was calculated for each metabolite using a two-tailed Student’s t -test. Besides, principal
component analysis (PCA) of all the identified metabolites was used to observe the clusters
of samples. Partial least squares-discriminant analysis (PLS-DA)was performed to select the
most significant differential metabolites between xenograft and controls using R package
‘‘ropls’’ (version 1.18.8), and variable importance in projection (VIP) of each metabolite
was obtained from PLS-DA. Permutation test with cross validation for 20 times was applied
to test reliability of the PLS-DA model. Volcano plot with Log2(FC) and -Log10 (P-value)
values was used to show the differential metabolites between xenograft and control groups.

Hierarchical clustering analysis and metabolic pathway analysis
Hierarchical clustering analysis was performed based on relative abundance of differential
metabolites betweenMM and control groups. Results were illustrated as a heatmap using R
package ‘‘pheatmap’’. Pathway analysis of the differential metabolites was performed with
an online tool (https://www.metaboanalyst.ca/). The top 25 pathways with P-value <0.05
were selected based on enrichment ratio (i.e., observed hits/expected hits).

Correlation analysis and receiver operating characteristics (ROC)
analysis
Pearson correlation analysis was performed for each pair of differential metabolites, the
results were visualized using R package ‘‘corrplot ’’.

ROC analyses were performed for all selected differential metabolites using all samples.
Based on area under curve (AUC), top 6 metabolites were selected and their relative levels
inMM and control were shown as box plots. R package ‘‘pROC ’’ was used for ROC analyses
and package ‘‘ggplot2’’ was used for visualization.

Bioinformatics analysis for amino acid transporter genes
The gene array dataset (GSE51024) from 55 MM tumor samples and along with
paired normal tissue (for 41 tumors) was obtained from the GEO database (https:
//www.ncbi.nlm.nih.gov/geo). Statistical analysis was performed using R package ‘‘limma’’
to screen for statistically differentially expressed genes (P-value <0.05) and to calculate
fold changes of selected genes. mRNA expression in type of RNA-seq count and
corresponding survival data for 86 MM patients from Cancer Genome Atlas (TCGA)
were downloaded from GDC TCGA mesothelioma dataset in the UCSC Xena TCGA hub
(https://xenabrowser.net/). Amino acid transporter gene list was based on Bröer (2020).
Samples were divided into high and low groups according to median value of each gene
as cut-off value. Kaplan–Meier plots with log-Rank test were performed to determine
significant differences between the two groups. Finally, univariate Cox proportional
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hazards regression analysis was performed to determine relationships among amino acid
transporter genes and prognosis. P-value <0.05 was considered significant.

RESULTS
CDX model information
Hematoxylin and eosin (H&E) staining showed REN cell line-derived xenografts to be
biphasicMM, characterized by both epithelioid cell structure and sarcomatous components
(Fig. 1A). IHC characteristics were consistent with MM clinico-pathological features,
including diffuse positivity for calretinin (Fig. 1B) and focal positivity for WT1 (Fig. 1C)
for mesothelioma, focal positivity for CK5/6 (Fig. 1D), wide positivity for D2-40 (Fig. 1E)
for epithelial carcinoma, and negative for MOC31 (Fig. 1F) adenocarcinoma. The results
demonstrate the MM cell line-derived xenograft model to be successfully established.

Metabolic differences between the MM xenograft group and the
control group
A total of 377 peaks were obtained, and 187 metabolites were annotated for further
multivariate analysis. The score plots of the first two principal components (PC1/PC2) in
PCA showed an overlap between the xenograft model and control group, while PLS-DA
analysis revealed a clear separation between the xenograft model and control, with a R2Y
value of 0.910 and a Q2 value of 0.371 (Figs. 2A, 2B). Permutation tests further revealed
the current PLS-DA model to be reliable (Fig. 2C). After application of filtering criteria,
a total of six up-regulated metabolic features and 42 down-regulated metabolic features
were obtained (Fig. 2D).

Differential metabolic patterns and pathway enrichment
After annotation, 23 metabolites were obtained, including 6 up-regulated and 17 down-
regulated (Table 1). Based on these differential metabolites, the CDX group showed
a distinctive metabolic pattern that differed from the control group (Fig. 3A). Based
on all differential metabolites, 19 metabolic pathways were enriched. Steroid hormone
biosynthesis was the most significantly enriched pathway with three hits, followed by
starch and sucrose metabolism, pentose and glucuronate interconversions, as well as
phenylalanine, tyrosine, and tryptophan biosynthesis pathways (Table 2).

Diagnostic value of plasma metabolites
Figure 4A shows the Spearman correlations for the differential metabolites based on
their relative circulating levels. ROC analysis identified the top six metabolites with the
highest AUCROC values. They were isoleucine (AUC: 0.860), 5-dihydrocortisol (AUC:
0.860), guanosine (AUC: 0.850), indole-3-acetamide (AUC: 0.850), trehalose-6-phosphate
(AUC: 0.840), and diglycerol (AUC: 0.830) (Figs. 4B–4G). Of these, indole-3-acetamide
and diglycerol were up-regulated in the MM xenograft model, with the other four down-
regulated.
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Figure 1 Histopathology (HE) and immunohistochemistry (IHC) findings in tumors frommalignant
mesothelioma xenograft mice. (A) Representative images of H&E staining, the tumor cells were mor-
phologically diverse, large in size, and markedly heteromorphic. (B–C) IHC staining with mesothelioma
markers Calretinin and WT1 were diffuse positive and focal positive. (D–E) IHC staining with epithelial
carcinoma markers CK5/6 and D2-40 were focal positive and widely positive. (F) IHC staining of adeno-
carcinoma marker MOC31 was negative. (magnification: HE,×400; IHC,×400).

Full-size DOI: 10.7717/peerj.12568/fig-1

Dysregulated amino acid metabolism
In the plasma of CDX model mice, most of the detected amino acids were downregulated
including isoleucine, valine, and proline, with the exception of tyrosine (Fig. 5A). Isoleucine,
which was decreased in the mesothelioma model, had diagnostic value (Fig. 4B).

The bioinformatics analysis identified many prognosis-related genes. These genes were
compared to a list of amino acid transporter genes in the referenced paper, with overlap
mainly with SLC transporter genes. Survival analysis of the SLC genes indicated that the
three most significant genes were SLC1A5 (HR= 1.70), SLC7A5 (HR= 2.35), and SLC1A3
(HR = 2.21) (Fig. 5B). All of the most significant SLC genes had hazard ratios over one,
indicating them to be unfavorable prognostic factors (Table 3). Data from GEO (Table
S1) showed that gene expressions of amino acid transporters SLC7A5 and SLC1A3 were
significantly upregulated, whereas SLC1A5 was downregulated in tissues of MM patients
compared to controls. Immunohistochemistry also validated expressions of SLC1A5 and
SLC7A5 in MM tumor specimens from both mouse xenografts (Figs. S1A), S1C) and MM
patients (Figs. S1B, S1D).

DISCUSSION
By using a MM cell line, we constructed a xenograft model with pathological characteristics
highly consistent with that of MM. Strong positive expression of calretinin and negative
expression of MOC31 are compatible with the pathological features of MM cases (Van
Zandwijk et al., 2013). Thus, the Ren cell line xenograft model is a reliable tool, readily
available for research purposes.

Gao et al. (2022), PeerJ, DOI 10.7717/peerj.12568 7/17

https://peerj.com
https://doi.org/10.7717/peerj.12568/fig-1
http://dx.doi.org/10.7717/peerj.12568#supp-4
http://dx.doi.org/10.7717/peerj.12568#supp-4
http://dx.doi.org/10.7717/peerj.12568#supp-6
http://dx.doi.org/10.7717/peerj.12568#supp-6
http://dx.doi.org/10.7717/peerj.12568#supp-6
http://dx.doi.org/10.7717/peerj.12568#supp-6
http://dx.doi.org/10.7717/peerj.12568


Figure 2 Multivariate statistical analysis of metabolites. (A) Score scatter plot of PCA analysis for
plasma metabolomics between xenograft mice and controls. T represent the xenograft mice group, and
N is the control group. (B) Score scatter plot of PLS-DA model for group xenograft mice and controls.
The abscissa PC1 represents the first principal component, and the ordinate PC2 represents the second
principal component. (C) Permutation test of PLS-DA modeling. (D) Volcano plots showing differential
feature ions in model mice vs. controls. Differential ions were defined by VIP > 1.0 and P-value < 0.05;
ions with Log2(Fold Change) > 0 were considered as upregulated, vice versa. Significantly up-regulated
ions are indicated in red, significantly down-regulated ions are indicated in blue, and non-significant
differences in metabolites are grey.

Full-size DOI: 10.7717/peerj.12568/fig-2

Oncogenic mutations in tumor cells can induce a metabolic imbalance in native
homoeostasis. Our study, based on GC-MS metabolomics, identified 23 differentially
expressed plasma metabolites for the CDX group and the control group. The PLS-DA
model showed good separation for the model group and the healthy control group. The
most notable metabolites are discussed below.

It is widely acknowledged that some cancers are hormone-dependent (e.g., breast and
prostate cancer) (Key, 1995), whereas no study reported hormones as carcinogens for
MM. Nevertheless, we detected changes in plasma levels of some hormones. We observed
5-dyhydrocortisol and hydrocortisone levels to be significantly decreased. Hydrocortisone
is a steroid hormone that is typically anti-inflammatory and is used for treatment of
cancers, such as leukemia. Asbestos can induce inflammatory changes, including increase
in MMP7, CXCR5, CXCL13, and CD44, and this chronic inflammation can lead to chronic
diseases, such as cancer (Kumagai-Takei et al., 2018). During chronic inflammation,
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Table 1 List of identified differential metabolites betweenmodel group and healthy controls.

No Metabolite VIPa P-value Fold changeb AUCROC
c

1 Isoleucine 1.9 4.70E−03 0.48 0.860
2 5-Dihydrocortisol 2.1 8.10E−03 0.26 0.860
3 Guanosine 1.8 8.80E−03 0.31 0.850
4 Cholesterol 1.8 9.60E−03 0.75 0.800
5 4-Hydroxyphenylacetic acid 1.8 1.13E−02 0.39 0.810
6 Cortexolone 1.7 1.42E−02 0.53 0.800
7 Diglycerol 1.8 1.49E−02 1.54 0.830
8 Trehalose-6-phosphate 1.7 1.57E−02 0.45 0.840
9 Indole-3-acetamide 1.7 1.72E−02 1.42 0.850
10 Glucose-1-phosphate 1.6 1.75E−02 1.64 0.820
11 Sophorose 1.6 2.04E−02 0.46 0.800
12 2-Monoolein 1.7 2.16E−02 0.3 0.820
13 Hydrocortisone 1.6 2.23E−02 0.45 0.780
14 Leucrose 1.6 2.24E−02 0.46 0.770
15 Citric acid 1.6 2.54E−02 0.68 0.750
16 Trehalose 1.5 2.79E−02 0.27 0.775
17 Naringenin 1.5 3.55E−02 0.45 0.785
18 Tyrosine 1.5 3.55E−02 1.58 0.770
19 Cyclohexane-1,2-diol 1.6 3.99E−02 47.19 0.655
20 Xylitol 1.5 4.10E−02 0.68 0.820
21 24,25-Dihydrolanosterol 1.5 4.13E−02 0.59 0.780
22 Indolelactate 1.5 4.21E−02 0.54 0.730
23 Pentadecanoic acid 1.4 4.47E−02 2.48 0.640

Notes.
aVariable Importance in Projection (VIP) values from Partial least squares-discriminant analysis (PLS-DA).
bFold change of metabolites expression in model group compared to controls.
cROC, receiver-operating characteristic curve; AUC, area under the ROC curve.

pro-inflammatory metabolites are upregulated to create an ideal environment for tumour
growth (Rayburn, Ezell & Zhang, 2009). Therefore, we speculate that hydrocortisone
exhibits an anti-tumour effect by reducing the inflammatory response within the tumor
(Linton et al., 2012).

It should be noted that cholesterol, which can be used to produce hydrocortisone,
was also decreased. This supports our speculation that hydrocortisone was depleted in
diseased tissue. Meta-analysis studies conducted on patients with low cholesterol have
shown an association with low cholesterol levels and a high risk for cancer. However,
a causal relationship has not been established. Low cholesterol may not be a risk factor
for cancer, rather it may be a sign of undiagnosed cancer (Tanne, 2007). Therefore, we
speculate that cancer can lower cholesterol levels. A decrease in cholesterol levels may
be a result of increased uptake by tumour cells. Cholesterol is a key component of cell
membranes and is essential to cell proliferation (Fernández, De Cedrón & De Molina, 2020).
Another significantly altered lipid was glycerol. Glycerol is component of triacylglycerol. In
colorectal cancer, total lipid content is reduced (Mika et al., 2020). Herein, we speculate that
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Figure 3 Heatmap from hierarchical clustering analysis and a diagram of the metabolic pathway
enrichment analysis. (A) Heatmap comparing levels of the metabolites of the model mice group and
the control group. A single mouse corresponded to each column of the heatmap. The mice of the
model group are labeled by red color (T), and the controls are blue (N). The color scale indicates the
relative expression levels of the metabolites across all samples, blue represents an expression less than the
mean, while red represents a higher expression level greater than the mean. (B) Pathway analysis of the
metabolites in the model mice group.

Full-size DOI: 10.7717/peerj.12568/fig-3
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Table 2 Clustered metabolic pathways.

Metabolism pathway Total Hits P-value

Starch and sucrose metabolism 18 2 1.75E−02
Pentose and glucuronate interconversions 18 2 1.75E−02
Galactose metabolism 27 2 3.77E−02
Phenylalanine, tyrosine and tryptophan biosynthesis 4 1 4.57E−02
Steroid hormone biosynthesis 85 3 7.15E−02
Steroid biosynthesis 42 2 8.34E−02
Tyrosine metabolism 42 2 8.34E−02
Valine, leucine and isoleucine biosynthesis 8 1 8.94E−02
Ubiquinone and other terpenoid-quinone biosynthesis 9 1 1.00E−01
Aminoacyl-tRNA biosynthesis 48 2 1.05E−01
Phenylalanine metabolism 10 1 1.11E−01
Glycerolipid metabolism 16 1 1.71E−01
Citrate cycle (TCA cycle) 20 1 2.09E−01
Glycolysis / Gluconeogenesis 26 1 2.64E−01
Alanine, aspartate and glutamate metabolism 28 1 2.81E−01
Glyoxylate and dicarboxylate metabolism 32 1 3.14E−01
Amino sugar and nucleotide sugar metabolism 37 1 3.54E−01
Valine, leucine and isoleucine degradation 40 1 3.77E−01
Primary bile acid biosynthesis 46 1 4.20E−01
Purine metabolism 65 1 5.40E−01

Notes.
Metabolomics pathway data analysis was performed by MetaboAnalyst.

tumor cells dysregulate lipid metabolism, leading to increased oxidation of triacylglycerol
in order to produce more energy for tumor growth, consequently releasing more glycerol
into the circulation.

Isoleucine is also decreased significantly. Isoleucine is an essential amino acid (EAA) for
mammals, used for biosynthesis, energy production, and as a mediator of redox balance
(Lieu et al., 2020). Amino acids can provide both nitrogen and carbon for necessary
biosynthesis of molecules such as purines as well as serve as an alternative to glucose for
the energy necessary in tumor development and cancer cell proliferation. Amino acids are
also involved in activities such as NADPH production and glutathione synthesis, essential
to redox hemostasis in cancer cells (Vučetić et al., 2017). Isoleucine was also reported
to upregulate in pancreatic ductal adenocarcinoma (PDAC) (Jiang et al., 2021), so we
speculate that the decrease in isoleucine in our study is due to constant cancer cell uptake.
The high demand for EAAs is also reflected in the upregulation of EAA transporters that
are evident in many cancers (Lieu et al., 2020). In MM, survival analysis of amino acid
transporter genes SLC1A5, SLC7A5, and SLC1A3 were found to be unfavorable prognostic
factors, consistent with previous findings. In addition, expressions of SLC7A5 and SLC1A3
were significantly upregulated in MM based on bioinformatic analysis, indicating its
prominence to be a therapeutic target. On contrary, SLC1A5 was downregulated, which
is inconsistent with results from other studies, therefore more research is needed to
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Figure 4 Metabolite-based correlation analyses and ROC analyses. (A) Correlation pattern among
measured metabolites over the entire cohort using pearson correlation. (B–G) Receiver operating char-
acteristic (ROC) curves of the six differential metabolites with highest area under curve (AUC) values:
Isoleucine, lyxonic acid, 5-dihydrocortisol, guanosine, indole-3-acetamide, and trehalose-6-phosphate;
and boxplots comparing relative intensities of these metabolites between cell-derived xenograft (CDX) (T)
and control groups (N). FC: fold change; P-value was calculated from a two-tailed Student’s t -test, and P-
value < 0.05 was considered as significant.

Full-size DOI: 10.7717/peerj.12568/fig-4
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Figure 5 Differential amino acids inMM and survival-related transporters. (A) Heatmap comparing
the amino acids of samples in the model mice group (T) and the controls (N). The color scale indicates the
relative expression levels of the amino acids, blue represents an expression level less than the mean, while
red represents an expression level greater than the mean. (B–D) Kaplan–Meier survival curves for patients
with mesothelioma grouped by the different expression levels of SLC1A5 (B), SLC7A5 (C), SLC1A3 (D).

Full-size DOI: 10.7717/peerj.12568/fig-5

validate this trend. Isoleucine is an important branched chain amino acid (BCAAs). Such
amino acids are essential for protein synthesis, as a source of nitrogen, and for energy
production, all of which are vital for tumor growth (Ananieva & Wilkinson, 2018). BCAAs
can also donate nitrogen for glutamate synthesis, which can then be used to synthesize
glutamine, important to tumor growth and maintenance (Hutson, Sweatt & LaNoue,
2005). The process is catalyzed by branched-chain aminotransferase 1 (BCAT1) and
mitochondrial branched-chain aminotransferase 2 (BCAT2). Recent evidence has shown
that these enzymes are overexpressed in many cancers (Ananieva & Wilkinson, 2018).
Survival analysis of BCAT1 by GEPIA at a quartile cut-off level demonstrated a significant
difference between the high and low expression groups. High expression was associated
with a poor prognosis, consistent with our findings.

In this study, we found that citrate levels were significantly decreased in the cancer
model group compared to the control group. Recent studies have suggested elevated
consumption of citrate is a consequence of higher metabolic demand in cancer cells
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Table 3 Survival associated SLC transporters genes.

Gene P-valuea HRb HR_lowc HR_highd

SLC1A5 2.54E−02 1.70 1.06 2.72
SLC7A5 3.71E−04 2.35 1.45 3.82
SLC1A3 7.97E−04 2.21 1.38 3.56
SLC6A9 1.23E−02 0.55 0.34 0.88
SLC43A2 2.01E−03 0.47 0.29 0.77
SLC1A7 3.97E−03 0.49 0.30 0.80
SLC7A8 8.41E−03 0.53 0.33 0.86
SLC43A3 5.30E−04 2.29 1.42 3.70
SLC38A3 1.46E−02 1.80 1.12 2.89

Notes.
aKaplan-Meier survival analysis of SLC transporters genes, significance was set at P < 0.05.
bHR, hazard ratio.
cLowest confidence interval.
dHighest confidence interval. A confidence interval of 95% was used.

(Haferkamp et al., 2020). Accordingly, we assume that cellular uptake of citrate increased
during tumor growth.

CONCLUSIONS
Metabolic changes in cancer have long been acknowledged and considered as candidate
therapeutic targets. The proposed mechanisms above remain hypothetical and need
further investigation to validate, but the findings may provide for better diagnosis and
prognostication for MM. We believe these results provide insight into mesothelioma
metabolic reprogramming and may provide targets that can be exploited for therapeutic
use.
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