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Abstract: Real-time performance and global consistency are extremely important in Simultaneous
Localization and Mapping (SLAM) problems. Classic lidar-based SLAM systems often consist of
front-end odometry and back-end pose optimization. However, due to expensive computation, it is
often difficult to achieve loop-closure detection without compromising the real-time performance
of the odometry. We propose a SLAM system where scan-to-submap-based local lidar odometry
and global pose optimization based on submap construction as well as loop-closure detection are
designed as separated from each other. In our work, extracted edge and surface feature points are
inserted into two consecutive feature submaps and added to the pose graph prepared for loop-closure
detection and global pose optimization. In addition, a submap is added to the pose graph for global
data association when it is marked as in a finished state. In particular, a method to filter out false
loops is proposed to accelerate the construction of constraints in the pose graph. The proposed
method is evaluated on public datasets and achieves competitive performance with pose estimation
frequency over 15 Hz in local lidar odometry and low drift in global consistency.

Keywords: real-time lidar odometry; submap-based loop-closure detection; pose graph optimization;
simultaneous localization and mapping (SLAM)

1. Introduction

Simultaneous Localization and Mapping is a significant issue for mobile robots and
autonomous driving vehicles. Vision-based and lidar-based SLAM has been widely studied,
proposing a series of noted methods to achieve real-time and high-performance pose
estimation. Achieving real-time pose estimation on devices with limited computational
resources remains a challenge for both vision and lidar SLAM. For vision-based SLAM
using monocular, stereo, or RGB-D cameras, loop-closure detection and relocalization is
not a particularly difficult task because a bag-of-words library can be trained in advance,
which is a creative approach for data association on a global scale.

Compared with vision-based SLAM, there is a lack of research on loop-closure detec-
tion in lidar-based SLAM, although lidar-based methods are more tolerant of illumination
and initialization. In our work, we focus on lidar-based real-time pose estimation and a
mapping method with loop closure.

A great deal of attention has been paid to lidar-based pose estimation and map-
ping methods for the last few years. For instance, a feature-based 3D lidar-based SLAM
framework called lidar odometry and mapping in real-time (LOAM) [1] achieved both
low-drift and low computational complexity. Until now, LOAM and many variants of
LOAM have been widely studied because of their state-of-art performance on the public
dataset KITTI [2]. Furthermore, usually a Euclidean distance-based loop-closure detec-
tion approach is used to minimize the accumulated error as with LeGO-LOAM [3] and
LIO-SAM [4].
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However, both local data association and the Euclidean-distance-based loop-closure
detection method also struggle in a large-scale test if their odometry accumulated error
exceeds a certain threshold. Scan matching (also called data association) is one of the most
important steps in a SLAM system. The Iterative Closest Points [5] method, which achieves
point cloud registration by minimizing the point-to-point Euclidean distance, is the most
classic method to obtain a matching result between point clouds.

This is a brute force iterative method to obtain pose transformation between two
different point clouds. However, owing to the expensive cost, there are many problems with
traditional ICP when applied to specific problems [6]. Therefore, many different versions
of the ICP algorithm have been proposed to adapt to different application scenarios, such
as PL-ICP [7], NICP [8] and IMLS-ICP [9]. Marchel [10] proposed a modification to the
standard method of ICP using three original weighting factors and brought about an
improvement in accuracy.

Even so, the ICP method is still not an outstanding method to achieve real-time
matching of point clouds when the amount of point cloud data is overly large. The ICP
variants mentioned above improve the accuracy, while MIM_SLAM [11] confirms that multi-
level ICP (iterative closure point) matching can be used to solve data-association problems.

Additionally, Normal Distribution Transform (NDT) [12] is also a popular point cloud
matching algorithm that accelerate the matching process by dividing the grid and fitting the
point cloud distribution within the grid using a standard normal distribution. Therefore,
the accuracy of the NDT point cloud matching method depends on the size of the grid, and
when the grid is fine enough, it will also bring large computational consumption.

In addition to the above methods for raw points matching, point cloud matching based
on feature extraction, which was first proposed in LOAM [1], is also a popular method.
LOAM has been the level of state-of-the-art pose estimation and mapping method since
proposed. Inspired by LOAM, LeGO-LOAM [3] improves the performance of the feature-
based pose estimation method by adding steps, such as ground points segmentation.

To improve the performance on a low power embedded computing unit, FLOAM [13],
which adopts a non-iterative method when finding the corresponding between point clouds
was proposed. Afterward, another variant of LOAM and LeGO-LOAM called LIO-SAM [4]
based on an increment optimization iSAM [14] was proposed and reached the level of
state-of-the-art lidar-based pose estimation and mapping method. Incremental update of
linear matrix and imu pre-integration play important roles in the LIO-SAM method.

Similarly, many methods, such as LIO-Mapping [15], MILIOM [16] and Fast-lio [17]
integrate imu preintegration information into point cloud matching, instead of using imu
to remove point distortion. Moreover, a fast LiDAR-Inertial-Visual odometry called Fast-
Livo [18], which fuses vision with traditional lidar odometry was proposed, achieving
real-time performance at the level of state-of-the-art. Different from traditional feature
extraction methods, a novel method of scan matching based on Fast Fourier Transform(FFT)
where the point clouds data are converted to images and FFT is used for pose estimation
between images was proposed by Jiang [19].

The pose estimation and mapping method by both raw points matching and feature
points matching will lead to the accumulation of errors. Therefore, loop detection and pose
optimization are crucial. Cartographer [20] used branch-and-bound accelerated matching
for loop-closure detection. ORB-SLAM [21] used a bag-of-words library for loop-closure
detection. Algorithms, such as LCD [22], use neural network for loop-closure detection.

Furthermore, a novel method called Scan Context [23], which uses the global descriptor
extracted by scan context for loop-closure detection was proposed. Furthermore, Scan
Context was proven to be effective in LeGO-LOAM-SC [24]. Loop detection often means
positioning in complex environments. Marchel [25] proposed a location method based on
fixed position beacons and the EKF optimization method, which has been applied in port
approach fairways. There are two popular approaches for handling the remaining error
accumulation, called filter-based and graph-based methods [20,26].
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Generally speaking, the typical filter-based SLAM is mostly 2D lidar SLAM designed
for indoor environments, cannot be used to optimize the loop and proved to be difficult to
apply to large-scale outdoor scenes. For instance, the famous Gmapping [26] algorithm
works well for small-scale indoor mapping; however, it struggles when applied to large
scenes. It is clear that the graph-based method is the mainstream approach for dealing
with accumulated error. Since graph-based SLAM was first proposed in [27], quite a few
excellent graph optimization methods have been proposed.

One of the most popular graph-based approaches is Bundle Adjustment [28], which
uses nodes to represent poses as well as landmarks and edges to represent constraints gen-
erated from observations. Many vision-based SLAM frameworks, such as ORB-SLAM [21]
and VINS-MONO [29] utilize Bundle Adjustment to optimize the pose of the camera and
landmarks. In lidar-based SLAM, pose graph that does not optimize the pose of landmarks
is widely used. In order to solve the pose graph optimization problem, the most common
method is to solve a large non-linear least-squares optimization problem.

However, until the famous Sparse Pose Adjustment [30] that uses sparse linear
methods to reduce time complexity was proposed, it appeared to be impossible to use
pose graph optimization on a SLAM problem because optimizing the pose graph was
too time-consuming.

In this paper, we propose a graph-based lidar SLAM system consisting of real-time
local lidar odometry where feature submaps are constructed to describe the local environ-
ment and pose graph optimization after submap-based loop-closure detection to tackle
the problems mentioned above. We consider that the error in the same submap with
several consecutive scans insertion is small enough to be ignored. The two adjacent edge
submaps and two surface submaps maintained at the same time ensure the continuity of
the local odometry.

A non-iteration scan-to-map matching is used to estimate the optimal pose of the scan
in the submap and then edge points and surface points are inserted into edge submaps and
surface submaps, respectively. That is to say, we do not use the Iterative Closest Points
(ICP) Algorithm, a brute force matching method, for local data association. The rich local
information in the submap and the use of 3D KD-tree accelerate the local data association.
In this way, the local lidar odometry can achieve a performance of more than 15 Hz on a
platform with limited computing resources.

To maintain the size of the submap, the finished feature submap that is inserted
with feature points over a certain number of times will be frozen and added to the pose
graph prepared for the global data association running in the background. Therefore,
computationally expensive loop-closure detection is separated from the local lidar odometry
module. Compared with other existing methods, we perform better on the real-time
performance of local lidar odometry and the accuracy of global localization. The main
contributions of our work can be summarized as follows:

1. A graph-based lidar SLAM with local lidar odometry and loop-closure detection
separated from each other, which achieves local high accuracy and global low drift.

2. An efficient feature submap construction and update method using nonlinear least-
squares based non-iteration scan-to-map matching.

3. A novel method for solving the initial value of loop detection optimization problem
and a global data association method based on feature submap, which is used to
describe the local environment.

The rest of this paper is outlined as follows. Section 2 presents the system overview
of the proposed SLAM system and describes the details of the proposed SLAM system
including local lidar odometry, loop closure and pose graph optimization. Section 3
shows the experiment results. Finally, we highlight some conclusions and introduce our
future work.
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2. Materials and Methods

The architecture of our proposed feature-based SLAM framework is shown in Figure 1.
Our system consists of front-end local lidar odometry and back-end loop closure and pose
optimization. In the beginning, feature extraction is performed first, using the method
similar to LOAM [1]. Edge and surface points are extracted by evaluating the smoothness
of the local area.

After the feature extraction process, edge points and surface points are inserted into
the edge submap and surface submap at the best-estimated position, respectively, which
is considered accurate enough for a lidar scanning period. To avoid unnecessary errors
and ensure that there are always enough point clouds in the active submap during scan
matching, we designed that half of the regions of two adjacent submaps, edge submap or
surface submap, are composed of the same lidar points.

Figure 1. A system overview of the proposed SLAM framework. The main part of this method
consists of feature extraction, local lidar odometry and loop closure. Without considering the
limitation that the maximum frequency of the input point cloud is 10 Hz, we can achieve a 15 Hz
pose estimation and 10 Hz mapping output.

In order to reduce the cumulative error, we placed both the extracted feature points
and finished feature submaps in the pose graph, processing with loop detection and pose
optimization regularly. Once a submap is finished, there will not be new lidar points
inserted into feature submaps. In our loop-closure-detection module, while extracted
feature points are inserted into submaps, a scan matching process is running independently
in the background to judge whether the scan of feature points stored in the pose graph
matches any feature submap at a finished state successfully. If a successful scan match
between feature points and a feature submap is found, a loop closure constraint will be
added to an optimization problem.

In order to solve the optimization problem, we extend the well-known Sparse Pose
Adjustment (SPA) [30] to 3D poses and then minimize the cumulative error on the local
lidar odometry. In the end, local lidar odometry and loop-closure detection operate inde-
pendently of each other, and thus there will be no loss in the real-time performance of local
lidar odometry despite loop closure’s time-consumption.

2.1. Local Lidar Odometry

Local lidar odometry optimizes the pose, x = (t, q) consisting of a translation
t = (x, y, z) and a rotation quaternion q = (w, x, y, z), when inserting feature points
to submaps, respectively. Generally, the pose x also can be represented as a transformation
matrix T. This optimizing process is called scan matching in this paper. To correct the
distortion of mechanical 3D lidar, a constant angular velocity and linear velocity model is
used to predict the relative transformation of the point cloud with respect to the scanning
start time.

There is no doubt that local lidar odometry calculated by scan-to-map scan matching
will accumulate errors with the increase in the number of nodes and submaps. Pose graph
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optimization will be used to minimize this kind of error in the subsystem loop closure,
which will be introduced in Section 2.2.

2.1.1. Feature Extraction

As is known to us all, a frame of lidar contains a huge amount of data, making the
scan matching process difficult to complete in real-time. In order to improve the efficiency
of scan matching and ensure the real-time performance of odometry, we decided to extract
feature points. Unlike image information, the resolution of lidar points in horizontal
and vertical directions is different. Points in the vertical direction are more sparse than
those in the horizontal direction, and thus we have to extract feature points according to
the distribution of points in the horizontal direction. Therefore, we extract edge points
and surface points according to the curvature in horizontal direction of the local region
calculated by:

C = 1
|S|||pi|| ∑

jεS ,j 6=i
||(pi − pj)|| (1)

where S represents the adjacent area of pi when we calculate the curvature of point pi,
and |S| represents the number of points in this area.

If the value of C at point pi exceeds a threshold cE , then it will be classified as edge
points, and if less than a threshold cs, it will be classified as surface points.

2.1.2. Scan Matching

In the beginning, we take the initial pose x0 = (t0, q0) of the lidar frame as the pose
of the first local submap frame and global map frame. t0 and q0 are set to (0, 0, 0) and
(1, 0, 0, 0), respectively. Submap construction is equivalent to a repeatedly scan-to-map
scan matching process because with the lidar frame pose xi, denoted as Ti in the local lidar
odometry frame, feature points extracted from a 3D lidar raw data can be transformed
into the submap frame and then inserted into an edge submap or surface submap, as
calculated by:

psubmap =

[
Ri ti
0 1

][
p
1

]
(2)

where p = (x, y, z) is a feature point, Ri is rotation matrix of Ti, ti is the translation vector
of Ti.

We regard scan matching as a nonlinear optimization problem that minimizes the
error of point cloud registration to find the optimal pose. Therefore, we need to find
several nearest edge points in the submap for current edge points and surface points in
the submap for current surface points. Similar to LOAM, we use a 3D KD-tree to speed
up the k-nearest neighbor search. With two kinds of extracted feature points, the distance
error calculated from the edge feature and surface feature is added to the optimization
problem, respectively.

The distance dE from point to line between current edge point pE , and its correspond-
ing edge points in the submap can be calculated by:

dE = |(TpE − pMap
E )× nMap

E | (3)

where pMap
E is the center point of the found nearest corresponding points in the edge

submap and nMap
E is the unit direction vector of the found nearest corresponding points in

the edge submap if they are verified to be in the same line.
The distance ds from point to plane between the current surface point ps and its

corresponding surface points in the submap can be calculated by:

ds = (Tps − pMap
s )·nMap

s (4)
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where pMap
s is the center point of the found nearest corresponding points in the surface

submap and nMap
s is the unit norm vector of the found nearest corresponding points in the

surface submap if they are verified to be in the same plane.
The transformation T consisting of a rotation and a translation that transforms current

feature points to edge submap, and the surface submap can be calculated by solving the
nonlinear optimization problem using the Gauss–Newton method to minimize:

T∗ = arg min
T

∑
pE εPE ,psεPs

(dE + ds) (5)

where PE and Ps are the sets of current feature points.
For Equation (5), we can obtain the optimal pose by solving the non-linear problem.

The Jacobian matrix of dE residual can be calculated by:

JE =
∂dE

∂(TpE )
∂TpE

∂T
∂TpE

∂T
=
[
−(TpE )∧ I

]
∂dE

∂(TpE )
= n⊥·(n

Map
E )∧·

[
−(TpE )∧ I

]
n⊥ =

(TpE − pMap
E )× nMap

E
dE

(6)

Furthermore, we can also calculate the Jacobian matrix of the dH residual by:

Js = nMap
s ·

[
−(Tps)∧ I

]
(7)

∧ in Equations (6) and (7) represents the cross-product matrix of the acted vector, and
I stands for the identity matrix.

When the non-linear optimization problem converges, the current pose is updated to
its optimal solution. At the same time, the feature points are transformed into the submap
frame by the updated pose and inserted into feature submaps, while the updated pose and
corresponding feature points are added to the pose graph, preparing for the loop-closure
detection running in the background. If a submap is inserted more than a certain number
of times, it will be marked as finished state, and a new submap will be created for the
following scan matching process. Significantly, the edge submap and surface submap will
always be updated at the same time.

2.2. Loop Closure and Pose Optimization

Concerning a SLAM problem, what we expect to do is to achieve high accuracy for a
few consecutive scans with no distinct drift on the global scene. In general, loop detection
is equivalent to global localization and pose recovery. After computing the loop-closure
detection constraints and adding them to the pose graph, we extend the famous Sparse Pose
Adjustment [30] to 3D poses to optimize the set of poses and constraints in the back-end of
our SLAM system.

While a scan from lidar is inserted into the submap at the front-end, which is also
called real-time lidar odometry, a scan matcher for finding the corresponding relative
pose between nodes and submaps stored in memory is run in the background to deter-
mine whether there is a loop closure. Our approach to loop-closure detection and pose
optimization are presented in this section.

2.2.1. Error Formulation

To construct the residual equation of the pose optimization problem, we use Xi and
Mi to represent the node and submap at the global coordinate system, while hij is used to
represent the constraints directly measured between node Xi and node Xj. At the same
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time, the offset between node Xi and node Xj is measured in Xi’s frame with precision
matrix Λij in denoted as zij. Moreover, the process of calculating zij meaning loop-closure
detection and constraint construction is discussed in Section 2.2.2. The constraint h(i, j))
between node Xi and Xj can be calculated by:

h(i, j) = T−1
Xi

TXj

=

[
R−1

i Rj R−1
i (tj − ti)

0 1

] (8)

where TXi is the pose of node Xi and TXj is the pose of node Xj.
With the constraint h(i, j), the error function at each loop closure and the total pose

optimization error of the system can be described as:

eij = zij − h(i, j)

E2 = ∑
ij

eT
ijΛijeij

(9)

2.2.2. Loop-Closure Detection and Constraint Construction

Scan matching is the most crucial part of loop-closure detection. In analogy to the
well-known algorithm Cartographer, loop-closure detection means matching scans and
submaps in a force iterative way, to ensure that the possible loop closure constraints are
not missed. One primary problem with this method is that a lot of computing resources
are wasted on invalid scan matching. In this section, we focus on solving this problem.
An overview of the constraint construction module is shown in Figure 2.

Figure 2. The system structure of constraint construction. (a,b) Two adjacent submaps, which
are contacted by adjacent submap constraints, equivalent to odometry constraints actually. (c) A
submap that triggers successful loop-closure detection on odometry, nodes of which can be matched
with (b). The loop-closure constraint is called inter submap constraint in this system. In addition,
inter submap constraint represents the transformation between the submap pose and node pose. The
odom constraint represents the constraint between adjacent nodes on the odometry.
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As described in Section 2.1.2, scan matching is solving nonlinear optimization prob-
lems; therefore, a successful and accurate scan matching relies heavily on the initial op-
timization value. In general, we can use the NDT [12] matching method to obtain the
initial value of a scan-matching optimization problem. High-precision lidar odometry can
provide a very good optimized initial value for loop detection. Therefore, if the node and
submap are too far apart on the odometry, we will consider that there is no loop closure
constraint between them. With high-precision odometry, we can obtain a more accurate
initial value by the following methods.

When we compute the possible constraints on node Xi and submap Mj, the node
closest to Xi in the submap Mj is found as the distance threshold to filter impossible
matches. As is shown in Figure 3, Tij is obtained by scan matching between Xi and the
nearest node in submap Mj, using the method of ICP. In this way, we obtain an accurate
initial value of nonlinear optimization by:

T0 = TMi ∗ Tij (10)

Figure 3. The process of solving node to submap constraints. When node j comes to a position not
too far from node i, we find the transformation from node i to node j using ICP brute force matching.

The distance-based initial value calculation will be performed on the new inferred
odometry after optimization. Then, the next process of scan matching is exactly the same
as that mentioned in Section 2.2.2.

2.2.3. Linear System

The optimal global node poses and submap poses are found by minimizing the total
error E2 in the least-squares Equation (9).

The Levenberg–Marquardt (LM) linear system is:

(H + λdiagH)∆x = JTΛe (11)

where λ is a small positive multiplier, and Λ, J and H are defined as:

Λ =

Λ11
. . .

Λmn


J =

∂e
∂x

H = JTΛJ

(12)
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We can also use the quaternion q to represent the same rotation as the rotation matrix
R. With this premise, the Jacobian matrix in Equation (11) can be calculated by:

∂et
ij

∂ti
≡ −RT

i

∂et
ij

∂tj
≡ RT

i

∂et
ij

∂qi
≡
[
RT

i (tj − ti)
]

X

∂et
ij

∂qj
≡ 0

∂eq
ij

∂qi
≡ −

[
0 I

][
qz ⊗ q∗j ⊗ qi

]
L

[
0
1
2 I

]
∂eq

ij

∂qj
≡ −

[
0 I

][
q∗z ⊗ q∗j ⊗ qi

]
L

[
0
1
2 I

]
(13)

where qz represents the rotation of loop closure constraint zij.
After linearizing the optimization problem, the extended Sparse Pose Adjustment

method is used to solve the special linear overdetermined equation where H is a large
sparse matrix. Then, we obtain a global optimal solution of node pose and submap pose
after loop closure detection.

3. Results

In order to evaluate the proposed method, we conducted a series of experiments on
our mobile platforms, an automated guided vehicle, in outdoor environment and public
datasets. The sensor module attached to our mobile consisted of a Velodyne-VLP16 lidar
and an LPMS-IG1 IMU. The platform and sensor module are shown in Figure 4. A real
scene dataset was collected from campus using the automated guided vehicle platform.
To compare the proposed method with other approaches, such as LOAM and FLOAM,
we evaluated the proposed method on the well-known public dataset KITTI [2]. All the
experiments, including the public dataset and the datasets collected by our vehicle, were
executed on a laptop with an Intel i7-6700HQ at 2.60 GHz, a computing platform with
relatively limited computational resources.

(a) (b)

Figure 4. The experiment platform. Our dataset is collected on automated guided vehicle (a) using
sensor component (b).

3.1. Experiment on Our Platform

The experiment was conducted to evaluate the performance of our algorithm when
applied to robots working in an outdoor environment. In this experiment, an autonomous
guided vehicle that was used to verify the performance of our proposed approach was
designed to navigate autonomously on a scene that was close to 180 m × 180 m on
the campus.
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The trajectory obtained using our approach and the final map conducted using our
approach are shown in Figures 5 and 6. In Figure 6, we show the motion path for collecting
the data and mark the direction of movement of our vehicle, starting from A and ending
at B. We also design the road segments A–C with loop closures so that the vehicle passes
by A–C twice. Combined with the trajectory and map conducted using our approach, we
achieve global consistency and a good mapping result. However, due to the poor reliability
of RTK in the environment of high buildings, we did not conduct an error evaluation on
the trajectory for the time being.

Intuitively, because the real path when we collect the dataset coincides at the loop
closure segment, segments A–C in Figure 6, the start-to-end translation error when the
vehicle comes to A for the second time can reflect the robustness of the proposed approach.
The experimental results show that the start-to-end error is less than 1.3 m when processing
more than 6000 frames of lidar data.

Figure 5. Trajectory results on our dataset. Trajectory (a) shows the comparison of the trajectory
with loop closure constraint and the trajectory without loop closure constraint of the road segment
designed with loop closure. Trajectory (b) shows the complete trajectory.

Figure 6. Mapping results on our own dataset using our proposed method. The capital letter A,B,C
are used to indicate the road segment information.

3.2. Experiment on the KITTI Dataset

KITTI equipped with cameras, lidar, IMU and GPS and is one of the most popular
public datasets to evaluate the performance of pose estimation and mapping approaches.
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To show the mapping performance of our proposed method, the point cloud maps com-
prising edge and surface feature points built on KITTI sequence 05 and sequence 08 are
presented in Figure 7.

The evaluation experiment is mainly conducted on KITTI dataset sequences 00, 05
and 07. The comparison between the trajectory obtained using our proposed method and
the groundtruth is shown in Figure 8.

We used the open-source Python package Evo developed for handling and comparing
the trajectory output of SLAM algorithms to evaluate our algorithm. As shown in the
error distribution figures in Figure 8, the conclusion that an unbiased estimation of the
positioning is achieved can be obtained. As of the addition of loop closure, we performed
better LOAM and FLOAM on teh global consistency from the overall trajectory.

Figure 7. Examples of our approach on the public dataset KITTI. (A,B) represent the mapping results
on sequence 05 and sequence 08, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 8. The experimental results on KITTI. The trajectory output of our proposed approach is
plotted as a red solid line, while the ground truth is plotted as a blue dashed line. (a) KITTI00
trajectory; (b) KITTI05 trajectory; (c) KITTI07 trajectory; (d) KITTI00 error distribution; (e) KITTI05
error distribution; and (f) KITTI07 error distribution.
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Then, we conducted a further error analysis and calculated the Absolute Pose Error,
defined as APE by Evo Python evaluating package, to evaluate the overall consistency of
the out trajectory and ground truth. The absolute pose errors on KITTI sequence 05 and
sequence 07 are shown in Figure 9. Figure 9 shows that we achieved global localization
with a pose estimation error of not more than 1.69 m and 0.702 m average error, indicating
that a low-drift global localization was obtained.

Our proposed SLAM system has a loop-closure-detection module, and thus we verified
the accuracy of loop-closure detection on KITTI dataset sequence 00.

(a) (b)

Figure 9. APE result on KITTI sequence 05 and sequence 07. (a) KITTI05 APE result and (b) KITTI07
APE result.

As shown in Figure 10, we ensured the global consistency of each loop closure node
through pose graph optimization. For example, we focused on the analysis of the road
section ABCD, where the vehicle passes twice when collecting data. Intuitively, the point
clouds collected by the vehicle passing the same road section twice had no distinct incon-
sistency on the map. This was precise because of the addition of loop-closure detection,
which is running in the background, and thus we realize the consistency of global trajectory,
which is also shown in Figure 8a.

Figure 10. Our mapping result on KITTI dataset sequence 00. (A–D) are some of the loop closures
found in our approach.

Moreover, in order to verify the real-time performance of our algorithm, we conducted
a comparative experiment with our algorithm and FLOAM [13] on the same KITTI dataset,
respectively, using a computing platform with not very high computing power, i7-6700HQ
mentioned above. Figure 11 shows that the two algorithms can realize real-time pose
estimation even using the computing platform with limited resources. On this same



Sensors 2022, 22, 4373 13 of 16

platform, we processed 13% faster than FLOAM, which is known for its real-time pose
estimation performance. We can conclude that our odometry updates at nearly 15 Hz,
faster than the lidar’s 10 Hz. This means that we take full advantage of the lidar data we
have collected.

Figure 11. The processing frequency for each pose estimation.

4. Discussion

The main goal of our work was to achieve real-time pose estimation on a computing
platform with limited resources while minimizing cumulative errors through loop-closure
detection and pose graph optimization. Generally, loop-closure detection is always compu-
tationally expensive; thus, a SLAM system with loop detection is often difficult to run in
real time. Lidar odometry and loop-closure detection are designed to be separated from
each other in our SLAM system to solve this problem.

In Section 3, we conducted experiments to verify the mapping performance of our
SLAM system. First, the mapping results shown in Figure 7 show excellent global consis-
tency, particularly when compared with the methods without loop-closure detection, such
as ALOAM. We also evaluated the absolute error on the x-, y- and z-coordinate, and we can
conclude that an unbiased estimation of the positioning in the XY direction was achieved,
although the pose estimation in the Z direction is not perfect. Tables 1 and 2 show the
comparison between our method and ALOAM.

The acronyms used in Tables 1 and 2 represent the average, maximum, median,
minimum, root mean squared error, standard deviation and sum of squares for the error of
the absolute pose error.

Table 1. The Absolute Pose Error comparison of our method, FLOAM and ALOAM on KITTI05.

Method Max (m) Mean (m) Median (m) Min (m) rmse (m) Std (m) sse (m2)

ours 1.691626 0.702092 0.627076 0.164140 0.763674 0.300443 1610.2112
FLOAM 9.587101 3.130297 2.464298 0.145527 3.636932 1.851625 36,520.51
ALOAM 19.899526 7.864927 5.898704 0.000000 9.239001 9.239001 192,911.666

Table 2. The Absolute Pose Error comparison of our method, FLOAM and ALOAM on KITTI07.

Method Max (m) Mean (m) Median (m) Min (m) rmse (m) Std (m) sse (m2)

ours 1.084569 0.546476 0.568619 0.080366 0.600000 0.247717 363.5997
FLOAM 1.207170 0.652669 0.640190 0.043527 0.674682 0.170935 501.1696
ALOAM 4.092609 1.652358 1.084602 0.000000 2.055867 1.223233 4437.916
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For KITTI sequence 05 with a total length of 2223 m, the average error using our
proposed method was only 0.7 m, and the maximum error was no more than 1.7 m. By com-
parison, since there is no loop-closure detection in ALOAM and FLOAM, the maximum
error using ALOAM accumulated to nearly 20 m, while the maximum error using FLOAM
accumulated to nearly 10 m. There is no doubt that for the high-precision mapping within
2 km, an error of nearly 20 m is unacceptable.

For the shorter sequence 07 with a total length of 695 m, the average error using our
proposed method was only 0.5 m, and the maximum error is 1.1 m, which performed
slightly better compared with FLOAM. However, even on the shorter KITTI07, the cumula-
tive error of ALOAM still reached 4 m.

Compared with ALOAM, an important reason for the improvement of the accuracy of
our method is loop-closure detection. Therefore, we conduct experiments on the running
time of the algorithm to verify the real-time performance of our SLAM system where
local lidar odometry and loop-closure detection were designed separated from each other.
The experimental results show that the real-time performance of our method was not
affected by loop-closure detection and was even faster than FLOAM, which is known for
its real-time performance, because of the use of feature submaps for local data association.

In the future, we will attempt to use hierarchical retrieval to accelerate the loop
detection process. Different kinds of sensors may be integrated into our framework to
further improve the robustness of the method.

5. Conclusions

In this paper, a real-time graph-based lidar SLAM system was proposed, which
ensured the high accuracy of the local pose estimation and the consistency of the global
trajectory. The feature submap-based scan-to-map matching reduced the computational
complexity of the data association. In this way, our algorithm can run in real-time even on
a device with limited computational resources. The local lidar odometry and loop-closure
detection are separated from each other so that the real-time performance of the pose
estimation is not affected by loop detection.

The loop detection module running in the background used the submap conducted in
the process of real-time pose estimation to describe the local environment and used the scan-
to-submap data association similar to the local data association. Therefore, the accuracy of
the global data association and the consistency of the global trajectory were guaranteed.
Finally, in order to verify the robustness of our method, experiments were conducted on
multiple sets of datasets. Experiments showed that, with the addition of the loop-closure-
detection module, our method achieved extremely good real-time performance, while the
global accuracy was better than other LOAM variants, such as ALOAM and FLOAM.
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