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Abstract 

Background:  MicroRNAs (miRNAs) have been confirmed to be inextricably linked to the emergence of human 
complex diseases. The identification of the disease-related miRNAs has gradually become a routine way to unveil the 
genetic mechanisms of examined disorders.

Methods:  In this study, a method BLNIMDA based on a weighted bi-level network was proposed for predicting 
hidden associations between miRNAs and diseases. For this purpose, the known associations between miRNAs and 
diseases as well as integrated similarities between miRNAs and diseases are mapped into a bi-level network. Based on 
the developed bi-level network, the miRNA-disease associations (MDAs) are defined as strong associations, potential 
associations and no associations. Then, each miRNA-disease pair (MDP) is assigned two information properties accord‑
ing to the bidirectional information distribution strategy, i.e., associations of miRNA towards disease and vice-versa. 
Finally, two affinity weights for each MDP obtained from the information properties and the association type are then 
averaged as the final association score of the MDP. Highlights of the BLNIMDA lie in the definition of MDA types, and 
the introduction of affinity weights evaluation from the bidirectional information distribution strategy and defined 
association types, which ensure the comprehensiveness and accuracy of the final prediction score of MDAs.

Results:  Five-fold cross-validation and leave-one-out cross-validation are used to evaluate the performance of the 
BLNIMDA. The results of the Area Under Curve show that the BLNIMDA has many advantages over the other seven 
selected computational methods. Furthermore, the case studies based on four common diseases and miRNAs prove 
that the BLNIMDA has good predictive performance.

Conclusions:  Therefore, the BLNIMDA is an effective method for predicting hidden MDAs.

Keywords:  miRNA similarity, Disease similarity, Association type, Bi-level network

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
MicroRNAs (MiRNAs) are a type of non-protein-coding 
ribonucleic acids with a length of approximately 22 nucle-
otides [1]. It modulates the biological activities of proteins 
by promoting and inhibiting the expression of respective 
genes, thereby being able to initiate the emergence of dis-
eases [2]. In recent years, miRNAs have been confirmed 

to be inextricably linked to the emergence of complex 
human diseases. For example, upregulation of miR-132 
can contribute to the development of AIDS disease via 
promoting the replication of human immunodeficiency 
virus 1 (HIV-1) [3, 4]. Therefore, the identification of the 
hidden miRNA-disease associations (MDAs) can con-
tribute to the better prevention and curation of diseases 
[5]. However, traditional “wet experiments” in biomedi-
cine are often time-consuming and labor-intensive, char-
acterizing by the lack of directionality to a certain extent 
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[6, 7]. Therefore, it is necessary and meaningful to predict 
MDAs through biological methods. So far, many biologi-
cal computation models for predicting MDAs have been 
developed [8–10], which can be divided into three main 
categories.

The first category of computational methods is repre-
sented by models constructed on the basis of score func-
tions. The assumption that functionally similar miRNAs 
are more likely to be linked with similar diseases was 
implemented in the computational method for infer-
ence of MDAs devised by Jiang et  al. [11]. This model 
firstly mapped the known MDAs, and the relationships 
between different miRNAs and diseases into a hetero-
geneous network to prove the correctness of the imple-
mented hypothesis. Then, a scoring system for predicting 
MDAs was designed based on the neighbors shared by 
miRNAs and the measurements of their shortest paths. 
Therefore, the final MDA score was determined by rank-
ing the disease-related miRNAs. In turns, Chen et al. [8] 
proposed a different model for predicting MDAs, called 
WBSMDA, which expanded the angle of miRNA and 
disease similarity calculation, innovatively employing the 
Gaussian interaction profile (GIP) kernel similarity net-
work. It not only described the relationship between dif-
ferent miRNAs and diseases from a new perspective, but 
also could be used for independent nodes without any 
known associations.

The second category of computational methods 
for predicting MDAs is represented by models con-
structed on the basis of complex networks. These mod-
els mapped matrices related to miRNA and disease into 
the networks to predict the score of MDAs. Among 
those models, Chen et al. [12] proposed the RWRMDA 
method based on the random walk with restart to pre-
dict MDAs. The highlight of the RWRMDA was that 
the random walk was applied to the miRNA functional 
similarity network to rank all disease-related miRNAs. 
However, the RWRMDA ignored prior information 
and local topological structures of isolated miRNA 
and disease nodes. To eliminate the above defect, 
Xuan et  al. [13] proposed a novel model based on the 
miRNA-related network constructed by integrating the 
available information on the MDAs and their local top-
ological structures. The resulted nodes can be assigned 
as marked and unmarked whose characteristics enable 
the establishment of the transition network, which was 
proportional to the similarity between all nodes. For 
the isolated diseases, the bilayer network of MDAs was 
then constructed and random walks were extended to 
it. You et  al. [9] constructed a multi-path heterogene-
ous network of MDAs (PBMDA), which integrated 
the known human MDAs, the miRNA-related similar-
ity, the disease-related similarity, and the GIP kernel 

similarity. PBMDA set the length between different 
nodes on this network and further adopted a depth-
first search algorithm to obtain the hidden MDAs 
information.

The third category of computational methods used 
for MDAs prediction is represented by models based 
on the machine learning algorithms. In this case, Chen 
et al. [14] proposed a matrix factorization model (IMC-
MDA), which solved the common problem of traditional 
methods, that is, the inability of isolated nodes to predict 
dependencies. The IMCMDA constructed features for 
miRNAs and diseases based on the information of the 
miRNA and disease similarity and selected robust fea-
tures through an alternate search algorithm. Finally, the 
IMCMDA predicted the MDAs score through a semi-
supervised model that did not rely on negative samples. 
In recent years, more and more deep learning-related 
models have been introduced into MDAs prediction. Ji 
et  al. [15] proposed a computational framework based 
on deep autoencoder (AEMDA). The innovation of the 
AEMDA was the development of a learning-based fea-
ture extraction method after constructing miRNA and 
disease feature representation. Furthermore, the deep 
autoencoder and the reconstruction error method were 
introduced to predict MDAs. Tang et al. [16] developed 
a model (MMGCN) based on a multi-view multichan-
nel attention graph convolutional network (GCN). The 
MMGCN employed the GCN to obtain features of miR-
NAs and diseases from multiple angles, and a multi-
channel attention mechanism was used to adaptively 
select the important features. The final embeddings were 
constructed by a Convolutional Neural Networks syn-
thesizer. The final association prediction was equated to 
the recommendation task, and a matrix completion was 
applied to predict hidden MDAs. For predicting MDAs 
from a comprehensive and novel perspective, Chu et al. 
[17] developed an original model (MDA-DCNFTG) 
based on the GCN, which treated MDAs prediction as a 
node classification task. The highlight of the MDA-GCN-
FTG was that it used graph sampling to predict MDAs 
from the perspective of feature and topological graphs 
based on Graph Convolutional Networks (GCNs). In 
addition, MDA-GCNFTG could predict not only new 
MDAs but also hidden association between diseases 
without known related miRNAs and miRNAs without 
known related diseases. Dai et al. [18] proposed a model 
for identifying potential MDAs based on the cascade 
forest model (MDA-CF), which integrated multi-source 
information to comprehensively characterize miRNAs 
and diseases, and used autoencoders for dimensionality 
reduction to obtain the optimal feature space and ranked 
it. A joint forest model was used in the prediction of 
potential MDAs.
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In this study, we developed an MDAs prediction 
method based on a weighted bi-level network, named 
BLNIMDA. Specifically, a bi-level network is constructed 
based on the known MDAs as well as integrated similari-
ties between miRNAs and diseases. In this constructed 
network, MDAs are defined into three categories, includ-
ing strong associations, potential associations, and no 
associations. Then, each miRNA-disease pair (MDP) is 
assigned two information properties according to the 
bidirectional information distribution strategy. Finally, 
the association score of every MDP is obtained by aver-
aging two affinity weights, which are derived from their 
information properties and association type. The Area 
Under Curve (AUC) values of five-fold cross-validation 
(FFCV) and leave-one-out cross-validation (LOOCV) 
are 0.9145 and 0.9176, respectively, which show that the 
BLNIMDA outperforms the other seven selected com-
putational methods. Furthermore, the case studies based 
on four common diseases and miRNAs prove that the 
BLNIMDA has a good predictive performance. Thus, 
BLNIMDA can be used as a powerful tool to predict 
potential MDAs.

Materials and methods
Human MDAs
The data of MDAs are obtained from the HMDD v2.0 
[19], which contains 5430 experimentally verified MDAs 
between 495 miRNAs and 383 diseases. To make bet-
ter use of these information, we construct it as a matrix 
A ∈ Rnm×nd , where nd and nm represent the number of 
diseases and miRNAs, respectively. In addition, if dis-
ease g and miRNA h are confirmed to have an association, 
then A g , h  will be 1, otherwise 0.

MiRNA function similarity
Wang et al. [20] developed a method for calculating the 
functional similarity of miRNAs, which was based on 
the assumption that similar miRNAs are more likely to 
be associated with similar diseases. The similarity score 
information of all miRNAs was obtained from http://​
www.​cuilab.​cn/​files/​images/​cuilab/​misim.​zip. In this 
study, a nm ∗ nm matrix MFS was constructed to indi-
cate that miRNA similarity and the function similar-
ity between miRNA g and miRNA h can be expressed as 
MFS

(

g , h
)

.

Disease semantic similarity frame I
Disease semantic similarity is calculated from the hierar-
chical directed acyclic graph (DAG) of each disease [20]. 
The MeSH database (http://​www.​nlm.​nih.​gov/) contains 
the DAG information of all diseases. The semantic simi-
larity scores between different diseases can be calculated 
by the relationship between their DAGs [19, 20]. Fig. 1 (a) 

shows the DAGs of brain neoplasms and liver neoplasms, 
where each node represents a specific disease MeSH 
descriptor. The DAG for the disease Z can be denoted as 
DAGZ(NZ ,EZ) , where NZ represents the node set, which 
includes the MeSH descriptor for disease Z and its ances-
tor nodes, and EZ denotes the layer set, which includes 
all edges connecting the parent node to the child node 
DAGZ . We assumed that l is a MeSH descriptor node in 
DAGZ , and its semantic contribution value in DAGZ is as 
follows:

where l′ is the child node of l and � is used to indicate the 
semantic contribution decay, which is set to 0.5 accord-
ing to previous literature [14] The semantic contribution 
of disease Z is defined as formula (2).

It can be found that the more shared MeSH descriptor 
nodes in the DAG of the two diseases, the more similar 
the two diseases are. Therefore, the formula for calculat-
ing the semantic similarity score of disease dg and dh is as 
follows:

According to Eq. (3), c denotes shared ancestral MeSH 
descriptor nodes by disease dg and dh . The computational 
process of semantic similarity based on frame I for brain 
neoplasms and liver neoplasms is shown in Fig. 1 (b).

Disease semantic similarity frame II
To differentiate the semantic contribution values of dif-
ferent diseases, which appear in the same layer of the 
same disease DAG, another calculation frame [21] was 
proposed. In this case the formula for calculating the 
semantic contribution value of disease l is as follows:

where Nl represents the number of disease DAGs con-
tained the MeSH descriptor of disease l and N  denotes 
the number of all diseases in the MeSH database, i.e., 
Nl/N  is the probability that the MeSH descriptor of 
disease l is present in all DAGs in the MeSH database. 
Based on frame II, the formula for calculating the seman-
tic similarity score of disease dg and dh is as follows:

(1)
{

DS1Z(l) = 1if l = Z
DS1Z(l) = max

{

� ∗ DS1
(

l′
)}

if l �= Z

(2)DV 1(Z) =
∑

l∈NZ

DS1(l)

(3)

SD1
(

dg , dh
)

=

∑

c∈Ndg ∩Ndh

(

DS1dg (c)+ DS1dh(c)
)

DV 1
(

dg
)

+ DV 1(dh)

(4)DS2Z(l) = − log

(

Nl

N

)

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.nlm.nih.gov/
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where

Finally, the similarity of different diseases at the 
semantic level is obtained by averaging the above two 
frames, which is shown as follows:

(5)

SD2
(

dg , dh
)

=

∑

c∈Ndg ∩Ndh

(

DS2dg (c)+ DS2dh(c)
)

DV 2
(

dg
)

+ DV 2(dh)

(6)DV 2(Z) =
∑

l∈NZ

DS2(l)

GIP kernel similarity
The GIP kernel [22] similarity aimed to measure the 
biological entities similarity based on their interaction 
profile information. GIP kernel similarity has been 
successfully introduced to the calculation of non-cod-
ing RNA and disease similarity [23]. In the adjacency 
matrix A , the g  row denotes the correlation vector 

(7)DS
(

dg , dh
)

=
SD1

(

dg , dh
)

+ SD2
(

dg , dh
)

2

Fig. 1  The computational process of the semantic similarity between Brain neoplasms and Liver neoplasms by Disease semantic similarity frame I 
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between miRNA g  and 383 diseases, and the h column 
indicates the correlation vector between disease h and 
495 miRNAs. We used IP

(

mg

)

 and IP(dh) to represent 
them respectively. The formula for calculating the GIP 
kernel similarity of miRNAs and diseases is as follows:

where

The original bandwidth β∗
d and β∗

m is set to 1.0 [24, 
25].

Integrating similarity
Whether miRNA functional similarity, disease seman-
tic similarity or GIP kernel similarity, they only provide 
a single aspect of similarity. Therefore, it is essential to 
integrate the above similarity information to obtain a 
more accurate and comprehensive disease or miRNA 
similarity. For example, if miRNA mg and miRNA mh 
have functional similarity, they will be retained, other-
wise it will be equal to KM

(

mg ,mh

)

 . Disease similarity 
is integrated using the same way. Therefore, the inte-
gration method is showed as follows:

An example of data processing, including the cal-
culation of GIP kernel similarity and the process of 
integrating similarity, is shown in Figure S1 in the sup-
plementary file.

(8)KD
(

dg , dh
)

= exp
(

−βd ||IP
(

dg
)

− IP(dh)||
2
)

(9)
KM

(

mg ,mh

)

= exp
(

−βm||IP
(

mg

)

− IP(mh)||
2
)

(10)βd = β∗
d/









n
�

h=1

||IP(dh)||
2

nd









(11)βm = β∗
m/











m
�

g=1

||IP
�

mg

�

||2

nm











(12)FMS
�
mg ,mh

�
=

⎧
⎪⎨⎪⎩

MS
�
mg ,mh

�
, mg and mh have functional similarity

KM
�
mg ,mh

�
, otherwise

(13)FDS
(
dg , dh

)
=

{
DS

(
dg , dh

)
, dg and dh has semantic similarity

KD
(
dg , dh

)
, otherwise

BLNIMDA
On the basis of the hypothesis that functionally similar 
miRNAs are more likely to be linked with similar dis-
eases, we proposed a method named BLNIMDA that 
combines the above-processed data, including integrated 
miRNA similarity, integrated disease similarity and 
MDAs and these data are mapped into a bi-level weighted 
network. The BLNIMDA predicts the MDAs based on 
this network and Fig. 2 provides a detailed visualization 
of the BLNIMDA flow. Accordingly, the BLNIMDA inte-
grates four main computational steps, including: (i) The 
determination of the miRNA function similarity, the dis-
ease semantic similarity and GIP kernel similarities; (ii) 
The integration of the estimated similarities and mapping 
MDAs into a bi-level weighted network; (iii) The genera-
tion of two side information properties for each MDAs 
through bidirectional information construction and 
assignment of all MDAs into three categories, namely 
strong associations, potential associations, and no associ-
ations. (iv) The estimation of two affinity weights for each 
MDP through bidirectional information construction 
strategy and its association type, and then averaged as the 
final MDAs score. Considering the direction of miRNAs 
to diseases as an example, the information properties of 
each MDP is defined as formula (14):

where

Considering that the weak similarity nodes of mg may 
affect the accuracy of prediction results, we set the parame-
ter T  to remove weak similar nodes. The MDAs are defined 
into three types: (i) mg and dh have strong association when 
they display unequivocal reciprocal association; (ii) mg 
and dh have potential association when they do not display 
direct association but the most similar node ms to mg has 
an unequivocal association with dh . (iii) otherwise, there 
is not any potential association. Three types of MDAs are 
shown in the formula (16).

(14)S1
(

mg , dh
)

=

n
∑

k=1

HM
(

mg ,mk

)

A(mk , dh)

n
∑

k=1

FMS
(

mg ,mk

)

A(mk , dh)

(15)

HM
(

mg ,mk

)

=

{

FMS
(

mg ,mk

)

FMS
(

mg ,mk

)

≥ T
0 otherwise

(16)

Wr

�
mg , dh

�
=

⎧
⎪⎨⎪⎩

exp
�
FMS

�
mg ,ms

��
A
�
mg , dh

�
= 0 and A

�
ms , dh

�
≠ 0

exp
�
A
�
mg , dh

��
A
�
mg , dh

�
≠ 0

0 otherwise
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where ms is the miRNA with the greatest similarity to mg . 
From miRNA to disease, the affinity weight of each MDP 
are defined through a bidirectional information construction 
strategy and its association type according to formula (17):

From disease to miRNA direction, the information prop-
erty of each MDP is the same as the above steps, and the 
details are as follows:

where

The three types of miRNA-disease association are as 
follows:

(17)Sd = S1 ∗Wr

(18)S2
�
dh ,mg

�
=

n∑
k=1

HD
�
dh , dk

�
A
�
dk ,mg

�

n∑
k=1

FDS
�
dh, dk

�
A
�
dk ,mg

�

(19)HD(dh, dk) =

{

FDS(dh, dk) FDS(dh, dk) ≥ T
0 otherwise

(20)

Wd

�
dh ,mg

�
=

⎧
⎪⎨⎪⎩

exp
�
FDS

�
dh , ds

��
A
�
dh ,mg

�
= 0 and A

�
ds ,mg

�
≠ 0

exp
�
A
�
dh ,mg

��
A
�
dh ,mg

�
≠ 0

0 otherwise

In the same way, from disease to miRNA, the affinity 
weight of each MDP are determined through information 
property and the MDA type. The specific definition is as 
follows:

According to formulas (14)- (21), two affinity weights 
for each MDP are determined, and then averaged them 
as the final MDAs score following the formula (22):

A BLNIMDA calculation example, including the gener-
ation of two side information properties, the calculation 
of two affinity weights for each MDP and the MDA score, 
is shown in Figure S2 in the supplementary file.

Results
Performance evaluation
To validate the prediction performance of the BLNIMDA, 
we employed cross-validation, which is considered as a 
reasonably comprehensive measure. In this study, FFCV 
and LOOCV were used to verify the performance of 
the BLNIMDA. For the FFCV, all MDAs were randomly 

(21)Sr = S2 ∗Wd

(22)Sf =
Sd + Sr

2

Fig. 2  The flow chart of BLNIMDA
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divided into five groups, and each group was chosen as 
the test sample set in turns. The remaining groups were 
used as the training sample sets. For LOOCV, each exper-
imentally verified MDP was regarded in turn as the test 
samples where the rest of them were used as the train-
ing sample sets. The AUC and ROC were used to visual-
ize the accuracy of the BLNIMDA in MDAs prediction. 
Specifically, the values closer to 1 indicated better perfor-
mance of the BLNIMDA, on the contrary, the lower val-
ues of AUC revealed the worse prediction performance. 
By setting different thresholds, the ratio of samples above 
the threshold to other samples in all positive samples was 
taken as sensitivity (TPR), and the ratio of samples below 
the threshold to other samples in all negative samples 
was taken as 1-specificity (FPR). ROC curves were plot-
ted by TPR and FPR under different thresholds.

Effects of parameters
In the bidirectional information construction strategy, 
there are some noise nodes in the miRNA or disease sim-
ilarity network, which may affect the performance of the 
BLNIMDA. In view of this situation, we set the param-
eter T  and adjusted the threshold of T  to reduce the influ-
ence of such nodes, so as to obtain the optimal prediction 
results. After several experiments, the comparison of the 
average AUC values after 100 times FFCV when T  sets 
different thresholds is shown in Fig. 3. It can be seen that 
the performance of the BLNIMDA is the best when T  is 
set to 0.02.

Performance comparison
In order to show the superiority of the BLNIMDA, we 
compared seven models [8, 10, 12, 14, 24, 26, 27] for 

predicting the MDAs. These seven models have their 
characteristics. The WBSMDA and the HDMP are basic 
models in the research field of predicting MDAs, and the 
RWRMDA is a restart random walk model, the GRMDA 
is a graph regression method, the RLSMDA is a model 
based on machine learning methods, the IMCMDA is a 
model completed by inductive matrix, and the BNPMDA 
is a high-level paper proposed in recent years. All mod-
els selected for comparative analysis, including the 
BLNIMDA, used the same network to evaluate the per-
formance through FFCV and LOOCV. The ROC curves 
of the LOOCV are shown in Fig. 4. It can be clearly found 
that the AUC values of WBSMDA, HDMP, RWRMDA, 
GRMDA, RLSMDA, IMCMDA, and BNPMDA models 
are 0.8030, 0.8366, 0.6850, 0.8272, 0.8426, 0.8000, 0.9028, 
respectively. The AUC value of the BLNIMDA is 0.9176, 
which is higher than the other seven models. The results 
of the FFCV are shown in Fig. 5. The AUC value of the 
BLNIMDA model is 0.9145, while the AUC values of 
WBSMDA, HDMP, RLSMDA, BNPMDA, RWRMDA, 
GRMDA and IMCMDA models are 0.8185, 0.8342, 
0.8569, 0.8980, 0.6830, 0.7976 and 0.7978, respectively. 
All seven models are lower than the BLNIMDA. Com-
pared with the classical graph algorithm, our BLNIMDA 
model introduces affinity weights evaluation and the 
bidirectional information distribution strategy. In par-
ticular, it calculates the association score of miRNA and 
disease pair through the affinity weights evaluation from 
the bidirectional information distribution strategy and 
the introduced association types.

In addition, an independent dataset was used as the 
test set to better verify the prediction performance of 
BLNIMDA. Considering that BLNIMDA uses HMDD 

Fig. 3  AUC values of BLNIMDA depending on the different T  parameter values
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v2.0 as its training set, the MDAs in the new version of 
the HMDD database (HMDD v3.2) not included in the 
training dataset were used as a test sample. The AUCs 
of BLNIMDA and the other seven methods are shown 
in Table 1, from which it can be seen that the prediction 
performance of BLNIMDA in the independent test set is 
better than other comparison methods.

Case studies
To verify the accuracy of the BLNIMDA, we employ it 
to predict the association between miRNAs and four 
important diseases, including lung neoplasms, breast 
neoplasms, gastric neoplasms, and colon neoplasms.

Colon neoplasms is one of the most common malig-
nant neoplasms that seriously threaten human health, 

Fig. 4  ROC curves and AUC values of compared methods in terms of LOOCV

Fig. 5  AUC values of compared computational methods for MDAs detection in terms of FFCV
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and its mortality rate ranks third in the world [25]. 
According to available statistics, the number of new cases 
of colon neoplasms worldwide in 2008 reached 1 million, 
half of which led to death [28]. In recent years, the num-
ber of new cases of colon neoplasms in China has been 
on the rise, which can be attributed to the improvement 
of their diagnosis effectiveness by the advancement of 
endoscopy and the higher frequency of their emergence 
caused by changes in dietary patterns. Therefore, colon 
cancer has become one of the most common malignant 
tumors, which seriously threatens human health [29, 30]. 
Lungcancer is another most common malignant tumors 
in the world. According to incomplete statistics, about 
200,000 people are diagnosed with lung cancer every year 
[31]. Generally speaking, patients with lung cancer have 
no typical clinical manifestations in the early stage, and 
have already been in the advanced stage at the time of 
diagnosis, with a poor prognosis and the 5-year survival 
rate of less than 15% [32]. If lung cancer can be detected 
early and intervened, the survival rate of patients can be 
significantly increased [33]. Therefore, it is of great signif-
icance to find an effective early diagnostic marker. Breast 
neoplasm is another one of the most frequent malig-
nancies and occurs in breast epithelial tissue in women 
[34]. Approximately 1.2 million women around the world 
are diagnosed each year. Gastric cancer is a particularly 
intractable malignant tumor with the fifth highest inci-
dence and the third highest mortality in the world highly 
recurrent malignant tumors, after lung cancer and colo-
rectal [35]. Gastric cancer is difficult to detect in the 
early stage and has no obvious characteristics, so many 
patients are diagnosed in advanced stage and the mortal-
ity rate is extremely high [35]. After scoring and ranking 
the MDAs by the BLNIMDA, all known miRNAs related 
to these four diseases were removed, and the remaining 
information was queried and verified in the HMDDv3.2 
[36], the miRCancer [37] database and related literature. 
According to the results shown in Table 2, it can be seen 
that the 20 MDPs predicted by the BLNIMDA are all 
confirmed from other databases.

At the same time, we randomly selected four miR-
NAs and screened the top five diseases with their asso-
ciation scores. The predicted MDAs were verified in 
HMDDv3.2 and miRCancer databases, and almost all 
of them were confirmed by available evidence data and 
shown in Table 3. Furthermore, causality information for 
the top five associations was verified by HMDD v3.2 and 
attached to Tables 2 and 3.

Discussion
Many miRNAs have been confirmed to have links 
with the occurrence of human diseases. Discover-
ing the potential MDAs is of great significance for 

Table 1  AUC values of compared computational methods for 
MDAs detection in independent test set

Method AUC​

WBSMDA 0.7932

HDMP 0.8035

RLSMDA 0.8326

BNPMDA 0.8869

RWRMDA 0.6324

GRMDA 0.7574

IMCMDA 0.7658

BLNIMDA 0.9032

Table 2  The top five miRNAs identified by BLNIMDA to be 
associated with four important diseases

Disease Rank miRNA Evidence Causality

Lung Neoplasms 1 hsa-mir-21 miRCancer; 
HMDDv3.2

YES

2 hsa-mir-155 miRCancer; 
HMDDv3.2

YES

3 hsa-mir-146a miRCancer; 
HMDDv3.2

NO

4 hsa-mir-17 miRCancer; 
HMDDv3.2

YES

5 hsa-mir-34a miRCancer; 
HMDDv3.2

YES

Breast Neoplasms 1 hsa-mir-21 miRCancer; 
HMDDv3.2

YES

2 hsa-mir-155 miRCancer; 
HMDDv3.2

YES

3 hsa-mir-17 miRCancer; 
HMDDv3.2

YES

4 hsa-mir-146a miRCancer; 
HMDDv3.2

YES

5 hsa-mir-34a miRCancer; 
HMDDv3.2

YES

Gastric Neoplasms 1 hsa-mir-148a miRCancer; 
HMDDv3.2

YES

2 hsa-mir-23a miRCancer; 
HMDDv3.2

YES

3 hsa-mir-370 miRCancer; 
HMDDv3.2

YES

4 hsa-mir-429 miRCancer; 
HMDDv3.2

YES

5 hsa-mir-21 miRCancer; 
HMDDv3.2

YES

Colon Neoplasms 1 hsa-mir-145 miRCancer; 
HMDDv3.2

YES

2 hsa-mir-17 HMDDv3.2 YES

3 hsa-mir-21 miRCancer; 
HMDDv3.2

YES

4 hsa-mir-126 miRCancer; 
HMDDv3.2

YES

5 hsa-mir-155 miRCancer; 
HMDDv3.2

YES
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understanding the pathogenesis of diseases. Traditional 
methods for finding MDAs have some disadvantages 
such as low efficiency and difficult operation. Therefore, 
many computational models have been proposed, which 
are mainly divided into three categories, namely score 
function-based, complex network-based and machine 
learning-based. In this study, firstly, we proposed a com-
putational method BLNIMDA based on a weighted bi-
level network to predict the hidden MDAs. Specifically, 
the bi-level network is constructed based on the known 
MDAs as well as integrated similarities between miRNAs 
and diseases, in which nodes denote miRNAs and dis-
eases. In this developed bi-level network, the MDAs are 
defined as strong associations, potential associations and 
no association according to the relationship between the 
miRNAs and diseases. Then, each MDP is assigned two 
information properties based on the bidirectional infor-
mation distribution strategy. Finally, two affinity weights 
for each MDP are obtained from the information prop-
erties and the association type and then averaged as the 
final association score of every MDP. In experiments, 
FFCV and LOOCV are used to evaluate the perfor-
mance of the BLNIMDA, and the AUC values of them 
are 0.9145 and 0.9176, respectively, which show that the 
BLNIMDA have advantages over the other seven com-
putational methods. Furthermore, the case studies based 
on four common diseases and miRNAs prove that the 
BLNIMDA has good predictive performance. Therefore, 

BLNIMDA is an effective method for predicting hidden 
MDAs.

The main contributions of the BLNIMDA are the abil-
ity for determining MDA type, and the introduction of 
two affinity weights in accordance to the bidirectional 
information distribution strategy and defined associa-
tion types, which ensures the comprehensiveness and 
accuracy of the final prediction score for each MDP. 
However, BLNIMDA still has certain defects. First of 
all, the dependence on known information has not been 
completely eliminated. In addition, for the information 
between miRNAs and diseases, multiple dimensions 
similarity could be considered to improve prediction 
performance. Furthermore, BLNIMDA is essentially 
a traditional network method, which still needs to be 
improved through algorithms based on deep learning.

In the future, we will consider in-depth researches for 
MDAs, such as the regulatory role of miRNAs in spe-
cific diseases and the multiple type MDAs instead of 
taking them as binary, which have important implica-
tions for the treatment of complex human diseases.

Conclusion
In this study, a method BLNIMDA based on a weighted 
bi-level network was proposed for predicting the hid-
den associations between miRNAs and diseases. High-
lights of the BLNIMDA lie in the definition of MDA 

Table 3  The top five diseases identified by BLNIMDA to be associated with four major miRNAs

MiRNA Rank Disease Evidence Causality

hsa-mir-125a 1 Carcinoma HMDDv3.2 YES

2 Breast Neoplasms miRCancer; HMDDv3.2 YES

3 Lung Neoplasms miRCancer; HMDDv3.2 YES

4 Stomach Neoplasms HMDDv3.2 NO

5 Ovarian Neoplasms miRCancer; HMDDv3.2 YES

hsa-mir-15a 1 Carcinoma, Hepatocellular HMDDv3.2 YES

2 Breast Neoplasms miRCancer; HMDDv3.2 YES

3 Melanoma miRCancer; HMDDv3.2 YES

4 Lung Neoplasms HMDDv3.2 YES

5 Colorectal Neoplasms miRCancer; HMDDv3.2 NO

hsa-mir-150 1 Carcinoma, Hepatocellular HMDDv3.2 YES

2 Colorectal Neoplasms HMDDv3.2 YES

3 Lung Neoplasms HMDDv3.2 YES

4 Stomach Neoplasms HMDDv3.2 NO

5 Breast Neoplasms HMDDv3.2 YES

hsa-mir-137 1 Lung Neoplasms HMDDv3.2 YES

2 Breast Neoplasms HMDDv3.2 YES

3 Carcinoma, Hepatocellular miRCancer; HMDDv3.2 YES

4 Stomach Neoplasms miRCancer; HMDDv3.2 NO

5 Melanoma miRCancer; HMDDv3.2 YES
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types, and the introduction of two affinity weights by 
the bidirectional information distribution strategy. 
FFCV, LOOCV and case studies based on four com-
mon diseases and miRNAs are used to evaluate the per-
formance of the BLNIMDA. The experimental results 
show that BLNIMDA has achieved excellent prediction 
performance. However, the BLNIMDA still has room 
for improvement, such as integrating more comprehen-
sive data on the miRNA and disease similarities.
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