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Objective: To search for significant biomarkers associated with sudden death

(SD).

Methods: Differential genes were screened by comparing the whole blood

samples from 15 cases of accidental death (AD) and 88 cases of SD. The

protein-protein interaction (PPI) network selects core genes that interact

most frequently. Machine learning is applied to find characteristic genes

related to SD. The CIBERSORT method was used to explore the immune-

microenvironment changes.

Results: A total of 10 core genes (MYL1, TNNC2, TNNT3, TCAP, TNNC1,

TPM2, MYL2, TNNI1, ACTA1, CKM) were obtained and they were mainly

related to myocarditis, hypertrophic myocarditis and dilated cardiomyopathy

(DCM). Characteristic genes of MYL2 and TNNT3 associated with SD were

established by machine learning. There was no significant change in the

immune-microenvironment before and after SD.

Conclusion: Detecting characteristic genes is helpful to identify patients at

high risk of SD and speculate the cause of death.
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sudden death,machine learning,molecular autopsy, characteristic genes, biomarkers

Introduction

Sudden death (SD) is the sudden, non-violent death of a healthy or seemingly
healthy person caused by an outbreak of disease or an underlying disease in the
body. Those who died within 24 h after the onset of symptoms is called SD. It is
common in young or middle-aged adults, which imposes a significant burden on
families and society.

The diagnosis of the cause of SD is usually based on autopsy (1). Even with
the development of forensic science, there is still a considerable reasons of SD that
cannot be inferred (2). With the deepening of research, it is found that genetic
factors play a crucial role in SD (3). It is estimated that up 35% of sudden
unexplained death cases are associated with genetic variants in cardiac channels (4).
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With the development of gene sequencing technology,
molecular autopsy is gradually used for forensic identification.
This method is especially suitable for SD of unknown causes (5,
6). However, molecular autopsy is still in its infancy, with only
preliminary testing in patients with a genetic family history (7).
There is still a lack of research on specific genes related to SD.

The Genotype-Tissue Expression (GTEx) database holds
data of normal tissue DNA and RNA sequencing (RNA-seq)
from donors (8). Now 54 tissues from 948 donors have been
preserved, including 17,382 samples. Donor death time in the
database were divided into instantaneous death (0 h), short-term
death (0–1 h), moderate death (1–24 h) and slow death (> 24 h).
This provides a good source of data source for the study of the
causes of SD. It can assist forensic medicine to find characteristic
genes related to SD.

Machine learning is a collection of data-analytical
techniques aimed at building predictive models from multi-
dimensional datasets (9). Machine learning outperforms
traditional statistical algorithms when faced with complicated
problems involving a large number of noisy and heterogeneous
predictor (10). It is becoming an integral part of modern data
mining and clinical diagnosis (11).

In this study, we searched for the characteristic genes of
SD by machine learning based on the GTEx database. These
biomarkers can be used to screen patients at high risk of SD. And
also characteristic genes provide potential advice for taking early
measures in high-risk patients. In addition, theoretical support
for molecular autopsy can also be verified.

Materials and methods

Datasets

Donor RNA-seq was downloaded from the GTEx
(RRID:SCR_013042) and all sequencing results were normalized
by FPKM. The relevant clinical information of the donors can
be downloaded from the GTEx official website.1 The GTEx
emphasizes that the database is free and open to the society,
but the official website information needs to be marked in the
paper. Database use does not require institutional review board
approval and informed consent.

Differential gene screening and
protein-protein interaction network
analysis

The Wilcox test in the “limma” package was used to screen
significantly differentially expressed genes between AD and SD

1 www.gtexportal.org/

in GTEx cohort. We took | LogFC| > 1, false discovery rate
(FDR) < 0.05 as the threshold point for differential genes.
Simultaneously, volcano plots and heatmaps of differential
genes were figured out. There is a close relationship between
the biological functions of gene/protein clusters (12). Therefore,
proteins usually cooperate to perform biological functions. The
protein-protein interaction (PPI) network helps to differentiate
the core genes in SD according to the frequency of interaction.
PPI analysis was performed on the STRING database2 with a
confidence index of 0.7. The more the interaction relationship,
the more important role the gene plays in the process of
SD. The connectivity table was drawn in R language, and
connectivity ≥ 5 is defined as core genes.

Biological role and disease analysis

Function, pathway enrichment and disease analysis of core
genes based on “clusterProfiler,” “enrichplot,” “org.Hs.eg.db,”
“ggplot2,” “GSEABase” and “DOSE” packages were performed
in R language. The biological significance of core genes was
analyzed by Gene Ontology (GO) functional enrichment,
including Biological Process (BP), Cellular Components (CC),
and Molecular Function (MF). Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis was used to explore
the pathways of core genes. Disease Ontology (DO) enrichment
analysis was applied to discover major diseases led by core
genes. P < 0.05 and corrected P < 0.05 were considered
to be statistically significant in all the analysis process. The
visualization of GO, KEGG, and DO could be achieved by the
R package “GOplot.”

2 https://www.string-db.org/

TABLE 1 Summary of clinical information for donors.

Characteristic Accidental death
(N = 15)

Sudden death
(N = 86)

Age

<30 5 3

≥30 10 83

Gender

Male 11 66

Female 4 20

Death circumstances

D1 15 0

D2 0 69

D3 0 17

D4 0 0

Death circumstances: D1, Violent and fast death; D2, Fast death of natural causes; D3,
Intermediate death; D4, Slow death.
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FIGURE 1

Differential expression and core gene screening. (A) Volcano plot of all genes. (Red dots represent up-regulated genes and green dots represent
down-regulated genes). (B) Heatmap of differential genes in AD and SD groups. (Rows represent 47 differential genes and columns represent
samples). (C) PPI network of differential genes. (Nodes represent hub genes. Lines represent interactions between hub genes). (D) Bar graph of
all hub genes in the PPI network. (The x-axis represents channel counts. The y-axis represents hub genes). AD, Accidental death; SD, Sudden
death.

Machine learning

In order to reduce errors, we used two different machine
learning algorithms to seek for potential characteristic genes.
The Least Absolute Shrinkage and Selection operator (LASSO)
is a machine learning based regression analysis algorithm that
uses regularization to remove highly correlated genes, which can
avoid overfitting.

Support vector machine recursive feature elimination
(SVM-RFE) is a machine learning algorithm based on
classification and regression. Gene redundancy can be
automatically eliminated and a better, more compact subset
of genes can be generated. We use the R packages of “glmnet”
and “e1071” to implement machine learning algorithms for
LASSO and SVM-RFE. Finally, characteristic genes are obtained
by intersection.

Analysis of clinical value of
characteristic genes

To test the diagnostic value of the characteristic genes, we
compared the expression of characteristic genes in AD and SD
groups in R language software. Moreover, receiver operating
characteristic (ROC) curves were drawn to analyze the validity
of the characteristic genes.

Analysis of the expression of
characteristic genes in human tissues

Human anatomy were drawn in R software based on
“gganatogram,” “dplyr,” “viridis,” and “gridExtra.” The R package
of “gganatogram” can draw modular anatomical maps and
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FIGURE 2

Function, pathway, and disease enrichment analysis of core genes. (A) Bubble plot of GO function enrichment for core genes. (BP, Biological
Process; CC, Cellular Components; MF, Molecular Function). (B) Circle plot of GO functional enrichment. (C) Bubble map of KEGG pathway
enrichment for core genes. (D) Circle plot of KEGG enrichment analysis. (E) Bubble plot of DO enrichment for core genes. (F) Circle plot of DO
enrichment analysis. The size of bubbles in the bubble plot represents the number of core genes in the corresponding pathway. The color of
the bubbles represents the adjusted p-value. The circle plot illustrates certain core genes corresponding to the GO/KEGG terminology or
disease. LogFC represents the expression level of gene.

quantify the expression of characteristic genes in various tissues
in human body. The Human Protein Atlas (HPA) database3

was used to validate the protein expression level of the
target SD genes.

Analysis of immune-microenvironment

We used the CIBERSORT (RRID:SCR_016955) algorithm
to assess the relative proportions of immune cell infiltration in
different populations. And the abundance of 22 immune cells
can be quantified via this method. The R package of “corrplot”

3 https://www.proteinatlas.org/

visualizes 22 types of immune cells. And the R package of
“vioplot” draws violin plots to show differences in immune cell
infiltration between different groups.

Results

Clinical information

The clinical information of the patients was obtained on
the GTEx official website (see text footnote 1). The AD group
consisted of 15 whole blood samples from 15 donors who died
unexpectedly (violent and fast death). The SD group included
88 blood samples, including 69 donors with fast death of natural
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FIGURE 3

Machine learning identifies characteristic genes of sudden death. (A) The LASSO regression algorithm was used to select the characteristic
genes of sudden death. (B) SVM-RFE algorithm to select the characteristic genes of sudden death. (The blue point represents the lowest error
rate, correspondingly to the best genome selected by SVM-RFE). (C) Venn diagram showing 2 sudden death characteristic genes shared by
LASSO (green) and SVM-RFE (pink) algorithms. LASSO, least absolute shrinkage and selector operation. SVM-RFE, support vector
machine-recursive feature elimination.

causes (0–1 h) and 17 donors with intermediate death (1–24 h).
More details could be referred in Table 1.

Analysis of protein-protein interaction
network for differential genes

This study retrospectively analyzed whole blood samples
from donors of AD and SD. According to the cutoff value, a
total of 47 differential genes were obtained and considered to be
related to SD (Supplementary Table 1). All of these genes were
down-regulated in the SD group (Figure 1A). The heat map
shows the expression levels of all differential genes in different
groups (Figure 1B). To better understand the interactions
between these SD-related genes, we used the STRING online
database4 to construct a PPI network for 47 differential genes

4 http//:string-db.org

(Figure 1C). Ten genes with high interaction were identified as
core genes (MYL1, TNNC2, TNNT3, TCAP, TNNC1, TPM2,
MYL2, TNNI1, ACTA1, CKM). It was suggested that they play
an important role in SD process (Figure 1D).

Functional correlation analysis of core
genes

In order to explore the role of these genes in the process of
SD and related diseases. We focused on the function, pathway
and disease analysis of 10 core genes related to SD. GO analysis
results shows that the annotations of genes come from three
ontologies, namely biological process (BP), molecular function
(MF), and cellular component (CC). BP terminology mainly
contains muscle filament sliding, muscle contraction. MF
terminology mainly contains sarcomere, myofibril, contractile
fiber. CC terminology mainly contains actin binding, myosin
binding (Figure 2A). The circle diagram shows that core genes
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FIGURE 4

Expression and ROC curves of characteristic genes of sudden death. (A) The expression level of MYL2 in AD and SD groups. (B) The expression
level of TNNT3 in AD and SD groups. (C) The ROC curve of MYL2. (D) The ROC curve of TNNT3. ROC, receiver operating characteristic; AD,
Accidental death; SD, Sudden death.

are mainly enriched in muscle contraction, actin filament-
based movement, muscle filament sliding, etc. (Figure 2B).
The pathways of core genes were mainly enriched in Cardiac
muscle contraction, Hypertrophic cardiomyopathy (HCM),
Dilated cardiomyopathy (DCM), Adrenergic signaling in
cardiomyocytes, and Calcium signaling pathway (Figure 2C).
The circle diagram shows certain core genes corresponding
to KEGG pathways (Figure 2D). DO analysis shows that the
core genes of SD were mainly enriched in myopathy, HCM,
cardiomyopathy, autosomal dominant disease, clubfoot, acute
myocardial infarction, DCM, pulmonary embolism, and other
diseases (Figure 2E). The circle diagram shows top 10 diseases
corresponding to SD-associated core genes (Figure 2F).

Machine learning characteristic genes

We used two machine learning methods, LASSO regression
and SVM-RFE, to study the core genes of SD. LASSO regression

learned from the 10 core genes to obtain 2 characteristic genes
of SD (Figure 3A). The SVM-RFE algorithm learned from 10
core genes to obtain 8 characteristic genes of SD (Figure 3B).
The two algorithms were intersected by a Venn diagram, and 2
common genes were obtained as the characteristic genes closely
related to SD (Figure 3C).

Analysis of clinical value of
characteristic genes

We compared the expression of the two characteristic
genes in the AD and SD groups. And the ROC curve was
exhibited to confirm the clinical value of the characteristic genes.
The expression of SD-related characteristic genes (MYL2 and
TNNT3) were both decreased in the SD group (Figures 4A,B;
all P< 0.05). The AUC value of ROC curves for MYL2 was 0.732
(95%CI = 0.595–0.849) (Figure 4C). The AUC value for TNNT3
was 0.766 (95%CI = 0.668–0.858) (Figure 4D). These shows that
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FIGURE 5

Expression of sudden death characteristic genes in human tissues. (A,B) MYL2 and TNNT3 expression levels in tissues in males and females.
(C) Validation of MYL2 in turquoise module by HPA (IHC). (D) Validation ofTNNT3 in turquoise module by HPA (IHC). Red represents high
expression, green represents low expression, and black represents mediate expression.

the SD-associated characteristic genes have good performance
with high diagnostic ability.

Expression analysis of characteristic
genes in human body

In order to verify the expression of characteristic genes
in the human body, we extracted the expression levels of
MYL2 and TNNT3 in various tissues from GTEx database. And
an anatomical map was generated (Figures 5A,B). Moreover,
the protein levels of immunohistochemistry (IHC) staining
obtained from the HPA database illustrated that MYL2 was
highly expressed in cardiac muscle and moderately expressed in
skeletal muscle (Figure 5C); while TNNT3 is lowly expressed
in cardiac muscle and highly expressed in skeletal muscle
(Figure 5D).

Immune infiltration analysis

We explored immune cell profiles in patients in AD and SD
groups using the CIBERSORT method. The infiltration of 22
immune cells were estimated in SD and AD groups in Figure 6A.

The ratios of 22 immune cells were further compared in SD and
AD groups (Figure 6B). The results showed that all immune
cell differences were not statistically significant (P > 0.05). This
suggested that although SD was caused by various diseases, no
significant participation of immune cells was witnessed in this
short-term process.

Discussion

SD is the most serious clinical adverse phenomenon.
Accurate cause of death is difficult to conclude even with the
aid of forensic science. Based on the large-scale database of
the GTEx platform, we explore the related genes and diseases
that cause SD. We screened out 10 core genes (MYL1, TNNC2,
TNNT3, TCAP, TNNC1, TPM2, MYL2, TNNI1, ACTA1, CKM)
from the database. Two characteristic genes (MYL2, TNNT3)
were extruded via two machine learning algorithms, with
good diagnostic ability. Our study demonstrated that most
sudden deaths are acute onsets of chronic diseases without the
involvement of the immune microenvironment.

We are the first to put forward 10 core genes related
to SD via the GTEx database. The biological processes of
these core genes mainly focus on myofilament and sarcomere
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FIGURE 6

Profile and visualization of immune cell infiltration. (A) The infiltration of 22 immune cells after quantification by the CIBERSORT algorithm. (The
X-axis represents the sample and the Y-axis shows the percentage of 22 immune cells in the sample as stacked bars). (B) Violin plot showing
comparison based on 22 immune cells. (Blue and red represent AD and SD group samples, respectively). AD, Accidental death; SD, Sudden
death.

activities mediated by actin and myosin. Consistent with our
study, Klaassen et al. pointed out that sarcomeric protein gene
defects can cause various heart diseases (13). Furthermore,
the possible causes of SD proposed from the core genes
are as follows: myopathy, HCM, cardiomyopathy, autosomal
dominant disease, clubfoot, acute myocardial infarction, DCM,
pulmonary embolism, etc. These above diseases are clinically
common and can lead to death in a short time. The major forms
of cardiomyopathy include hypertrophic, dilated, restrictive
and arrhythmogenic cardiomyopathy (14). Among them, HCM
is usually witnessed with obvious heredity (15). At present,
more and more scholars have pointed out the importance
of gene detection in HCM risk stratification (16). Our study
identified TNNC1, TCAP and MYL2 as the risk genes for

SD in HCM. The mutation rate of TNNC1 in HCM patients
is approximately 0.4% (17). Multiple studies have shown that
mutations in TNNC1 cause HCM and early sudden cardiac
death (18, 19). TCAP is a key regulator of muscle growth,
and reduced TCAP expression will destroy muscle growth (20).
MYL2 is also a risk gene for HCM, and Arg58Gln and R58Q
mutations in MYL2 can lead to early sudden cardiac death (21,
22). This is consistent with our research. DCM is a type of
cardiomyopathy characterized by left ventricular enlargement
and systolic dysfunction. Our study showed that the main
SD-related genes in DCM were TCAP and TNNC1. TCAP
mutation was detected in DCM patients (23, 24). But whether
the mutation of this gene can cause SD in DCM patients has not
been reported in the literature. TNNC1 is also a risk gene for
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DCM (25). Numerous articles have reported premature sudden
cardiac death or heart transplantation would occur in DCM
patients with TNNC1-mutated (26, 27). Abnormal expression
of core genes in various diseases will lead to the increase of SD
rate. Focusing on core genes in hereditary diseases is helpful for
the early identification and prevention of deadly outcomes.

Machine learning can discover excellent prognostic genes in
the form of self-learning. MYL2 and TNNT3 were extraordinary
extruded after machine learning. MYL2 is mainly expressed
in the ventricle, and its mutation will cause HCM (28, 29).
Statistics found that the probability of MYL2 mutation in HCM
patients was 2.1–5% (28, 30–32). Manivannan et al. suggested
that mutation in MYL2 in HCM families had resulted in SD
of four children before the age of one (29). When MYL2
mutation existed in HCM patients, the clinical lesions appear
early, the disease is severe, the prognosis is very poor, and many
suffer early SD (21, 33). This is supportive to our study. Thus
we advocate that genetic disease guidance can focus on SD
associated genes.

Mutations in TNNT3 will cause various muscle disorders,
mainly covering distal arthrogryposis (DA) (34). Also there
are nemaline myopathy (NEM) (35) and atrial septal defect
(36) associated with TNNT3 mutation. DA is a clinically
and genetically heterogeneous disease, mainly characterized
by congenital spasticity of the joints of the extremities. In
2018, Sandaradura et al. described that TNNT3 mutations
had led to non-invasive ventilation in the neonatal period
with a result of death at 8 months of age (37). Our study
showed that TNNT3 was highly expressed in the heart, as
well as in muscle tissues. Therefore, we consider that TNNT3
mutation would cause changes in the myocardium resulting SD.
Although these two characteristic genes have less variation in
other diseases, the probability of SD is greatly increased with
their mutation. Early or aggressive clinical interventions such
as heart transplantation or ICD are strongly suggested with
characteristic genetic variants.

The AUC values of MYL2 and TNNT3 were 0.732 and
0.766, respectively. We consider that the final result of SD is
caused by a large category of SD-related diseases. A single gene
can only represent one or several diseases, not all diseases, so
the AUC value is not very high. Our study also showed that
no changes in the immune-microenvironment before and after
death in SD patients. We supposed that SD is the result of a
short-term deterioration of the disease without the involvement
of immune cells.

This study has some limitations. First, most SD donors
died in less than an hour. The main cause of death in these
patients is sudden cardiac death, so the characteristic genes are
relatively close to the genes related to cardiac death. Second,
in order to protect the privacy of donors, GTEx platform only
provides the age and gender of the donors, and no other specific
clinical data was displayed. Therefore, valid information such as
previous diseases, family history and autopsy cannot be obtained

in details. Third, there might be bias in our study due to limited
sample size, even if we used the PPI network to capture the
most active genes as many as possible. Hopefully, we are looking
forward to larger cohorts in future validation researches that
may require multi-institutional collaboration.

Conclusion

SD is caused by a variety of diseases, most of which
are heart disease. Studies have shown that genetics play an
important role in SD. Our study found that the cause of
SD might be HCM, dilated cardiomyopathy, acute myocardial
infarction, pulmonary embolism and so on. MYL2 and
TNNT3 were discovered as characteristic genes by machine
learning, which could predict the prognosis of SD. For high
risk patients with familial SD history, the expression of
SD genes can be investigated. For high risk patients, early
intervention can be carried out, such as early cardiac surgery or
pacemaker placement.
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