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Abstract: This paper mainly studies the hardware implementation of a fully connected neural
network based on the 1TIR (one-transistor-one-resistor) array and its application in handwritten
digital image recognition. The 1T1R arrays are prepared by connecting the memristor and nMOSFET
in series, and a single-layer and a double-layer fully connected neural network are established. The
recognition accuracy of 8 x 8 handwritten digital images reaches 95.19%. By randomly replacing the
devices with failed devices, it is found that the stuck-off devices have little effect on the accuracy of
the network, but the stuck-on devices will cause a sharp reduction of accuracy. By using the measured
conductivity adjustment range and precision data of the memristor, the relationship between the
recognition accuracy of the network and the number of hidden neurons is simulated. The simulation
results match the experimental results. Compared with the neural network based on the precision of
32-bit floating point, the difference is lower than 1%.
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1. Introduction

The artificial neural network is constructed by simulating the connection mode of the
brain neural network. There are several mainstream algorithms, such as fully connected
neural networks, convolutional neural networks, recurrent neural networks, and generative
adversarial neural networks [1-5]. Their basic units are artificial neurons, which perform
a non-linear operation on the matrix multiplication result of the input and weights, then
input the results into the neurons of the next layer network [6,7]. Since synapse weight
requires extreme accuracy, if traditional storage devices are employed in storage, each
synapse weight needs to occupy multiple storage units. In a large-scale neural network,
the weight data will become huge, such as in Google’s Alpha Go, where the weight data
reach 100 Mb [8]. Moreover, the transmission process of large-scale weighted data greatly
restricts the speed of artificial neural networks [9-11]. Tests on system performance show
that for neural networks implemented on the Tensor Processing Unit like the Deep Neural
Network, 80% to 90% of the execution time is devoted to memory access [9].

Memristors have been shown to be able to emulate synaptic functions by storing
the analog synaptic weight and implementing synaptic learning rules [12-17]. The net-
work array constructed by using the memristor-simulated synapse can directly realize
the multiplication and addition operations of the parallel input analog signal and the
weight matrix, which greatly improves the operation speed of the neural network. The
memristor is a two-terminal device composed of a conductor/insulator (or semiconduc-
tor)/conductor sandwich structure. This simple structure makes it easy to integrate into
the high-density 4F? passive crossover array, and can provide the density and connectivity
required for hardware implementation of the neuromorphic computing system [18-20]. In
recent years, a large number of studies have been reported on the construction of artificial
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neural networks using memristor-simulated synapses [21-26]. However, to use a memris-
tor array to implement a synaptic network, a memristor with high nonlinear volt-ampere
characteristics [23,27,28] or a highly nonlinear selector in series [5,29-31] is required to
minimize the non-idealities impact caused by potential current paths during training and
inference operations.

However, take into account the level of technology maturity, attempts to implement
memristor neural networks have been plagued by device non-uniformity, resistance level
instability, and sneak path currents. Especially in integrated circuits, the damage of
components will cause irreversible effects on the whole system. Previous studies have
been conducted on the impact of different damage of memristor on the whole through
simulation [26]. Here, we have established a fully connected neural network system based
on a 1T1R array composed of discrete memristors and MOSFETs. MOSFETs as selectors can
effectively reduce the leakage current, thus reducing energy consumption and improving
performance. The discrete unit facilitates the replacement of abnormal devices, thereby
improving the uniformity of the memristor in the array and maximizing the performance
of the network. The single-layer and double-layer neural networks are utilized to complete
the recognition function of handwritten images through online training. At the same time,
the influence of failed devices in the matrix on network performance is further studied.
Finally, the influence of the number of hidden layer neurons in the double-layer network
on the network performance is studied by simulation.

2. Memristor Cross-Bar Array and System Set-Up

In our work, the effects of memristor failure rates and failure modes on network recog-
nition rates is investigated. It is hoped that the unit devices in the matrix can be replaced
freely, so the matrix is not integrated on a chip. In order to prevent crosstalk between
the memristors in the array, the bottom electrode of each memristor is connected in series
with the drain terminal of a commercial NMOSFET (2N7002 type of Jiangsu Changjiang
Electronics Technology Co., Ltd., Wuxi, China) to form a 1T1R structure. Among them, the
MOS device functions as a selector. Figure S1 demonstrates the excellent performance of
MOSFETs. The discrete connection of the array makes it possible to exclude other influenc-
ing factors when evaluating the effect of memristor performance. Figure 1a is a distribution
diagram of the memristors mounted on the array module, and the corresponding MOS
devices are mounted on the back. A 1T1R array of 12 rows x 10 columns is arranged on
each 10 cm x 10 cm Printed circuit boards (PCB). There are four discrete memristor devices
on each 3 mm x 3 mm bare chip. Connect the memristor electrode pads with the pads
on the PCB with conductive silver glue to form a 1TIR matrix structure. Figure 1b is a
micrograph of conductive silver glue lead.

The memristor adopts a crossbar structure with an effective area of 5 x 5 um?. The
three-dimensional schematic diagram of the Ti/Al: HfO, /Pt RRAM device structure is
shown in Figure 1c,d, which shows the device stacks structure. The silicon oxide is etched by
photolithography to obtain bottom electrode pattern grooves on the silicon oxide substrate.
The 20 nm Ti adhesion layer and 80 nm Pt bottom electrode (BE) were evaporated in the
groove by electron beam evaporation. The step between the bottom electrode and the
substrate is eliminated, and the side wall effect [32] caused by different growth rates in each
direction during the deposition of the resistive layer is avoided. Then, the Al-doped HfO,
film is deposited by the atomic layer deposition (ALD) method. The 10 nm dielectric layer
is deposited alternately by 8 cycles of HfO, and 1 cycle of Al,O3 at 300 °C. The dielectric
layer pattern is obtained by inductively coupled plasma (ICP) etching. Finally, the 50 nm Ti
top electrode (TE) and a 100 nm Au cladding layer are deposited by electron beam vapor
deposition. Doping HfO, with Al can improve the resistance switching characteristics of
the memristor. Figure S2 shows the multi-value storage characteristics and high reliability
of the memristor.
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Figure 1. (a) The physical diagram of the 1T1R array of 12 rows x 10 columns ona 10 cm x 10 cm
PCB. The top electrode of the memristor is connected to the bit line (BL), the bottom electrode is
connected to the drain of the NMOS, the source is connected to the source line (SL), and the gate
is connected to the word line (WL). (b) The micrograph of conductive silver glue lead. (c) The
three-dimensional schematic diagram of Ti/HfO,: Al/Pt RRAM device structure. (d) The schematic
diagram of RRAM device structure, the thickness of each layer does not represent the true proportion.

The synaptic weights of the neural network are represented by the resistance of the
memristor, which is regulated by voltage pulses. Therefore, the memristor should have
the characteristics of multi value storage in pulse mode. As shown in Figure 2a,b, the
1T1R unit is set and reset by a voltage pulse with a width of 1 us and an amplitude of
1.8 V. Combined with the transient response of the pure HfO, memristor in Figure S3, it
can be seen that the conductance of the Al-doped HfO,-based memristor can be adjusted
gradually by the voltage pulse. Figure 2c compares the conductance changes of 10 devices
under pulse excitation. It can be seen that the uniformity of the device conductance changes
is acceptable, and they can be adjusted continuously from 1 uS to 350 puS. Compared with
integrated circuits, discrete connection has the risk of increasing latency. Figure 54 shows
the pulse reading speed of the 1T1R unit, eliminating this risk.
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Figure 2. Typical impulse response results of 1T1R unit; 1.8 V/1 ps and —1.8 V/1 us voltage pulses
were used in (a) the SET process and (b) the RESET process, respectively. (c) The conductivity
adjustment curve of multiple units under SET/RESET pulse voltage; reading voltage is 0.2 V.

3. MNIST Handwritten Digits and Network Training

The data set used in this article is the handwritten digits MNIST data set. The
training set selected 3823 digital images handwritten by 30 people, and the test set se-
lected 1797 digital images handwritten by 13 people. Each image has 16-level grayscale
8 x 8 pixels, which can be represented by a 4-digit binary number. At the same time, each
image has a classification label. Figure 3a,b, respectively, show part of the data set and the
image after this part of the data is converted to binary format.
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Figure 3. (a) Part of the handwritten digits from the MNIST and (b) the image storage converted to
binary format. (c) The schematic diagram of the two-layer fully connected neural network structure.
(d) The schematic diagram of the single layer fully connected neural network system structure. (e) The
flow charts of synapse weight training. (f) The cumulative distribution of the conductance state of
the memristor removing the failed unit; the inset shows the total conductance distribution diagram.

Figure 3c shows the schematic diagram of the two-layer fully connected neural net-
work structure. In our research, we are required to classify image signals of 64-bit pixels in
10 categories. Therefore, the input layer of the neural network requires 65 neurons (64-bit
pixel signal plus 1-bit bias signal), and the output layer requires 10 neurons. Since the
synapse weight of the neural network has both positive and negative values, the difference
between two 1T1R units is used to represent a synapse weight. In general, the size of the
memristor array actually needed for a single-layer network is 65 x 20. Figure 3d shows the
schematic diagram of the single layer fully connected neural network system structure. The
input of the front neuron layer, adaptive synaptic weight, and the output of the posterior
neuron layer are consistent with the pulse input from BL, 1T1R units” conductance, and
current output through SL, respectively.

For a fully connected neural network, the update of the synapse weight can be obtained
through the error back propagation algorithm [33]. The training error of a single sample of
the neural network is:

E(w) = ;kz (zk — yx)? 1
=1

where y is the output value of node k, and z is the expected output value.
According to the error back propagation algorithm and the chain rule of differentiation,
the update amount Awy, of the weight wy is:

9E(w)

Dwje = =1 - === =11~ (2 = ) - (1 —vP) Yk 2)
ik

Among them, 7 is the learning rate, which can be adjusted by the amplitude and pulse
width of the voltage pulse.
For hidden nodes, the same can be obtained:

JoE L
Awij = —17 - 31527:)) =1 'k:1{(2k —yi) - (L=y?) - wi - (1—y7) w3 ®)
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It can be seen that as long as the partial derivative of the error to the input of previous
layer is deduced from the output layer in turn, the weight update amount of each layer can
be obtained.

Figure 3e shows the flow chart of synapse weight training. First, input the binary
training image signal into the matrix. The error and weight update amount are calculated
according to the output result. The pulse of updating weight in training is the constant
square wave of 1.8 V/1 us. As mentioned earlier, each weight in the network is determined
by the difference between the conductance of two memristors. So, each weight has a
positive correlation with the resistance of one memristor, and a negative correlation with
the resistance of the other memristor. If the weight update amount is positive, a Set pulse is
input to the memristor corresponding to the positive value of the weight, and a Reset pulse
is input to the memristor corresponding to the negative value. If the weight update amount
is negative, input a Reset pulse to the memristor corresponding to the positive value of the
weight, and input a Set pulse to the memristor corresponding to the negative value.

To reduce the failure rate of memristors, all memristors in the synaptic weight array are
pre-set to low conductance. Figure 3f shows the cumulative distribution of the conductance
state of the memristor after removing the failed unit, and the inset shows the conductance
distribution diagram. The initial conductance of the device before training was within
5 uS, with an average value of 1.89 uS. It can be seen that in the 1300 memristors, there are
80 failed devices (indicated in blue), accounting for 6.15% of the total.

4. Results
4.1. Single-Layer Network

Figure 4a correspond to the conductance of the memristive matrix after 20 cycles
of training. It can be seen that, with the exception of failed devices, the conductance of
memristor after training ranges from 0 uS to 400 uS. About 63.46% of them is between
0 uS and 50 puS, and the number of devices with conductivity values greater than 50 uS
decreases exponentially. According to the curve of recognition accuracy with the number of
cycles (Figure 5), it can be seen that the recognition rate of the network gradually increases
with the number of cycles training and then tends to be flat. The accuracy of the network
after 8 trainings can reach more than 80%. When the number of trainings reaches 12, the
recognition rate of the network is basically stable at 87.5%.
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Figure 4. The memristor conductance distribution and the cumulative distribution of the number
of devices after 20 trainings, (a) before the failed device is replaced, (b) after the failed device is
replaced. The inset represents an enlarged view of the cumulative number distribution of devices
with conductance values ranging from 0 Ms to 25 Ms.

As mentioned above, the devices in the system are replaceable. In order to improve
the recognition rate of the network, we replace all the failed devices with those that
can work normally and train the neural network array again for 20 times. The final
conductance distribution of the memristor array is shown in Figure 4b. About 54.08% of the
conductance is less than 5 uS. It can be seen that the overall conductance is reduced, and
the conductance of more than half of the devices are hardly changes. Figure 5 compares
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the image recognition accuracy of the network with the number of cyclic trainings in the
two cases. It can be seen that failed devices have a greater impact on fewer training times.
When there are no failed devices in the networks, the accuracy of image recognition after
only 1 training is 63.88%. After 5 training cycles, it finally stabilized at about 92.35%.
The recognition accuracy was higher than the 91.71% achieved by Li et al. [26] through a

two-layer neural network and 92.13% achieved by Wang et al. [25] through a convolutional
neural network.
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Figure 5. The image recognition accuracy rate of the single-layer network varies with the number of
cyclic trainings.

4.2. Double-Layer Network

In order to further improve the accuracy of network recognition, a double-layer fully
connected network containing 20 hidden neurons is constructed. The first and second
layers of networks use 65 x 40 and 21 x 20 memristor arrays, respectively. According
to Figure 6a, it can be seen that the image recognition accuracy of the two-layer network
exceeds 90% after only 2 cycles of training. With the increase of the number of circuit
training, the accuracy rate increases slowly and finally reaches about 95.19%.
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Figure 6. (a) The image recognition accuracy rate of the double-layer network varies with the number
of cyclic trainings. (b) The conductance distribution of the memristor of the double-layer network

after training. (c) The distribution of the cumulative number of memristor of the double-layer network
after training.

As shown in Figure 6b, conductance distribution of the memristor array after training
is similar to that of a single-layer network, that is, most devices are in a low conductance
state. In addition, the overall conductance of the memristor in the second layer network is

slightly larger than that of the first layer. Figure 6¢ shows that about 52.22% of the devices
have a conductivity value of less than 5 uS.
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In order to study the influence of failed devices on the recognition rate of the network,
the memristor of the single-layer and double-layer networks that have been trained are
randomly replaced with those in high-conductance failure or low-conductivity failure.
Figure 7 indicates the experimentally obtained effect of different proportions of failed
devices on the accuracy of network recognition.
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Figure 7. The network image recognition accuracy rate varies with the proportion of failed devices.

It can be seen that devices with low-conductivity failure have little effect on the
network recognition rate. When 20% of failed devices appear in the two-layer network (far
higher than the actual proportion of failed devices of about 6.15%), there is still a recognition
accuracy of 88.06%. The single-layer network has a slightly poorer fault tolerance to low-
conductance failed devices, and 20% of failed devices will reduce the recognition accuracy
of the network to 64.7%. Regardless of whether it is a single-layer or double-layer network,
the recognition accuracy rate drops sharply as the proportion of high-conductance failure
devices increases. When the proportion of failed devices exceeds 4%, the recognition
accuracy of the single-layer network is just less than 20%. When the proportion of failed
devices exceeds 10%, the recognition accuracy of the double-layer network also drops to
about 20%. The tolerance for low-conductance failure devices is much greater than that for
high-conductance failure devices. This may be explained by the fact that the output current
is too high. Excessive current will mask the current signals of other units in the same row
in the array, seriously hindering the normal operation of the entire network. Therefore, it is
necessary to avoid high-conductance failure devices in the array.

The influence of the number of neurons in the hidden layer of the double-layer
network on the recognition accuracy is investigated by simulation. Figure 8 shows the
simulation results of the image recognition accuracy of the double-layer fully connected
network with the number of neurons in the hidden layer. The weight range and adjustment
accuracy of the memristor in the simulation are obtained from previous tests (shown in
Figure 2c). Taking into account the device-to-device variation, each simulated device is
randomly assigned from these 10 sets of data. It compares with the calculation result under
32-bit floating point precision. It can be concluded that as the number of neurons in the
middle-hidden layer increases, the accuracy of both increases gradually. The accuracy rate
calculated according to the actual adjustment accuracy can reach about 96.57%, which is
close to the accuracy rate of 97.33% obtained by the simulation of 32-bit floating point
precision. At the same time, it can be seen that the recognition accuracy of the simulated
single-layer network and the two-layer neural network containing 20 hidden neurons are
93.18% and 95.46%, respectively, which are similar to the actual test results.
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5. Conclusions

This paper designs and builds a single-layer and double-layer fully connected network
system based on 1T1R array to realize handwritten digital image recognition. For the
1T1R unit, the device can realize a continuous adjustment of the conductivity of about
1 uS~350 uS by applying voltage pulses. By replacing the failed devices, a recognition
accuracy rate of 95.19% is obtained in the double-layer neural network. It is found that de-
vices in a low-conductance failure state have little effect on the recognition accuracy of the
network, while devices in a high-conductance failure will sharply reduce the recognition
accuracy of the network and increase the overall conductance of the memristor. Accord-
ing to the experimental test parameters, the relationship between the image recognition
accuracy of the double-layer fully connected network and the number of hidden neurons
is achieved by simulation. By increasing the amount of hidden neurons, the recognition
accuracy of the network can reach 96.57%. Compared with the simulation results of weight
accuracy of the 32-bit floating-point accuracy, the error is below 1%.
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