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Abstract
Rasagiline, a monoamine oxidase-B inhibitor, and bis(propyl)-cognitin (B3C), a novel dimer are reported to be neuroprotective. Herein, 
the synergistical neuroprotection produced by rasagiline and B3C was investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced mice of Parkinsonism. By using neurobehavioural tests, high-performance liquid chromatography and western blot 
assay, we showed that B3C at 0.3 mg/kg, rasagiline at 0.02 mg/kg, as well as co-treatment with B3C and rasagiline prevented MPTP-induced 
behavioural abnormities, increased the concentrations of dopamine and its metabolites in the striatum, and up-regulated the expression 
of tyrosine hydroxylase in the substantia nigra. However, the neuroprotective effects of co-treatment were not significantly improved when 
compared with those of B3C or rasagiline alone. Collectively, we have demonstrated that B3C at 0.3 mg/kg and rasagline at 0.02 mg/kg 
could not produce synergistic neuroprotective effects. 

Key Words: nerve regeneration; Parkinson’s disease; bis(propyl)-cognitin; rasagiline; monoamine oxidase B; dopamine; multitarget; synergism; 
neuroprotection; neural regeneration 
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Introduction
Parkinson’s disease (PD), the second most common neu-
rodegenerative disorder, has emerged as one of the major 
public health problems worldwide (Jeanjean and Aubert, 
2011). Unfortunately, the exact molecular pathology of PD 
remains to be elucidated. Currently used medications such 
as dopamine precursor (levodopa), dopamine agonists and 
monoamine oxidase-B (MAO-B) inhibitors (selegiline and 
rasagiline), are reported to have modest symptomatic ben-
efits without obvious disease-modifying potential, because 
their primary target is not dopaminergic neuronal loss 
(Smith, 2010; Meissner et al., 2011). The ideal PD therapy 
aims to produce neuroprotective effects, concurrently relieve 
PD-associated symptoms and delay the loss of dopaminergic 
neurons in the substantia nigra (Schapira, 2004). 

Rasagiline (Figure 1), a second-generation MAO-B inhibi-
tor, has been approved by US Food and Drug Administration 
(FDA) for the treatment of PD (Degli Esposti et al., 2015). 
Rasagiline is reported to produce neuroprotective effects 
in various experimental models both in vitro and in vivo 
(Naoi et al., 2013). Interestingly, the neuroprotective effects 
of rasagiline might be associated with its anti-apoptotic ac-
tivities rather than its MAO-B inhibition property (Youdim 
et al., 2001). However, the request for an on-label indication 
of rasagiline for neuroprotection in PD has been repeatedly 
denied by FDA, because there is limited evidence to prove its 
neuroprotective effects in clinical trials (Ahlskog and Uitti, 
2010). 

Bis(propyl)-cognitin (B3C; Figure 1), in which two tacrine 
moieties were linked by three methylene (-CH2-) group, was 
originally synthesized as a novel acetylcholinesterase (AChE) 
inhibitor (Carlier et al., 1999). We have previously demon-
strated the neuroprotective effects of B3C in various in vivo 
models of neurodegenerative disorders (Luo et al., 2010; 
Han et al., 2012). B3C was also reported to protect against 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-in-
duced dopaminergic neuronal loss and Parkinsonian mo-
tor defects in mice (Yao et al., 2012). The neuroprotective 
effects of B3C are reported to be associated with its AChE 
inhibition (Carlier et al., 1999), myocyte enhancer factor-2D 
(MEF2D) enhancement (Yao et al., 2012), as well as uncom-
petitive N-methyl-D-aspartate receptor antagonism (Luo et 
al., 2010).

Considering the multi-factorial etiological nature of PD 
(Calabresi and Di Filippo, 2015), multiple drug therapy 
might offer a new hope by addressing complex pathological 
aspects. The combination of drug molecules with different 
modes of action could concurrently act on multiple targets 
and/or biological processes which cause the chronic and pro-
gressive neurodegeneration in PD (Reznichenko et al., 2010; 
Zhang et al., 2015). In the light of this rationale, we investi-
gated whether the post-MPTP loss of dopaminergic neurons 
could be additively/synergistically restored by a combination 
of rasagiline and B3C. We also examined whether MPTP-in-
duced behavioral abnormities and biochemcial changes 
could be reversed by these compounds.

Materials and Methods
Ethics statement
Animal treatment and maintenance were carried out in 
accordance with the guidelines established by the Nation-
al Institutes of Health for the Care and Use of Laborato-
ry Animals and were approved by the Ethics Committee 
of Jinan University in China (Ethical approval No. EAE-
JNU-2013-0117). Precautions were taken to minimize suf-
fering and the number of animals used in the study. 

Treatments 
Fifty-six specific-pathogen-free male C57BL/6 mice (25 ± 
2 g and 7–8 weeks old) were purchased from the Animal 
Center of Guangdong Province in China (Certification No. 
SCXK (Yue)-2013-0002). Mice were housed under a 12-
hour light/dark cycle, and allowed to acclimate for 7 days 
before treatment. Mice were randomly divided into seven 
groups (control, MPTP, MPTP + 0.3 mg/kg B3C, MPTP + 
1 mg/kg B3C, MPTP + 0.02 mg/kg rasagiline, MPTP + 0.1 
mg/kg rasagiline, and MPTP + 0.3 mg/kg B3C + 0.02 mg/kg 
rasagiline groups). Mice in the control group received saline 
(0.1 mL/10 mg). The remaining mice were given MPTP (30 
mg/kg/day, Sigma-Aldrich, St. Louis., MO, USA) intraperito-
neally once daily for 5 consecutive days to induce Parkinson-
ism. Resting period (3 days) was allowed for the conversion of 
MPTP to MPP+ (Tatton and Greenwood, 1991). On day 8, B3C 
(0.3, 1 mg/kg), rasagiline (0.02, 0.1 mg/kg) (Sigma-Aldrich), or 
B3C (0.3 mg/kg) + rasagiline (0.02 mg/kg) were administered 
intragastrally once daily for 7 consecutive days according to 
the grouping. Mice in the control group or the MPTP group 
received equal volume of saline (0.1 mL/10 mg). 

Behavioral analysis
On day 15, after final drug treatment, a serial of tests includ-
ing catalepsy, pole, rotarod and foot-printing tests was used 
to analyze different aspects of Parkinsonism, such as hypo-
kinetic disorder, rigidity and problem with gait (difficulty in 
walking). These tests were performed between 9 a.m. and 2 
p.m. under normal room lighting. Behavioral experiments 
were randomized and blinded by an independent researcher. 

The catalepsy test was performed according to a previous 
publication (Sedelis et al., 2001), by placing the forepaws of 
mice on a horizontal metal bar (2 mm in diameter), 15 cm 
above the tabletop. The duration until one of the hind paws 
caught the metal bar was recorded. The average of duration 
of three successive trials was measured. Between each trial, 
animals were allowed to rest for 1 minute. 

The pole test was adapted from Ogawa et al. (1985). The 
pole test consisted of a 50 cm high steel pole, 0.5 cm in di-
ameter, and wrapped with gauze to prevent slipping and the 
base position in the home cage. A rubber ball was glued on 
the top of the pole to prevent animals from sitting on the 
top and to help position the animals on the pole (by sliding 
the forepaws over the ball and holding the animal by the 
tail). The time that animals required to climb down the pole 
was measured. During pre-training as well as post-MPTP 
sessions, each animal was subjected to three successive trials, 
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with a 10-minute interval. The average time of three trials 
was used for statistical analyses.

Rotarod test was used to measure motor balance and co-
ordination (Bao et al., 2012). Mice were placed on rotating 
rod with 3 cm diameter (Rotarod for mice, ZH-YLS-4C, 
Zhenghua, Anhui Province, China). Tested animals were 
separated by large disks. After the mice were placed on the 
rod at constant rotational speed of 5 r/min, the trial was 
started and rotational speed was automatically increased 
from 5 to 30 r/min within 5 minutes. The trial stopped 
when the mouse fell down, activating a switch that automat-
ically stopped a timer, or when 5 minutes were completed. 
Mice were pre-trained on the rotarod for 3 consecutive days 
before MPTP treatment in order to reach a stable perfor-
mance. The final test was performed in three sessions with 
an interval of 30 minutes. Rotarod performances in three 
sessions were recorded, and the average time on the rotarod 
was compared among groups. 

For the footprint test, we followed the procedure described 
by Richter et al. (2007). Mice were first trained to pass straight 
forward through the wood corridor (5 cm wide, 85 cm long). 
Then mice with their forepaws with black ink colored and 
hindpaws with red ink colored were placed into the corridor. 
Their footsteps were recorded on a white absorbing paper. The 
duration of mice crossing the corridor was recorded, stride 
length and step width were also measured. Three trials were 
carried out and the results were averaged. 

Tissue processing
After behavioral testing, animals were sacrificed by a 0.5 
mL/10 g intraperitoneal injection of 10% chloral hydrate. 
The tissues of striatum and substantia nigra (Hayley et al., 
2004; Jackson-Lewis and Przedborski, 2007) were dissected 
rapidly on ice and frozen in liquid nitrogen. Tissues were 
stored at –80°C until processed for high-pressure liquid 
chromatography (HPLC) or western blot assay. 

Determination of dopamine and its metabolites, 
homovanilic acid (HVA) and 3,4-dihydroxyphenylacetic 
acid (DOPAC) levels by electrochemical HPLC
Striatal tissues were used for neurobiochemical analysis by 
electrochemical HPLC. Briefly, the striatum was weighed, 
and homogenized in 0.1 M perchloric acid (HClO4) contain-
ing 0.01% ethylenediamine tetraacetic acid. The homogenate 
was centrifuged at the speed of 10,000 × g for 10 minutes 
at 4°C. The supernatant was filtered through 0.22 μm filter 
membrane and 20 μL samples were injected into the column. 
Dopamine and its metabolites (DOPAC and HVA) were an-
alyzed using a HPLC system (Agilent-1200, Wakefield, MA, 
USA) coupled to a 2465 electrochemical detector (Waters, 
Milford, MA, USA) as described previously (Zhang et al., 
2014). Concentrations of dopamine and its metabolites were 
expressed as ng/mg tissue. 

Western blot assay
Tissues from the substantia nigra were homogenized with 
radioimmunoprecipitation assay lysis buffer containing 1 

mM phenylmethylsulfonyl fluoride and 1% protease inhibitor 
cocktail (Pierce, Rockford, IL, USA) on ice. Lysis was centri-
fuged at 12,500 × g for 20 minutes at 4°C. The supernatant 
was separated and the amount of protein was determined 
using the bicinchoninic acid protein assay kit (Pierce). Pro-
tein sample (30 μg) was resolved using sodium dodecyl sul-
fate-polyacrylamide gel electropheresis and transferred to 
polyvinylidene fluoride membranes. The immunoblot was 
analyzed with the appropriate primary antibodies (rabbit 
anti-mouse antibodies against tyrosine hydroxylase (TH), 
MEF2D, glycogen synthase kinase-3β (GSK3β), β-actin; 
1:1,000) at 4°C overnight. Horseradish peroxidase-conjugat-
ed goat anti-rabbit secondary antibodies (1:2,500) at room 
temperature for 2 hours were used to detect the proteins of 
interest through enhanced chemiluminescence. All primary 
and secondary antibodies were purchased from Cell Signaling 
Technology (Beverly, MA, USA). Quantitative assessment of 
protein bands by densitometry was done with Gel Doc™ XRS 
equipped with Quantity One software (Bio-Rad, Hercules, 
CA, USA). 

Activity of MAO-B inhibition 
MAO-B activity was determined by MAO-GloTM Assay kit 
(Promega, Sunnyvale, CA, USA). The recombinant human 
MAO-B enzyme was purchased from Sigma-Aldrich. Briefly, 
B3C (1 μM–10 mM) and rasagiline (10 pM–10 μM) were in-
cubated in 96-well opaque white plates with MAO substrate 
and recombinant human MAO-B (0.25 mg protein/mL). 
Reaction was started by the addition of recombinant human 
MAO-B. Reaction mixture was incubated for 1 hour at room 
temperature. Reaction was terminated by the addition of 
luciferin detection reagent, and sample was incubated for 
an additional 20 minutes to allow the development of lucif-
erase-dependent luminescence. Relative luminescence was 
determined by a plate luminometer (BioTek, Winooski, VT, 
USA). Results were presented as the percent of vehicle (total 
MAO-B activity).

Statistical analysis
All data are expressed as the mean ± SEM and analyzed us-
ing GraphPad Prism 5.0 (GraphPad, San Diego, CA, USA). 
One-way analysis of variance and Dunnett’s test were used 
to evaluate the statistical differences. A value of P < 0.05 was 
considered statistically significant. 

Results
The effects of B3C and/or rasagiline on behavioral 
abnormities induced by MPTP in mice
MPTP injection significantly induced motor abnormalities, 
including postural rigidity, impaired balance and coordi-
nation and gait disorder in mice. At 15th day after MPTP 
injection, the latency in the catalepsy test was increased by 
4.8-fold (Figure 2A), the time staying on the rotarod was 
decreased by 57.7% (Figure 2B), and the duration of pole 
test was increased by 3.1 times in the MPTP-treated mice, 
compared to the control mice (Figure 2C). In footprint 
test, the time taken to cross the corridor was significantly 
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Figure 2 B3C, rasagiline and their combination alleviated MPTP-induced behaviour abnormities in mice. 
At 15th day after MPTP injection, motor functions of mice were analyzed using (A) catalepsy test, (B) rotarod test, (C) pole test, and (D–F) foot-
printing test. In the footprinting test, (D) the travelling time on the corridor, (E) step width, and (F) stride length were recorded. All data are ex-
pressed as the mean ± SEM; n = 8 mice/group. #P < 0.05, ##P < 0.01, ###P < 0.001, ####P < 0.0001, vs. control group; *P < 0.05, **P < 0.01, ***P 
< 0.001, vs. MPTP group (one-way analysis of variance and Dunnett’s test). Ras: Rasagilinie; S: second; NS: not significant; MPTP: 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine. I: Control; II: MPTP; III: 0.3 mg/kg B3C; IV: 1 mg/kg B3C; V: 0.02 mg/kg Ras; VI: 0.1 mg/kg Ras; VII: 0.3 mg/kg B3C 
+ 0.02 mg/kg Ras.

Figure 1 Chemical structures of bis(propyl)-cognitin (B3C) and 
rasagiline.

extended, accompanying increased step width and de-
creased stride length in the MPTP-treated mice, compared 
to the control mice (Figure 2D–F). B3C and rasagiline 
alone or their combination alleviated motor abnormities 

induced by MPTP (P < 0.05; Figure 2). Besides, neither 
rasagiline alone nor B3C+rasagiline co-treatment signifi-
cantly reversed MPTP-induced behavioral abnormity in the 
rotarod test (P > 0.05; Figure 2B). In addition, there was 
no significant difference among B3C, rasagiline, and their 
combination on the reversion of motor abnormities in cat-
alepsy, pole and footprint tests (P > 0.05). 

The effects of B3C and/or rasagiline on contents of 
dopamine and its metabolites in the striatum of 
MPTP-injected mice
Representative HPLC chromatographic peaks of dopamine 
and its metabolites were shown in Figure 3A. Striatal do-
pamine, DOPAC and HVA were significantly reduced in 
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Figure 3 B3C, rasagiline and their combination reduced MPTP-induced decrease of dopamine and its metabolites in mice.
(A) Representative chromatographic profiles of dopamine, DOPAC and HVA detected by ECD-HPLC. At 15th day after MPTP injection, (B) the 
content of striatal dopamine, (C) the content of striatal DOPAC, and (D) the content of striatal HVA were analyzed by ECD-HPLC. All data are 
expressed as the mean ± SEM; n = 8 mice/group. ##P < 0.01, ###P < 0.001, vs. I; *P < 0.05, **P < 0.01, ***P < 0.001, vs. II (one-way analysis of 
variance and Dunnett’s test). Ras: Rasagilinie; NS: not significant; DOPAC: 3,4-dihydroxyphenylacetic acid; HVA: homovanillic acid; ECD-HPLC: 
high-pressure liquid chromatography equipped with an electrochemical detector; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. I: Control; 
II: MPTP; III: 0.3 mg/kg B3C; IV: 1 mg/kg B3C; V: 0.02 mg/kg Ras; VI: 0.1 mg/kg Ras; VII: 0.3 mg/kg B3C + 0.02 mg/kg Ras.

Figure 4 B3C, rasagiline and their combination reversed 
MPTP-induced decrease of TH expression in the substantia nigra 
(western blot assay). 
At 15th day after MPTP injection, the expression of TH in the substantia 
nigra was evaluated. (A) Treatment with B3C, Ras and their combina-
tion up-regulated TH expression compared to MPTP group. (B) Densi-
tometric analysis of optical density and relative protein expression nor-
malized using β-actin as an internal standard. All data are expressed as 
the mean ± SEM; n = 8 mice/group. ##P < 0.01, vs. I; *P < 0.05, vs. II 
(one-way analysis of variance and Dunnett’s test). NS: Not significant; 
TH: tyrosine hydroxylase; Ras: rasagiline; MPTP: 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine. I: Control; II: MPTP; III: 0.3 mg/kg 
B3C; IV: 0.02 mg/kg Ras; V: 0.3 mg/kg B3C + 0.02 mg/kg Ras.

MPTP-treated mice when compared to control (P < 0.05; 
Figure 3B–D). B3C, rasagiline and their combination in-
creased the levels of dopamine and its metabolites when 
compared to the MPTP group (P < 0.05). However, there 
was no significant difference among B3C, rasagiline and 
their combination (P > 0.05). 

The effects of B3C and/or rasagiline on the TH expression 
in the substantia nigra of MPTP-injected mice
TH was widely accepted as a marker for dopaminergic neu-
rons (Haavik and Toska, 1998). We used western blot assay 
to measure the expression of TH in the substantia nigra. 
MPTP significantly reduced the expression of TH when 
compared to the control group (P < 0.05). B3C, rasagiline 
and their combination increased TH expression when com-
pared to the MPTP group (P < 0.05). However, there was no 
significant difference among B3C, rasagiline and their com-
bination (P > 0.05; Figure 4).

Activities of B3C and rasagiline on MAO-B inhibition in 
vitro
B3C concentration-dependently inhibited MAO-B activi-
ty with an IC50 of 115.8 μM (Figure 5). Rasagiline, a well-
known selective MAO-B inhibitor, inhibited MAO-B activity 
with an IC50 of 6.43 nM (Figure 5), which is similar to a pre-
vious report (Zheng et al., 2005).
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Regulating the expressions of GSK3β and MEF2D by B3C 
and/or rasagiline in the substantia nigra of MPTP-injected 
mice 
It was reported that MPP+ could damage dopamine neurons 
via the inhibition of MEF2D transcriptional activity (Yao et 
al., 2012). MEF2D could be regulated by several signalling 
pathways. For example, GSK3β, an downstream molecule 
of PI3-K/Akt signaling pathway, could directly phosphory-
late MEF2D and decrease the activity of MEF2D (Weinreb 
et al., 2005b; Wang et al., 2009; Yao et al., 2012). MEF2D 
could further protect dopamine neurons in the substantia 
nigra against neurotoxicity in PD animal models (Smith et 
al., 2006; She et al., 2011). In this study, MPTP signficanlty 
down-regulated the expression of MEF2D, while up-regulat-
ed the expression of GSK3β in the substantia nigra (P < 0.05; 
Figure 6). B3C, but not rasagiline or their combination, sig-
nificantly reversed MPTP-induced alteration of GSK3β and 
MEF2D (P < 0.05; Figure 6).

Discussion
In the past decade, none of mono-drug therapies aimed to 
treat PD with disease-modifying potential was successful in 
clinical trials (Kalia et al., 2015). The multiple disease etiolo-
gies implicated in PD gave rise to a shift from a single-target 
to a multi-target therapy (NINDS NET-PD Investigators, 
2006, 2007; Reznichenko et al., 2010).

It has been reported that continuous administration of 
rasagiline (0.05 mg/kg, oral administration) following MPTP 
lesion restored the loss of dopaminergic neurons, the decrease 
of striatal dopamine content, and the reduction of TH activ-
ity (Mandel et al., 2007). Therefore, rasagiline at 0.02 and 0.1 
mg/kg was used in the present study. In our study, rasagiline 
at both dosages was effective to treat MPTP-induced Parkin-
sonism, while the higher dosage did not exert greater neuro-
protection. Similar results were reported by Sagi et al. (2007), 
showing that doubling the dose of rasagiline to 0.1 mg/kg did 
not lead to the greater neuroprotection. It was demonstrated 
that rasagiline could not produce neuroprotection at very 
high doses (0.25–1 mg/kg) (Sagi et al., 2007). The molecular 
mechanism underlying the neuroprotection of rasagiline 
involved the increase of protein kinase Cε, the activation of 
mitogen-activated protein kinase pathway, and the induction 
of neurotrophic factors (Yogev-Falach et al., 2003; Bar-Am et 
al., 2005; Weinreb et al., 2005a). 

B3C (1 mg/kg) reversed MPTP-induced loss of dopami-
nergic neurons and behavioral abnormitiies via effectively 
up-regulating MEF2D from the activation of Akt/GSK3β 
pathway (Yao et al., 2012). In the present study, 0.3 and 1 
mg/kg B3C also alleviated behavioural abnormitiies, restored 
the contents of dopamine and its metabolites in the stria-
tum, and up-regulated TH expression in the substantia nig-
ra. To examine whether the effectiveness of B3C is associated 
with MAO inhibition, we have performed MAO-B activity 
assay. Our results showed that B3C could inhibit MAO-B 
with an IC50 of 115.8 μM. However, B3C could effectively 
prevent glutamate and K+ deprivation-induced neurotox-
icity with an IC50 at sub-nanomolar level (Luo et al., 2010; 

Hu et al., 2013). The concentration up to 100 μM is toxic to 
neurons and cannot be reached in the brain when 1 mg/kg 
of B3C was administrated to mice. Therefore, we deduced 
that the neuroprotective effects of B3C in MPTP-injected 
mice were independent of its MAO-B inhibition property. In 
consistent with the findings of a previous study (Yao et al., 
2012), B3C up-regulated MEF2D and inhibited GSK3β in 
our study. However, rasagiline and the combination of B3C 
and rasagiline could not significantly alter the expressions 
of MEF2D and GSK3β. How could rasagiline counteract the 
effect of B3C on the expression of MEF2D and GSK3β? It 
needs to be investigated in our further study. 

The reason why there is no synergism between B3C and 
rasagiline is possibly due to the concentrations of drugs used 
in the present study. In the study of Reznichenko et al. (2010), 
to test the additive/synergistic action of the combination of 
rasagiline and EGCG in MPTP mice, low/sub-effective dos-
ages of drugs were chosen. And individual drug at used dos-
age did not exert positive effects. Such experimental design 
could circumvent potential “masking” of the contribution 
of rasagiline and EGCG to the neuroprotective effects. In 
our study, the dosages of B3C and rasagiline were close to 
their maximal effective dosages. Therefore, low/sub-effective 
dosages are required for further investigating the synergism 
between B3C and rasagiline on MPTP-induced model of 
Parkinsonism. 

In the present study, we have investigated, for the first 
time, the synergistic effects between B3C and rasagiline in 
MPTP-induced mice model of Parkinsonism. In consistent 
with previous findings (Mandel et al., 2007; Sagi et al., 2007; 
Yao et al., 2012), both B3C and rasagiline significantly pro-
tected dopaminergic neurons against damage and reversed 
behavioral abnormities in MPTP-treated mice. However, the 
combination of B3C and rasagiline could not produce syner-
gistic effects. 
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