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Predicting peptide inter-residue contact maps plays an important role in computational
biology, which determines the topology of the peptide structure. However, due to the
limited number of known homologous structures, there is still much room for inter-residue
contact map prediction. Current models are not sufficient for capturing the high accuracy
relationship between the residues, especially for those with a long-range distance. In this
article, we developed a novel deep neural network framework to refine the rough contact
map produced by the existing methods. The rough contact map is used to construct the
residue graph that is processed by the graph convolutional neural network (GCN). GCN
can better capture the global information and is therefore used to grasp the long-range
contact relationship. The residual convolutional neural network is also applied in the
framework for learning local information. We conducted the experiments on four different
test datasets, and the inter-residue long-range contact map prediction accuracy
demonstrates the effectiveness of our proposed method.

Keywords: peptide inter-residue contact map prediction, deep learning, graph convolutional network, residual
convolutional neural network, multiple sequence alignment

1 INTRODUCTION

Peptides play an important role in computational and experimental biology (Torrisi et al., 2020),
which motivates the development of accurate methods to predict their native conformations from
the sequences. As a special kind of peptide, protein-related predictions from its amino acid sequence
remain an open problem in the field of computational biology. Using biological experiments to
determine the protein structure is very cumbersome and expensive. Therefore, it is very effective to
use machine learning methods or deep learning methods to obtain a universal law from the amino
acid sequence to the prediction of a protein’s three-dimensional structure. The inter-residue contact
map (Lena et al., 2012) is a two-dimensional representation of a protein’s three-dimensional
structure. The contact map constrains the conformation of protein structures; as a result,
accurate prediction of the contact map can facilitate ab initio structure modeling, and the
accuracy of the contact map affects the accuracy of the three-dimensional structure of the
protein. Furthermore, contact maps have been widely used for model assessment and structure
alignment.

The current contact map prediction methods are mainly based on direct coupling analysis (DCA)
methods, machine learning methods, and deep learning methods. DCA-based methods mainly use
multiple sequence alignment methods to determine the relationships between amino acid pairs.
However, DCA-based methods assume that pairs of contacted residues are more likely to mutate
simultaneously as the protein structure or function evolves and mainly use the multiple sequence
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alignment (MSA) to determine the relationships between the
amino acid pairs. Therefore, the accuracy of the DCA-based
method depends on the number of homologous protein
sequences in the protein sequence library. On the other
hand, due to the existence of indirect evolutionary coupling
information, the generated coupling information from the DCA
might include “noise signal.” The commonDCA-based methods
include CCMpred (Seemayer et al., 2014), PSICOV (Jones et al.,
2012), and GREMLIN (Kamisetty et al., 2013). CCMpred
mainly uses Markov random field pseudo-likelihood
maximization to learn the contacts between the protein inter-
residues. When there are a large number of homologous
proteins in the protein sequence, the accuracy of the contact
prediction results is higher; however, when the sequences of the
homologous protein are fewer, the accuracy is lower. On the
other hand, machine learning-based and deep learning-based
methods use a set of input features derived from multiple
sequence alignments (MSAs) to predict the protein inter-
residue contact map, including position-specific scoring
matrices (PSSMs), secondary structure (SS) predictions, and
solvent accessibility (SA) information. Machine learning-based
methods are mainly based on support vector machines (SVMs)
(Hearst et al., 1998) to learn the abovementioned features and
common support vector machine (SVM) methods including
SVMCon (Cheng and Baldi, 2007) and R2C (Yang et al., 2016).
SVMCon used support vector machines (SVMs) and yields good

performance on medium- to long-range contact predictions. In
recent years, deep learning methods have been mainly used to
predict the contact map between the protein inter-residues and
are mainly based on the structure of the convolutional neural
network (CNN) and residual neural network (ResNet) (He et al.,
2016). The ResNet structure further improves the CNN
structure and solves the problem of reduced accuracy when
there are too many convolutional layers through the skip
connection mechanism. RaptorX-Contact (Wang et al., 2017)
was the first model that used the ResNet structure for protein
inter-residue contact map prediction tasks. Zhong Li et al. (Li
et al., 2020) used ResNet and DenseNet (Huang et al., 2017)
structures and a new protein sequence feature (PSFM) to
improve the contact map prediction accuracy. DeepCov
(Jones and Kandathil, 2018) applied the CNN to predict
contact maps when limited evolutionary information is
available, which has been trained on a very limited set of
input features: pair frequencies and covariance. It is noticed
that there are several similar studies predicting the distance
matrix instead of the contact map, such as RaptorX structure
prediction (Xu, 2018), PG-GNN (Xia and Ku, 2020), and
AlphaFold (Senior et al., 2020).

However, there are two main difficulties in obtaining accurate
contact predictions. First, many amino acid sequences lack a large
number of homologous sequences, which limits the level of accuracy
of predictions. On the contrary, the target sequences with many

FIGURE 1 | Framework of the RCMPM.
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homologous sequences might generate “noise signals” from the
evolutionary coupling information. Second, most methods use
convolutional neural network (CNN)-based models for inter-
residue contact map prediction, leading to over-learning of the
local information, but under-learning of the long-range
information, which is reflected by a low long-range accuracy.

Therefore, eliminating “noise signals” is necessary to
improve the residue contact prediction. Improving the inter-
residue contact prediction has been of interest for many years
due to its critical importance in structure bioinformatics, with
either the sequence or structure template information. R2C
(Yang et al., 2016) used SVM and PSICOV methods and
used a dynamic fusion strategy to predict the contact map
between amino acids and applied Gaussian noise filters for
further denoising. Amelia Villegas-Morcillo et al. (Villegas-
Morcillo et al., 2018) applied K-SVD (Aharon et al., 2006)
and deep convolutional neural network (DCNN) methods
specially designed for image denoising to solve the problem
of Gaussian noise. DNCON2 (Adhikari et al., 2017) adopted the
structure of the two-stage convolutional neural networks
(CNNs) to improve the contact map prediction, which
divides the prediction into two parts. The first part trains five
CNNs to predict the contact map between the distances of 6, 7.5,
8, 8.5, and 10, respectively. The second part takes the input
feature as the output of the first part and then utilizes a CNN
structure for further prediction.

In the past few years, the graph neural network (Zhou et al.,
2018) was raised to represent the protein structure in various deep
learning-based methods and had succeeded in the computational
biology area, such as protein interface prediction, protein
solubility prediction, and protein function prediction. Fout
et al., (2017) proposed a type of architecture for the task of
predicting protein interfaces between the pairs of proteins using a
graph representation of the underlying protein structure.
GraphSol (Chen et al., 2020) was used to predict the protein
residue solubility by combining the predicted contact maps,
graph neural networks, and attention mechanisms. DeepFRI
(Gligorijević et al., 2021) used an LSTM (Hochreiter and
Schmidhuber, 1997) and a graph convolutional network to
predict protein functions. PG-GNN (Xia and Ku, 2020) used a
new convolution kernel to perform deep convolution to obtain
the distance map, which was used to construct an inter-residue
graph between the residues for obtaining the dihedral
information between residues, and finally constructed a three-
dimensional protein structure.

Here, to focus on getting more accurate contact maps,
especially on the long-range level, we developed a novel
refined contact map prediction model (RCMPM) to refine the
rough contact map produced by the existing methods, which
combines a graph convolution network (GCN) (Kipf and
Welling, 2016) and residual convolution neural networks
(ResNet) (He et al., 2016). The main contributions of the
article are summarized as follows:

• The peptide contact map refinement task is modeled as a
geometric 2D graph improvement, with nodes representing
the amino acid residues and edges representing contacts

between the residues. The rough results of other models
such as CCMpred and RaptorX-Contact are used to
construct the inter-residue contact graph.

• Aiming at the challenges previously mentioned, a novel
deep neural network framework is proposed for the inter-
residue contact prediction by combining a graph
convolution network (GCN) and residual convolution
neural networks (1D ResNet and 2D ResNet), of which
the GCN has a strong global information extraction ability,
and hence can better capture the long-range contact
relationships among the complex sequence inter-residues.

• The experiments are conducted on four different test
datasets, and the inter-residue long-range contact map
prediction accuracy demonstrates the effectiveness of our
proposed method due to the new network architecture.

The rest of the article is organized as follows. Section 2 details
the materials and methods, including contact definition, graph
construction, feature selection, and the proposed prediction
model. Section 3 reports the datasets used in our method,
evaluation metrics, and experiments on four test datasets.
Section 4 concludes the article and discusses the directions for
the future work.

2 MATERIALS AND METHODS

2.1 Contact Definition
In general, two residues are considered to be in contact if certain
atoms are close enough to form a molecular interaction. In the
Critical Assessment of protein Structure Prediction (CASP)
experiment (Moult et al., 2014, 2016, 2018), the contact
definition is based on the spatial distance of Cβ atoms. For
instance, assuming that v � v1, v2, . . . , vi, . . . , vj, . . . , vL{ } is the
residue sequence, where L is the sequence length, and
(xvi, yvi, zvi) is the three-dimensional coordinates of amino
acid residue vi, then the equation for the distance between
the residues vi and vj is

Distance i, j( ) � Distance Cβi , Cβj( )
�

�������������������������������
xvi − xvj( )2 + yvi − yvj( )2 + zvi − zvj( )2√ . (1)

If the Euclidean distance between theCβ atoms (Cα for GLY) of
two amino acids is less than a given threshold γ, then the two
residues are said to be in contact.

2.2 Graph Construction
As mentioned in Section 2.1, we can use the other contact map
prediction models, such as CCMpred (Seemayer et al., 2014) and
RaptorX-Contact (Wang et al., 2017), to obtain a contact matrix
CM. Assuming that the length of the peptide is L, then CM is an
L×L matrix, whose element CMij denotes whether the pair of
residues i and j is contacted or not (1 or 0). Denote G � N,E{ } is
the contact graph of the peptide, whereN is the node set including
L amino acids, and E is the edge set. Then, the contact graph could
be constructed as follows:

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8596263

Gu et al. Refined Contact Map Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Algorithm 1. Graph construction.

where lij is the edge between node i and node j, and the
threshold γ is set as 8Å in this article.

2.3 Feature Selection
2.3.1 Sequence Features
We devised three groups of sequence features to train our model,
namely, the position-specific scoring matrix (PSSM), secondary
structure (SS), and solvent accessibility (SA). The PSSM is a
widely used sequence feature, which is produced by executing
PSI-BLAST (Altschul et al., 1997) on the UniRef90 database
(Suzek et al., 2015) with 0.001 e-value after the three iterations,
which is a 20-dimensional profile feature for each residue. The
secondary structure and solvent accessibility describe the
arrangement of the protein backbone, which are also very
important for the contact prediction. The secondary structure and
solvent accessibility are predicted by the RaptorX-Property (Wang
et al., 2016) program (http://raptorx.uchicago.edu/
StructurePropertyPred/predict/). The secondary structure is
divided into three categories, namely, helix (H), strand (E), and
coil (C), and the solvent accessibility is also classified into three types,
namely, buried, medium, and exposed. The PSSM is represented as a
two-dimensional matrix of L × 20, while both the secondary structure
and solvent accessibility are represented as a two-dimensional matrix
of L× 3; therefore, the concatenation sequence embedding vectorXseq

is obtained with the L × 26 dimension, where the order of the splicing
input is [PSSM, secondary structure, and solvent accessibility].

2.3.2 Pairwise Features
Pairwise features are the information that characterizes the
relationship between the pairs of residues, including the co-
evolutionary information, statistical information, and so on.
Four groups of pairwise features are used to train our model,
namely, RaptorX-Contact prediction, CCMpred prediction,
mutual information (Dunn et al., 2008), and contact potential
(Betancourt and Thirumalai, 1999), which provide the co-
evolutionary information for each pair of alignment columns.
RaptorX-Contact and CCMpred prediction are mainly used as
inter-residue scores. RaptorX-Contact prediction results can be
obtained by model training, the source code of which can be
downloaded from https://github.com/j3xugit/RaptorX-Contact.
CCMpred prediction results can be obtained by the CCMpred
program, which could be accessed at https://github.com/
soedinglab/CCMpred. However, CCMpred requires the
homologous sequence result of the multiple sequence
alignment (MSA) as the input, which is produced by executing
the HHblits program (Remmert et al., 2012) on the Uniclust30

database (Mirdita et al., 2017) with 0.001 e-value after three
iterations. Both RaptorX-Contact and CCMpred output an inter-
residue score for each residue pair. After the MSA profile is
obtained, the mutual information could be defined by

MIij � ∑
x,y∈R

pij x, y( )ln pij x, y( )
pi x( )pj y( ), (2)

where R is the set of amino acid types, x and y are the elements in
column i and column j, respectively, pi(x) and pj(y) indicate the
probabilities of residue x in column i and residue y in column j, and
pij(x, y) is the probability that residue x is in column i and residue y
is in column j, respectively. Normalized mutual information,
namely, average product correction (APC) mutual information
is also used in our method, which is defined by

MIAPCij � MIij − APCij, (3)

APCij �
∑
j≠i

MIij ∑
i≠j

MIij

∑
i,j i≠j( )

MIij
. (4)

The contact potential is computed by averaging the contact
potential terms across the two alignment columns. Mutual
information and contact potential are generated by alnstats in
the MetaPSICOV (Jones et al., 2015) program, which also
requires the homologous sequence as the input. For RaptorX-
Contact prediction, CCMpred prediction, mutual information,
APC mutual information, and contact potential, all are
represented as a three-dimensional matrix of L × L × 1;
therefore, the concatenation pair-wise embedding features Xpair

are obtained with the L × L × 5 dimension, where the order of the
splicing input is [RaptorX-Contact prediction, CCMpred
prediction, MI, APC MI, and contact potential].

2.4 Prediction Model
2.4.1 The Framework of the RCMPM Model
Residual networks (ResNets) are very helpful for accurate peptide
contact map prediction, which has been demonstrated in the
RaptorX-Contact model (Wang et al., 2017). Therefore, ResNet
architecture is retained in our proposed refined contact map
prediction model (RCMPM). On the other hand, the rough
contact map obtained by the other methods could be well utilized
by transferring it into an amino acid graph, and therefore, the graph
convolution network (GCN) could handle the graph topology very
well. Hence, the proposed RCMPMmodel includes a GCN module,
a 1D ResNet module, and a 2D ResNet module, respectively.

Figure 1 shows the framework of the RCMPMmodel, which
has two types of features, namely, sequence features and pair-
wise features. The GCN module is used to learn the global
structural features of the inter-residue contact graphs, whose
input is the node representation of the sequence features, and
the output is a dense global structural embedding vector for
each amino acid node. 1D ResNet module is used to handle the
one-dimensional sequence feature and output a sequence
embedding vector for each amino acid. 2D ResNet module
integrates the above two modules’ outputs and the pair-wise
features as well and finally generates the refined contact map.
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The following part of this section will describe these three
modules in detail.

2.4.2 GCN Module
Given a sequence with L residues, the residue graph can be
represented by a contact map, that is, the nodes of the graph
are the residues of the peptide, and the features of the nodes are
represented by the attributes of the residues. The edges of the
contact graph indicate whether there are connections between the
amino acid nodes, and the weight of the edge represents the
probability of contact. We used the graph convolution network
(GCN) to obtain the global structural features of the graph.

The graph convolutional layer in the predictionmodel uses the
following equation:

H l+1( ) � σ ~AH l( )W l( )( ), (5)
where ~A � A + IL is the variant of the adjacency matrix by adding
the self-loop identity matrix IL on the original adjacencymatrixA,
and H(l) is the hidden matrix learned by the lth layer, initial of
which is the hidden matrix H(0) = Xseq.W

(l) is a weight matrix of
the layer-specific trainable parameters and is used to map the
iterations to a low-dimensional rich information space, and σ is a
nonlinear activation function, which is taken as the ReLU
function in our model. We also use normalization to map the
input feature of each layer H(l) to [0,1] to improve the data
performance and reduce errors. Finally, we used a 2-layer graph
convolutional network to learn the global structural features of
the contact graph containing amino acid node features. Hence,
the final output of the GCN module in the RCMPM model uses
the following equation:

XGCN � RELU ~AReLU ~AXseqW
0( )( )W 1( )( ). (6)

2.4.3 1D ResNet Module
A 1D ResNet module is used to handle the one-dimensional
sequence feature and outputs a sequence embedding vector for
each residue, which is stitched together by the residual blocks. A
residual block consists of two convolutional layers and two
activation layers, which can be defined as follows:

Xl+1 � F Xl,Wl( ) +Xl, (7)
where Xl and Xl+1 are the input and output vectors of the residual
block, respectively, and the initial hidden matrix X0 = Xseq. Here,
Wl is the weight matrix in convolutional layers of the lth block,
and F(Xl, Wl) represents the result after the action of the
convolutional layer and activation function layer. Here, the
operation of the convolutional layer is implemented by the
conv1d function of the tensorflow framework. Here, we used
the ReLU function as the activation function of our method and
also used normalization to map the data to [0,1] to improve data
performance and reduce errors. We kept the dimension of Xl+1

larger than Xl because the higher dimension can carry more
information. For a residual block, the F(Xl, Wl) function can be
expressed as shown in Figure 2.

Finally, the output of the 1D ResNet module in the RCMPM
model could be described as follows:

X1DResNet � ∑n
l�0

F Xl,Wl( ) +Xl. (8)

In our 1D ResNet module, the number of residual blocks is
selected as 3.

2.4.4 2D ResNet Module
The 2D ResNet module is used to learn the final contact relationship
for each residue pair by integrating the aforementioned two
modules, namely, that it takes the input of the output feature
XGCN of the GCN module and the output feature X1DResNet of the
1D ResNet module and the pairwise feature Xpair as well. Different
with the 1D ResNet module, the 2D ResNet module is dealing with
two-dimensional feature maps. The pairwise features Xpair is of L ×
L × 5 dimension, as described in section 2.3.2, while the output
features XGCN and X1DResNet are the one-dimensional feature map
with the same dimension L × n, which should be converted to a two-
dimensional feature map. Similarly with the method used in (Wang
et al., 2017), XGCN and X1DResNet are first concatenated on the second
dimension, obtaining an L × 2n feature map X1DFinal:

X1DFinal � X1DResNet ⊕ XGCN. (9)
Then, it is converted to a 2-dimensional feature map.

Redefined X1DFinal from L × 2n to L × 1 × 2n dimension by
adding a second-order dimension with 1, then duplicate X1DFinal

L times to extend the second order from 1 to L, getting an L × L ×
2n tensor TXGCN1D. TXGCN′ is denoted as the transpose of
TXGCN1D on the first two orders; XGCN and X1DResNet are
finally integrated as IntegrateGCN:

IntegrateGCN � TXGCN1D ⊕ TXGCN1D′ , (10)

FIGURE 2 | Structure of the residual block.
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where ⊕ represents concatenation on the third-order dimension;
therefore IntegrateGCN1D is of L × L × 4n dimension. Afterward, it
should be combined with the pairwise features Xpair by

X2DInput � IntegrateGCN ⊕ Xpair, (11)
where X2DInput is of L × L × (4n + 5) dimension finally.

We also used the same residual network block structure with
that of the 1D ResNet (Figure 2) module to stack the 2D ResNet
module. The difference is that the 2D ResNet module is dealing
with 2D feature maps and utilizing conv2d function of the
tensorflow framework for the convolution operation. The final
output X2DResNet of the 2D ResNet module could be expressed by

X2DResNet � ∑n
l�0

F Xl,Wl( ) +Xl, (12)

whereXl is the input feature of the lth residual block, being initialized
by X0 = X2DInput,Wl is the weight matrix in the convolutional layers
of the lth block, F() is the mapping function with the same meaning
of that in the 1D ResNet block, and n is the block number, which is
set as 30 in the 2D ResNet module. Hence, the output of the 2D
ResNet X2DResNet will go through the softmax layer and obtain the
inter-residue contact label:

y � Softmax X2DResNet( ), (13)
where y ∈ 0, 1{ }L×L, the element yij means whether the pair of
residue i and residue j is contacted according to the model (1 for
contacted and 0 for uncontacted).

To train the model, the cross-entropy function averaged over
all the residue pairs is used as the loss function:

E t, y( ) � − 1
L2

∑
i

∑
j

tij logyij, (14)

where tij is the true contact label, and yij is the predicted contact
label between residues i and j, and L is the length of the peptide.
For the training process, stochastic gradient descent optimization
is utilized, and the learning rate is set as 0.01.

3 RESULTS

3.1 Training and Test Datasets
In our experiment, we used one training dataset to train our
proposed RCMPM model and four different testing datasets to
test its performance.

The training dataset is a subset of PDB25 extracted from the
PDB database (http://www.rcsb.org/pdb/home/home.do) with
homology reduction at 25% level of sequence identity,
resulting in 6767 non-homologous protein sequences. The
number of amino acids of each training protein ranges from
26 to 300. To avoid overfitting, 400 proteins are randomly chosen
for validation and the remaining others for training.

To evaluate the performance of our model, it is applied to four
testing datasets. The first testing dataset is the PDB25 dataset, which
contains 500 nonhomologous protein sequences. The training set,
validation dataset, and testing dataset of the abovementioned
PDB25 dataset can be downloaded from http://raptorx.uchicago.
edu/ContactMap/. The other three datasets were obtained from
three CASP (Critical Assessment of Structure Prediction)
competitions (CASP10 (Moult et al., 2014), CASP11 (Moult
et al., 2016), and CASP12 (Moult et al., 2018)). For the three
CASP datasets, we used the same screening method as that used
in the R2C method (Yang et al., 2016). For the CASP10 dataset, the
sequence data could be accessed on the website of https://
predictioncenter.org/download_area/CASP10/targets/. The total
number of the sequences is 123. However, seven short sequences
are removed (T0651-D3, T0675-D1, T0675-D2, T0677-D1, T0700-
D1, T0709-D1, and T0711-D1), and the constructed CASP10 test
dataset size is 116. CASP11 and CASP12 datasets are also publicly
available on the websites of https://predictioncenter.org/download_

TABLE 1 | Contact map results by four different methods on the PDB25 testing dataset.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.528 0.475 0.361 0.257 0.456 0.356 0.222 0.148 0.356 0.275 0.175 0.121
R2C 0.666 0.667 0.648 0.449 0.591 0.590 0.322 0.176 0.597 0.408 0.201 0.119
RaptorX-Contact 0.774 0.739 0.633 0.497 0.758 0.675 0.469 0.300 0.756 0.641 0.404 0.241
RCMPM (CCMpred) 0.718 0.685 0.582 0.446 0.707 0.622 0.421 0.262 0.685 0.576 0.355 0.208
RCMPM (RaptorX-Contact) 0.784 0.748 0.646 0.508 0.761 0.679 0.473 0.300 0.754 0.645 0.403 0.237

FIGURE 3 | Comparison of method accuracy for the long-range contact
on the PDB25 testing dataset.
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area/CASP11/targets/ and https://predictioncenter.org/download_
area/CASP12/targets/, with 105 and 55 sizes, respectively. After
removing the three short sequences from CASP11 (T0759-D1,
T0820-D1, and T0820-D2), the final sizes of CASP11 and
CASP12 datasets are 102 and 55, respectively.

3.2 Evaluation Metrics
By using the same evaluation criteria as the CASP competition,
we evaluated the accuracies of the top L/k (k = 10, 5, 2, 1)
predicted contacts, where L is the protein sequence length.
Accuracy is the proportion of true positive samples in the
total number of predicted positive samples, which is defined by

Accuracy � TP

TP + FP
, (15)

where TP is the number of predicted contacted pairs being
actually contacted, and FP is the number of predicted
contacted pairs not being actually contacted, respectively.
Residue–residue contacts are categorized into three types
according to the residue distances in sequence: short-range,
medium-range, and long-range corresponding to the distances
between 6 and 11, 12 and 23, and at least 24 residues, respectively.
It should be noted that a long-range contact places strong
constraints on the conformation of peptides and is particularly
important for the peptide structure and function study, which is
also the main focus of this article.

3.3 Performance on PDB25 Testing
Datasets and CASP Testing Datasets
In our experiment, we used top L/k (k = 10, 5, 2, 1) in the long-
range contact to evaluate the prediction accuracy of contact maps.
Here, L is the length of the sequence, and the prediction accuracy
rates are given in three kinds of contact, namely, long-range,
medium-range, and short-range.

The datasets used in our experiment are PDB25, CASP10,
CASP11, and CASP12 datasets. To examine the performance of
our proposed RCMPM model, three state-of-the-art methods are
used for comparison, namely, CCMpred (based on Markov random
field pseudo-likelihood maximization, MSA), R2C (based on SVM),
and RaptorX-Contact (based on ResNet), respectively. We have
realized CCMpred and RaptorX-Contact models and trained them
under the same environments with that of the RCMPM and hence
obtained the experiment results of the two models by ourselves. The
results of R2C on CASP10 and CASP11 datasets are cited from the
reference (Villegas-Morcillo et al., 2018), while the results on the other
two datasets are calculated through its webserver (http://www.csbio.
sjtu.edu.cn/bioinf/R2C/). For comparison, two rough contact maps,
produced by CCMpred and RaptorX-Contact models, are used to
construct the amino acid graph in the proposed RCMPM,
respectively.

Table 1 shows the comparison results on the PDB25 dataset.
For the long-range contact type prediction, the results of the
RCMPM by using the CCMpred outputs as the rough contact
map (RCMPM (CCMpred)) are significantly better than those of
CCMpred, with 19.9%, 22.2%, 38.0%, and 73.5% improvements on
top L/10, L/5, L/2, and L levels, respectively. Compared to R2C, it
improves by 7.8% and 2.7% on the top L/10 and L/5 levels,
respectively, and decreased by 10.2% and 0.7% on the top L/2
and L levels, respectively. RaptorX-Contact is an excellent
algorithm, the results of which are better than those of RCMPM
(CCMpred). However, when the RCMPMmodel uses the output of
RaptorX-Contact as the rough contact map (RCMPM (RaptorX-
Contact)), it outperforms RaptorX-Contact on all the four top
levels with 1.3%, 1.2%, 2.1%, and 2.2% improvements, respectively.
The results of RCMPM (RaptorX-Contact) are also significantly
better than CCMpred, R2C, and RCMPM (CCMpred), with the
only exception being slightly below R2C at the top L/2 level.
Figure 3 shows the comparison results of five methods on the
long-range contact type prediction. For the medium-range contact
type, both RCMPM (CCMpred)) and RCMPM (RaptorX-Contact)
are significantly superior to CCMpred and RaptorX-Contact, both
outperforming their opponents at the four top levels. Among all the
five comparison methods, RCMPM (RaptorX-Contact) performs

TABLE 2 | Contact map results by four different methods on the CASP10 testing dataset.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.533 0.477 0.355 0.242 0.512 0.417 0.272 0.185 0.418 0.313 0.197 0.137
R2C 0.413 0.306 0.198 0.143 0.540 0.425 0.278 0.191 0.571 0.511 0.373 0.264
RaptorX-Contact 0.674 0.625 0.490 0.372 0.699 0.629 0.458 0.318 0.638 0.540 0.368 0.233
RCMPM (CCMpred) 0.639 0.583 0.455 0.342 0.646 0.593 0.426 0.290 0.571 0.486 0.316 0.198
RCMPM (RaptorX-Contact) 0.673 0.611 0.495 0.371 0.681 0.612 0.452 0.312 0.630 0.530 0.360 0.225

FIGURE 4 | Comparison of method accuracy for the long-range contact
on the CASP10 testing dataset.
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best at all the four levels. For the short-range contact type, RCMPM
(CCMpred)) is greatly better than CCMpred, while RCMPM
(RaptorX-Contact) performs similarly with RaptorX-Contact,
both significantly outperforming the other three methods.

Table 2 shows the comparison results on the CASP10 dataset.
For the long-range contact type prediction, the results of RCMPM
by using CCMpred outputs as the rough contact map (RCMPM
(CCMpred)) are significantly better than those of CCMpred, with
19.8%, 22.2%, 28.2%, and 41.3% improvements on top L/10, L/5, L/
2 and L levels, respectively. Compared to R2C, it improved by
54.7%, 90.5%, 129.8%, and 139.2% at the four top levels,
respectively. When the RCMPM uses the RaptorX-Contact
outputs as the rough contact map (RCMPM (RaptorX-
Contact)), it performs similarly with the RaptorX-Contact, with
−0.1%, 1.0%, −2.2% and −0.2% variations at the top levels,
respectively. Both of them significantly outperform CCMpred
and R2C, and a little better than RCMPM (CCMpred).
RCMPM (RaptorX-Contact) increases by 26.3%, 28.1%, 39.4%,
and 53.3% compared to CCMpred and increases by 63.0%, 99.7%,
150.0%, and 159.4% compared to R2C at the four top levels, while
compared to RCMPM (CCMpred), the improvements are 5.3%,
4.8%, 8.8%, and 8.5%, respectively. Figure 4 shows the comparison
results of the five methods on the long-range contact type
prediction. The results are similar for both the medium-range
contact and short-range contact types, with RCMPM (CCMpred)

being significantly superior to CCMpred, while RCMPM
(RaptorX-Contact), despite its lower performance than
RaptorX-Contact, had a weak gap.

Table 3 shows the comparison results on the CASP11 dataset.
For the long-range contact type prediction, the results of the
RCMPM by using the CCMpred outputs as the rough contact
map (RCMPM (CCMpred)) are significantly better than those of
CCMpred, with 40.8%, 50.9%, 72.1%, and 86.9% improvements at
the four top levels. Compared to R2C, it outperforms at all the
four top levels with 26.2%, 39.5%, 62.5%, and 72.6%. RaptorX-
Contact is better than RCMPM (CCMpred). However, when the
RCMPM uses the output of RaptorX-Contact as the rough
contact map (RCMPM (RaptorX-Contact)), it improves by
0.8%, 1.8%, 1.4%, and 1.5% on the four top levels, respectively.
The results of RCMPM (RaptorX-Contact) are also significantly
better than CCMpred and R2C. The results are similar for both
the medium-range contact and short-range contact types, with
RCMPM (CCMpred) being significantly superior to CCMpred,
while RCMPM (RaptorX-Contact), despite its lower performance
than RaptorX-Contact, had a weak gap. Figure 5 shows the
comparison results of the five methods on the long-range
contact type prediction. For both the medium-range contact
and short-range contact types’ results, we can draw the
following conclusions: among the three existing state-of-the-art
(SOTA) methods, RaptorX-Contact performs the best; RCMPM

TABLE 3 | Contact map results by four different methods on the CASP11 testing dataset.

Long-range Medium-range Short-range

Method L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.448 0.393 0.290 0.206 0.376 0.298 0.187 0.132 0.318 0.251 0.162 0.118
R2C 0.500 0.425 0.307 0.223 0.397 0.296 0.192 0.138 0.314 0.228 0.146 0.115
RaptorX 0.659 0.608 0.512 0.396 0.677 0.608 0.447 0.296 0.683 0.598 0.405 0.249
RCMPM (CCMpred) 0.631 0.593 0.499 0.385 0.644 0.593 0.431 0.277 0.646 0.577 0.380 0.224
RCMPM (RaptorX-Contact) 0.664 0.619 0.519 0.402 0.670 0.608 0.450 0.299 0.682 0.601 0.406 0.245

FIGURE 5 | Comparison of method accuracy for the long-range contact
on the CASP11 testing dataset.

FIGURE 6 | Comparison of method accuracy for the long-range contact
on the CASP12 testing dataset.
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(CCMpred) is significantly superior to CCMpred; RCMPM
(RaptorX-Contact) obtains similar results with RaptorX-
Contact, while CCMpred is much lower than RaptorX-
Contact; and RCMPM (CCMpred) has yielded results
comparable to RCMPM (RaptorX-Contact).

Table 4 shows the comparison results on the CASP12 dataset.
For the long-range contact type prediction, the results of the
RCMPM by RCMPM (CCMpred) are significantly better than
those of CCMpred, with 24.8%, 28.1%, 36.1%, and 41.5%
improvements at the top L/10, L/5, L/2, and L levels, while
RCMPM (RaptorX-Contact) outperforms RaptorX-Contact with
4.3%, 3.8%, 1.6%, and 0.6% improvements on the four top levels,
respectively. The results of RCMPM (RaptorX-Contact) are also
significantly better than those of CCMpred and RCMPM
(CCMpred). Figure 6 shows the comparison results of the
five methods on the long-range contact type prediction. For
both the medium-range contact and short-range contact types’

results, we can draw the following conclusions: among the three
existing SOTA methods, R2C performs the best; RCMPM
(CCMpred) is significantly superior to CCMpred; RCMPM
(RaptorX-Contact) obtains similar results with RaptorX-
Contact; CCMpred is much lower than RaptorX-Contact, but
the gap between RCMPM (CCMpred) and RCMPM (RaptorX-
Contact) is greatly reduced.

To summarize the long-range results of the four datasets, it
could be found that our proposed RCMPM method is
significantly superior to the other methods on PDB25 and
CASP11. For CASP10, RCMPM performs much better than
CCMpred and R2C, and although it does not perform as well
as RaptorX, the gap is very small. For CASP12, the accuracy of
RCMPM is higher than that of CCMpred and RaptorX, and is
slightly lower than that of R2C. Therefore, it can be concluded
that our proposed method performs best overall on the four
datasets and is the most stable one as well.

TABLE 4 | Contact map results by four different methods on the CASP12 testing dataset.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

CCMpred 0.447 0.406 0.296 0.205 0.421 0.339 0.205 0.136 0.355 0.256 0.165 0.119
R2C 0.615 0.601 0.524 0.407 0.622 0.545 0.399 0.259 0.584 0.502 0.323 0.205
RaptorX 0.583 0.552 0.438 0.323 0.616 0.545 0.371 0.247 0.581 0.488 0.331 0.222
RCMPM (CCMpred) 0.558 0.520 0.403 0.290 0.586 0.492 0.329 0.213 0.525 0.438 0.278 0.177
RCMPM (RaptorX-Contact) 0.608 0.573 0.445 0.325 0.606 0.530 0.372 0.245 0.591 0.484 0.333 0.215

TABLE 5 | Contact map results by the comparison between our network structures.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

RCMPM (without GCN) 0.775 0.741 0.635 0.498 0.761 0.676 0.471 0.299 0.755 0.642 0.402 0.238
RCMPM 0.784 0.748 0.646 0.508 0.761 0.679 0.473 0.300 0.754 0.645 0.403 0.237

TABLE 6 | Comparison results for feature combinations by using the rough RaptorX-Contact contact map.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

RCMPM (PSSM) 0.772 0.741 0.639 0.502 0.760 0.674 0.467 0.297 0.761 0.642 0.403 0.238
RCMPM (PSSM+SS) 0.777 0.742 0.639 0.505 0.760 0.673 0.469 0.298 0.756 0.643 0.401 0.237
RCMPM (PSSM+SS+SA) 0.784 0.748 0.646 0.508 0.761 0.679 0.473 0.300 0.754 0.645 0.403 0.237

TABLE 7 | Comparison results for feature combinations by using the rough CCMpred contact map.

Method Long-range Medium-range Short-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

RCMPM (PSSM) 0.657 0.604 0.461 0.308 0.614 0.499 0.299 0.180 0.581 0.438 0.238 0.138
RCMPM (PSSM+SS) 0.712 0.670 0.570 0.437 0.692 0.609 0.411 0.254 0.680 0.569 0.346 0.201
RCMPM (PSSM+SS+SA) 0.718 0.685 0.582 0.446 0.707 0.622 0.421 0.262 0.685 0.576 0.355 0.208
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3.4 Ablation Study
3.4.1 Evaluation of the GCN Module of the Model
Structure
In order to examine the effectiveness of our proposed method, we
used two network structures to construct different network
structures, the original RCMPM and the RCMPM removal
GCN module (RCMPM (without GCN)). Table 5 shows the
comparison results on the PDB25 dataset. Compared to the
RCMPM (without GCN), the RCMPM improves by 1.2%,
0.9%, 1.7%, and 2% on the top L/10, L/5, L/2, and L levels,
respectively, while the RCMPM performs much similar with the
RCMPM (without GCN) on both the short-range and medium-
range levels. This is because the graph neural networkmodule can
utilize the output of the existing methods, especially on the global
information level, and therefore reflected by improvements on
the long-range level contact prediction.

3.4.2 Evaluation of Different Feature Combinations
In order to verify the effectiveness of the sequence features on the
long-range contact map prediction, we used three different feature
combinations as the input of the 1D ResNet module and GCN
module, including PSSM, PSSM, and secondary structure
(PSSM+SS), including the PSSM, secondary structure, and
solvent accessibility (PSSM+SS+SA), a total of L×26 dimensional
features. Table 6 shows the comparison results by using the
RaptorX-Contact outputs as the rough contact map on the
PDB25 dataset. From Table 6, it could be found that on the
long-range contact type, RCMPM (PSSM+SS+SA) is improved
by 0.9%, 0.8%, 1.7%, and 0.6% at the four top levels compared
to RCMPM (PSSM+SS) and 1.6%, 0.9%, 1.1%, and 1.2% on the four
top levels compared to RCMPM (PSSM). Meanwhile, on the
medium-range contact type, although the trend is the same as
the long-range type, the increase is very small. On the short-range
contact type, the results of the three methods are even very close.
Table 7 shows the comparison results by using the CCMpred
outputs as the rough contact map on the PDB25 dataset. From
Table 7, it could be found that on the long-range contact type,
RCMPM (PSSM+SS+SA) is improved by 0.8%, 2.2%, 2.1%, and
2.1% at the four top levels compared to RCMPM (PSSM+SS) and
9.3%, 13.4%, 26.2%, and 44.8% at the four top levels compared to
RCMPM (PSSM). On the medium-range and short-range contact
types, the results of the RCMPM (PSSM+SS+SA) are also better
than the other two types’ results. The results show that the PSSM is a
very important feature for the contact prediction, and the secondary
structure and solvent accessibility are also beneficial. When the
initial contact map is used as RaptorX-Contact, the secondary
structure and solvent accessibility have a limited effect on the
medium- and short-range contact type predictions, in part
because the RCMPM uses the output of RaptorX-Contact, which
already contains the secondary structure and solvent accessibility
information.

4 DISCUSSION

In this article, we formulated the peptide contact map refinement
task as a geometric 2D graph improvement and proposed a novel

refined contact map prediction model (RCMPM) to refine the
protein inter-residue contact map predictions using graph
convolutional neural networks (GCNNs) and one-dimensional
and two-dimensional residual neural network (1D ResNet and
2D ResNet) architectures. Our method combines the residual
neural networks for learning the local information with the graph
convolutional neural networks for learning the global
information, which can better capture the long-range contact
relationship between the complex sequence inter-residues. The
experimental results show that our method can refine the contact
map greatly for the long-range contact type, that is to say, by
using CCMpred outputs as the rough contact map, the RCMPM
is significantly better than CCMpred, and by using the RaptorX-
Contact outputs as the rough contact map, the RCMPM is
significantly better than RaptorX-Contact as well. For the
medium-range contact prediction, the degree of
improvement is significantly reduced, and for the short-
range contact prediction, there is not even a significant
improvement. The main reason is that the GCN module of
the RCMPM can utilize the outputs of the existing methods,
which are highly reflected on the global information level, and
therefore, the RCMPMmodel makes improvements mainly on
the long-range contact types. By using a larger protein
database in HHblits or PSI-BLAST to calculate the
homology features of protein sequences and combining
more effective features as inputs, we can expect to further
improve the precision.
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