
Long-Term Compost Amendment Spurs Cellulose
Decomposition by Driving Shifts in Fungal Community
Composition and Promoting Fungal Diversity and Phylogenetic
Relatedness

Yuncai Miao,a,b Junjie Li,a,b Ye Li,a,b Yuhui Niu,a Tiehu He,a Deyan Liu,a Weixin Dinga

aState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

ABSTRACT Cellulose is the most abundant polysaccharide in plant biomass and an
important precursor of soil organic matter formation. Fungi play a key role in carbon
cycling dynamics because they tend to decompose recalcitrant materials. Here, we
applied [12C]cellulose and [13C]cellulose to distinguish the effects of application of com-
post, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer (control) for 27 years
upon cellulose decomposition via RNA-based stable isotope probing (RNA-SIP). The loss
ratio of added cellulose C in compost soil was 67.6 to 106.7% higher than in NPK and
control soils during their 20-day incubation. Dothideomycetes (mainly members of the ge-
nus Cryptococcus) dominated cellulose utilization in compost soil, whereas the copiotro-
phic Sordariomycetes were more abundant in NPK and unfertilized soils. Compared with
NPK and control soils, compost application increased the diversity of 13C-assimilating
fungi. The 13C-labeled fungal communities in compost soil were more phylogenetically
clustered and exhibited greater species relatedness than those in NPK and control soils,
perhaps because of stringent filtering of narrow-spectrum organic resources and biologi-
cal invasion originating from added compost. These changes led to an augmented
decomposition capacity of fungal species for cellulose-rich substrates and reduced cellu-
lose C sequestration efficiency. The RNA-SIP technique is more sensitive to responses of
fungi to altered soil resource availability than DNA-SIP. Overall, long-term compost appli-
cation modified fungal community composition and promoted fungal diversity and phy-
logenetic relatedness, accelerating the decomposition of substrate cellulose in soil. This
work also highlights the RNA-SIP technique’s value for comprehensively assessing the
contributions of active fungi to the substrate decomposition process.

IMPORTANCE Cellulose is a very rich component in plant biomass and an important
precursor of soil organic matter formation. Fungal communities are known to be im-
portant drivers of organic carbon accumulation in arable soils. However, current under-
standing of responses of fungal species to cellulose amendment and the contributions
of active fungi to substrate decomposition process is still very superficial. Here, we
established a [13C]cellulose microcosm experiment with soils subjected to long-term
application of compost, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer
(control). The novel 13C-RNA-SIP technique with subsequent high-throughput sequenc-
ing was used to investigate the linkages between active fungal taxa and cellulose
decomposition. Our study demonstrated that Dothideomycetes dominated cellulose uti-
lization in compost soil, whereas the copiotrophic Sordariomycetes were more enriched
in both NPK and unfertilized soils. We also found that the compost amendment pro-
moted fungal diversity and phylogenetic relatedness and strengthened the decomposi-
tion capacity of fungi for cellulose-rich substrates by enhancing synergistic interactions,
thereby reducing cellulose C sequestration efficiency. Overall, our research has implications
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for our understanding of the role of active fungi in cellulose C transformation in
soils undergoing different types of long-term nutrient management.

KEYWORDS [13C]cellulose, fungi, long-term fertilization, RNA, stable isotope probing

Increasing soil organic carbon (SOC) sequestration improves soil fertility and mitigates
climate change (1). The input of organic materials such as crop residues, whose biomass

is now 3.8 � 109 tons year21 globally (2), offers an effective and promising approach to
sequester more SOC (3, 4). Cellulose is the richest component in crop residues (5), but its
degradation depends on the concerted action of multiple enzymes, such as endogluca-
nases, cellobiohydrolases, and b-glucosidase (6). During the decomposition of cellulose,
part of cellulose-derived C is mineralized into CO2, whereas the other portion can accumu-
late in soil as microbial necromass and metabolites (7). Fungi are pivotal for cellulose
decomposition because they can extend their hyphae to access substrates and produce
extracellular enzymes which break down recalcitrant compounds, namely, cellulose (8).
Certain fungal taxa, such as Sordariomycetes, Staphylotrichum, and Dothideales, are the
main utilizers of cellulose in soils (9, 10). However, a fundamental understanding of how
fungal community composition and diversity affect cellulose decomposition is still lacking.

Long-term application of organic fertilizers to soil can shift fungal community com-
position toward more saprotrophic fungi and higher fungal diversity (11, 12), possibly
due to the increased organic substances and colonization by exogenous species from
organic amendments (13). Recently, Fang et al. (14) found that an increase in saprotro-
phic fungal abundance resulted in higher rates of decomposition of leaf litter in forest
soil around arbuscular mycorrhizal trees than ectomycorrhizal trees. Earlier, Ling et al.
(15) demonstrated that in comparison with chemical fertilizers, organic amendments
support stronger functional potential by enhancing the diversity and abundance of
functional groups with respect to C-, N- and P-related metabolism. In particular, it has
been shown that cocultures of diverse species can break down substrate biomass (i.e.,
lignocellulose and cellulose) more efficiently than can the same species in monocul-
tures (16, 17). In general, greater microbial diversity entails more complex microbial
interactions and effectively promotes soil functioning, such as C decomposition, by
producing complementary enzymes acting at different sites of targeted compounds or
by enhancing overall enzyme production (18–20). For example, “sugar” fungi, which
cannot break down cellulose, are able to use the labile products of cellulose decompo-
sition by cellulolytic fungi, such as cellobiose (21). This contributes to improving the
cellulase activities of cellulolytic species by alleviating product inhibition (22), thereby
accelerating the substrates’ decomposition.

Nucleic acid-based stable isotope probing (SIP), whereby stable isotopes such as
13C derived from labeled substrates are incorporated into microbial nucleic acids fol-
lowed by high-throughput sequencing, can provide a way to link phylogenetic infor-
mation of microbes to their functioning (23). The DNA-SIP technique has been widely
used to investigate active microbes utilizing organic substances, such as the organic
compounds glucose (24), cellulose (10, 25), and lignin (26), as well as some heteroge-
neous materials, such as straw residues (27) and root (28). However, because DNA has
a long residence time in soil, any relic DNA, including extracellular DNA and nonde-
composed DNA from dead cells, may obscure the real changes in metabolically active
microbial communities (29). In contrast, RNA-SIP has higher sensitivity than DNA-SIP
due to the faster turnover and isotopic incorporation of RNA than DNA (30); hence, it is
useful for identifying microbial communities that are actively involved in ecological
processes at the temporal scale of sampling. However, the instability of RNA renders
this technique more challenging for assessing specific functions of the active microbial
community.

In this study, soils sampled from the plots of three treatments in a long-term (27-year)
fertilization field experiment were incubated with [12C]cellulose and [13C]cellulose. 13C
RNA-SIP with subsequent high-throughput sequencing was used to characterize the soil
fungal communities during cellulose decomposition. The objectives were 3-fold: (i) to
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identify 13C-assimilating fungal communities and determine their impact on cellulose
decomposition, (ii) to evaluate the influence on cellulose-using fungi of different fertil-
izers’ application, and (iii) to compare differences in the response of fungal species to cel-
lulose amendment as determined by RNA-SIP and DNA-SIP techniques. We hypothesized
that long-term compost application alters fungal community composition, thereby stimu-
lating cellulose decomposition and turnover to soil organic matter.

RESULTS
Soil properties and cellulose decomposition rate. Compared with NPK addition

and no addition (control), adding compost significantly (P , 0.05) increased the or-
ganic C, total N, available P, and available K of soil but did not affect its C/N ratio or pH
(Fig. S1). During the 20-day incubation, 38% of cellulose-derived 13C was retained in
compost soil, which was significantly (P , 0.05) less than that retained in NPK (63%)
and control (70%) soils (Fig. S2).

13C-assimilating fungal community composition and diversity. Fungal RNA from
the [13C]cellulose microcosms was more abundant in the heavy fractions (buoyant den-
sities of 1.790 to 1.820 g mL21), whereas that from [12C]cellulose microcosms was
enriched in the light fractions (buoyant densities of 1.767 to 1.784 g mL21) (Fig. S3).
We selected fungal RNA in the heavy fractions from both [12C]cellulose and [13C]cellu-
lose microcosms for the high-throughput sequencing analysis. Principal-coordinate
analysis (PCoA) (Fig. S4) revealed a different fungal community composition in the
heavy fractions of [13C]cellulose microcosms versus [12C]cellulose microcosms. Here,
fungal microorganisms in the heavy fractions from [13C]cellulose microcosms were
defined as 13C-assimilating fungal taxa.

Long-term compost amendment altered the 13C-labeled fungal community struc-
ture (Fig. 1a). The hierarchical clustering analysis showed that fungal communities in
compost soil were significantly distinguished from those in NPK and control soils
(Fig. 1b). Compost soil increased the diversity of 13C-assimilating fungi compared with
that of NPK and unfertilized soils (Fig. 2). The nearest-taxon index (NTI) in compost soil
reached 0.47, a value significantly greater than zero (P , 0.05), whereas for the NPK
(0.30) and control (20.54) soils, neither value differed significantly from zero. These

FIG 1 Principal-coordinate analysis (PCoA) and hierarchical clustering analysis of 13C-assimilating
fungal communities with OTUs classified at 97% sequence similarity, based on Bray-Curtis distances.
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results indicated that the 13C-labeled fungal communities in compost soil were phylo-
genetically clustered, in contrast with the expected random clustering and dispersion
of fungal microorganisms in NPK and control soils, respectively.

Cellulose was mainly utilized by Ascomycetes across the various fertilization treat-
ments (Fig. 3a). The compost treatment yielded a lower relative abundance of
Ascomycetes (53%) than NPK treatment (78%) and control treatment (90%). In stark
contrast, Basidiomycota increased from 3.5 to 8.2% in NPK and control soils to 15% in
compost soil. At the class level, Dothideomycetes (26%) were the most abundant in
compost soil, followed by Sordariomycetes (15%) and then Tremellomycetes (11%)
(Fig. 3b). This contrasts with Sordariomycetes being predominantly responsible for cel-
lulose utilization in NPK and control soils, accounting for 44% and 76%, respectively, of
their total fungal species. To better understand the effect of compost application on
13C-labeled fungal community composition, significantly different biomarkers at the
genus level in compost treatment were analyzed (Fig. 4). Compared with NPK and con-
trol soils, the genus Cryptococcus was markedly (P , 0.05) enriched in compost soil,
with the highest relative abundance among these biomarker taxa. Additionally,
Alternaria, Mycosphaerella, Paraconiothyrium, and Cochliobolus, which are all affiliated
with the class Dothideomycetes, were also increased in compost treatment.

FIG 2 Shannon diversity, observed OTUs, and nearest-taxon indexes (NTI) of 13C-assimilating fungi in
the soils undergoing long-term fertilization. The whiskers denote standard errors of the means
(n = 3). Different letters and the asterisk indicate significant differences (P , 0.05) among the three
fertilization treatments and between NTI values and zero, respectively.

Compost Amendment Spurs Cellulose Decomposition mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.00323-22 4

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.00323-22


Association of cellulose decomposition rate with fungal communities. Regression
analysis revealed that fungal community structure (as represented by the first principal
component) was positively (P , 0.01) correlated with cellulose decomposition rate
(Fig. 5). Further, the cellulose decomposition rate also increased as a function of soil
fungal diversity (Shannon index) and NTI. These results indicated that 13C-assimilating
fungal communities had substantial effects on cellulose decomposition.

Comparison of 13C-assimilating fungal community composition and diversity
determined by DNA- and RNA-SIP. The RNA-SIP technique revealed that Ascomycota
dominated cellulose utilization in all soil treatments (Fig. 3), which is consistent with
results of the DNA-SIP technique (Fig. S5). However, these two techniques uncovered
different 13C-labeled fungal communities in soils. Compared with NPK and unfertilized
soils, compost soil increased the relative abundance of Basidiomycota at the RNA level
while increasing that of Ascomycota at the DNA level. Meanwhile, the RNA-SIP tech-
nique showed higher levels of fungal diversity across all test soils in comparison with
DNA-SIP (Fig. 2 and Fig. S6).

DISCUSSION
Fungal communities regulated by fertilization influence cellulose decomposition.

Long-term compost amendment altered the composition of the 13C-assimilating fungal
community and strongly influenced soil cellulose C turnover. Dothideomycetes domi-
nated cellulose utilization in compost soil, whereas Sordariomycetes were more preva-
lent in both NPK and unfertilized soils (Fig. 3). These results are consistent with those
of Schneider et al. (31), who found that Sordariomycetes and Dothideomycetes (all
Ascomycetes) were the dominant cellulase producers for cellulose decomposition
and reported their key involvement in the breakdown of plant biomass (32, 33).
Dothideomycetes commonly occur in more extreme ecological niches and exhibit a con-
siderable capacity to maintain cooperative metabolic associations with other species (34).
For example, Dothideomycetes were associated with the depolymerization of recalcitrant

FIG 3 Relative abundances of major phyla (a) and classes or genera (b) among members of 13C-
assimilating fungal communities (.1%) occurring in soils undergoing long-term fertilization. The
OTUs annotated as class incertae sedis were all assigned to the genus Malassezia.
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polymers during plant litter decomposition (35) and could serve as indicators for slow
and passive organic C decomposition in the upper-layer soil (0- to 15-cm depth) of the
Alaskan tundra (36). Accordingly, in compost soil, the input of complex organic materials
favored the growth of Dothideomycetes (37), thereby contributing to the breakdown of
cellulose. In contrast, Sordariomycetes are ubiquitous in agricultural soils (38), largely
because members of this class are fast-growing species that become quickly abundant
there given their high capacities to use labile C resources (39). Our previous study found
that compared with NPK and control soils, the oxygen effective diffusion coefficient in com-
post soil was decreased to 1.30 � 1026 m2 s21 from 3.05 � 1026 to 5.19 � 1026 m2 s21

due to more macroaggregate formation (40). It is likely that more oxygen availability in
NPK and unfertilized soils favors the proliferation of Sordariomycetes species, in that most
of them are aerobic. Members of Sordariomycetes are able to use a wide variety of sub-
strates, and the majority of them are known to have saprotrophic abilities (41). Therefore,
they generally flourish in response to cellulose-rich straw amendments and are key
decomposers of organic materials in soils (42).

FIG 4 STAMP analysis exhibiting the differentially abundant genera among members of 13C-assimilating fungal populations in
compost treatment compared with NPK and control treatments.
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Microbial biomarker analysis can advance the understanding of how microbial com-
munities modulate the decomposition process of organic materials in soils. Here, the ge-
nus Cryptococcus, in the phylum Basidiomycota, was more abundant in compost soil than
NPK and control soils (Fig. 4). Members of Cryptococcus are characterized as oligotrophs
and often adapt well to severe environments, such as polar regions (43) and arid soils
(44), with the help of polysaccharide capsules, which enable a better access to nutrients
via fungal hyphae (45). The unfavorable soil niches in compost soil, like labile C deficiency
and low oxygen concentration (37, 40), therefore are beneficial for the proliferation of
Cryptococcus. Previous studies documented that Cryptococcus has the potential to
improve soil C cycling, inhibit pathogens, and promote crop yield (46). It seems that some
members of Cryptococcus improved microbiota activity by suppressing the cytotoxicity of
pathogens and accelerated substrate C turnover. Furthermore, Cryptococcus is well known
for its high capacity to decompose complex organic substances by producing extracellular
enzymes (47) and shows negative correlations with SOC content (48). Consequently, the
enhanced population of Cryptococcus potentially increased catabolism rates of cellulose
derived C by increasing enzyme production and reduced 13C sequestration efficiency.

We found that the NTI values for 13C-assimilating fungi were higher than zero in com-
post soil yet close to zero in NPK and control soils, indicating that 13C-labeled fungal
communities in compost soil were phylogenetically clustered and had higher species
relatedness. Environmental filtering is thought to play a key role in the assembly of fun-
gal communities (49). In this respect, the availability of organic materials has been shown
to impose a stringent filter on fungal taxa for the selection of closely related species (50,
51). First, compost amendment typically incorporates narrow-spectrum C resources, such
as stable hydrophobic materials and lignocellulose, into soil (37). This would strengthen
the niche-filtering effect on the fungal community according to the species-sorting con-
cept (52), since most fungal species have particular preferences for certain substrates
(53), resulting in phylogenetic niche conservatism of fungal communities in compost soil
(54). Second, biological invasion from added organic fertilizers possibly filtered out some
native soil microbial species, whose competitive advantage is low, through strengthened
interspecific competition (13). These processes would lead to the extinction of some
fungal species due to their poor adaptation to abrupt changes in environmental
conditions and, accordingly, reduced fungal diversity (55). However, compost soil
harbored higher fungal diversity than NPK and control soils (Fig. 2). The direct input
of organic fertilizers introduces diverse fungal species, the majority of which can
persistently colonize the soil due to their preference for recalcitrant resources (56,
57). Following a 15-year organic fertilization, Sun et al. (13) found that exogenous
fungal species from added manure accounted for up to 10.9% of soil fungal richness.
Therefore, the greater diversity we observed in compost-treated soil could have
arisen from the introduction of exogenous fungi.

Microbial diversity is pivotal in soil nutrient cycling processes such as C decomposi-
tion (58–60). Here, the diversity of 13C-labeled fungi was positively correlated with

FIG 5 Relationships between cellulose decomposition and the community characteristics of 13C-assimilating
fungi in soils undergoing long-term fertilization. The shaded area is the 95% confidence interval of the
regression line. Cellulose decomposition is expressed as the percentage of cellulose-derived C loss.
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cellulose decomposition rates (Fig. 5). This result is consistent with work by Juarez et
al. (61) and Maron et al. (62); using a dilution-to-extinction approach in microcosm
experiments, they found that SOC mineralization increased as soil microbial diversity
increased. These findings suggest that the coexistence of multiple fungal groups may
promote their functional capacities and hasten the C cycling process (63, 64). The com-
plementarity function niche hypothesis states that many distinct species can utilize C
resources successively, by producing complementary enzymes during the substrate
decomposition process (65). Consequently, fungal communities with higher diversity
are more apt to generate greater complementarity effects, which could have contrib-
uted to the depolymerization of cellulose in compost soil. Moreover, the observation
that the diverse fungal taxa were characterized by pronounced clustering and connec-
tivity in compost soil suggests a strengthened pattern in synergistic interactions for C
utilization (66). Microbial groups with a high degree of interspecies dependence can
induce more complex and positive interactions, leading to high C consumption in soils
with long-term unbalanced fertilization (67). Therefore, it is likely that in our study, the
compost amendment increased the capacity of soil fungal species to decompose cellu-
lose-rich substrates by enhancing such complementarity interactions, whose outcome
is a better collective exploitation of cellulose-derived C in soil (68).

Comparison of 13C-assimilating fungal communities determined by DNA-
and RNA-SIP. Similar to our previous measurement of 13C-assimilating fungal com-
munity using DNA-SIP (Fig. S5), the RNA-SIP technique also identified Ascomycota
dominating cellulose utilization across all soil treatments (Fig. 3). This is because
those members of Ascomycota (mostly saprotrophic fungi) are highly enriched in arable
soils and thrive in response to cellulose amendments (38, 41). However, the RNA-SIP
and DNA-SIP techniques uncovered different 13C-labeled fungal communities in soils.
Compost amendment increased the relative abundance of Basidiomycota at the RNA
level while increasing that of Ascomycota at the DNA level compared with NPK and
unfertilized soils.

The RNA-based microbial species are more sensitive to changes in soil resource
availability due to their rapid incorporation of substrate-derived C into RNA (69). As
such, they are expected to be metabolically active at the time of sampling (30, 70).
Another advantage to using RNA-SIP is that it requires a lower substrate 13C enrich-
ment of 10 atom% (71) than the 20 atom% needed for DNA-SIP (72). Hence, the RNA-
based SIP technique could effectively target slow-growing microbial species capable of
actively synthesizing RNA but not DNA. The low oxygen availability in compost soil
due to increased macroaggregation possibly suppressed the growth of fast-growing
Ascomycota (40). The reduced 13C content in compost soil during incubation also
adversely affected Ascomycota’s proliferation, since its members generally tend to
thrive on C-rich substrates (42). Conversely, more recalcitrant organic substances
derived from cellulose, such as microbial necromass and by-products, were readily
available for Basidiomycota, whose members are characterized by low growth rates
and prefer to decompose recalcitrant polymers (39). In contrast, the DNA-SIP technique
may favor fast-growing fungi with high turnover rates that incorporate most of the
newly added 13C to repair or duplicate their DNA (73). Moreover, the DNA-SIP analysis
tends to target the most abundant functional members of a community, including its
dead and metabolically active taxa, simply because DNA persists longer than RNA in
soil (74). Consequently, compared with RNA-SIP, the DNA-SIP approach is liable to
overestimate the relative abundance of metabolically active Ascomycota. Our results
suggest that RNA-based microbial analysis could be more robust at detecting ecologi-
cally active microorganisms, especially slow-growing microbes, in response to varia-
tions in available soil resources.

The RNA-SIP technique revealed higher levels of 13C-labeled fungal diversity across
all test soils in comparison with DNA-SIP (Fig. 2 and Fig. S6), indicating that RNA-SIP
could recover fungal diversity more comprehensively than DNA-SIP (75). This is
because microorganisms with low isotopic incorporation arising from their low growth
rate and low competitive advantage for C resources can be reliably detected by RNA-
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SIP (70, 71). Interestingly, at the RNA level, the compost soil featured higher fungal di-
versity than the NPK and control soils, but this pattern was reversed at the DNA level.
This suggests that in compost treatment, more diverse species participated in cellulose
utilization and fungal synergistic interactions might have played a more important role
than expected by DNA-SIP. Therefore, our work emphasizes the importance of using
the RNA-SIP technique to discern active participants in substrate utilization and to
comprehensively assess microbial contributions to decomposition processes in soils.

Conclusions. How long-term application of compost and NPK fertilizers affects soil
fungal communities and the consequences for cellulose decomposition were both experi-
mentally investigated in this study. Dothideomycetes (mainly the genus Cryptococcus)
dominated cellulose utilization in compost soil, whereas the copiotrophic Sordariomycetes
were more abundant in both NPK and unfertilized soils. The compost amendment pro-
moted fungal diversity and phylogenetic relatedness and strengthened the decomposi-
tion capacity of fungi for cellulose-rich substrates by enhancing synergistic interactions.
The RNA-based SIP technique is sensitive enough to detect responses of fungi to local
shifts in soil resource availability and could efficiently distinguish slow-growing microor-
ganisms. Overall, because of the augmented decomposition capacity of fungal species for
cellulose-rich substrates, the accumulation of cellulose-derived C is less efficient in com-
post-treated soil.

MATERIALS ANDMETHODS
Soil sampling. The field experiment was established in 1989 at the Fengqiu State Key Agro-ecological

Experimental Station (35°009N, 114°249E) in Henan Province, China. Soil in the study region was derived
from alluvial sediments of the Yellow River and classified as an Aquic Inceptisol (76). The experimental
field site had been developed for a cropping rotation system of winter wheat (Triticum aestivum) fol-
lowed by summer maize (Zea mays), for which detailed information can be found in the work by Miao
et al. (77). Soil samples (0- to 20-cm depth) were collected from three treatments: no fertilizer (control),
nitrogen-phosphorus-potassium fertilizer (NPK), and compost. Each treatment had four replicate plots
based on a completely randomized design, and soil samples from each plot were mixed to form a
composite. Each soil sample was divided into two subsamples: one was stored at 4°C for the SIP incu-
bation, and the other was air dried for analysis of soil properties (Fig. S1).

Microcosm experiment. For each treatment soil, three groups were established: (i) soil with [12C]cel-
lulose added; (ii) soil with [13C]cellulose added; and (iii) soil without cellulose. Fresh soil samples (each
10 g, on an oven-dried basis) were placed in 100-mL incubation jars. The 13C-labeled cellulose (2 mg
g21; 97 atom% 13C; produced from maize [Zea mays] straw; uniformly labeled; IsoLife, Wageningen, the
Netherlands) and 12C cellulose (1.93 mg g21; ,1.2 atom% 13C) were added to the soil and immediately
homogenized. Soil water-holding capacity was maintained at 60% by adding deionized water, every
other day, using a minipipette. The top of each jar was covered by a plastic wrap with needle-punctured
holes to maintain aerobic conditions; all jars were incubated at 20°C in the dark. Three replicates per
group were destructively sampled 20 days later for microbial analysis and determinations of d 13C values
and content of organic C. The SOC content was quantified using a wet oxidation-redox titration. To mea-
sure d 13C, soil samples were pretreated with HCl to remove any inorganic C and then analyzed using a
MAT 253 isotope ratio mass spectrometer (Thermo Electron, Bremen, Germany).

RNA extraction and stable isotope probe gradient fractionation. Total RNA was extracted from
fresh soil per sample, using the RNA power soil isolation kit (MO BIO Laboratories, CA, USA), with DNase
I used to remove any contaminant DNA from the extracted RNA. These RNA samples were purified fur-
ther using the RNeasy minikit (Qiagen, Hilden, Germany), after which quality and quantity of purified
RNA were checked with a NanoDrop 1000 spectrophotometer (Wilmington, DE, USA). Next, ca. 500 ng of
this purified RNA was mixed with a cesium trifluoroacetate (CsTFA) gradient buffer (0.1 M Tris-HCl, pH
8.0; 0.1 M KCl; 1 mM EDTA), to achieve a buoyant density of 1.790 g mL21. Each sample mixture was
spun in a VTI 65.2 vertical rotor (Beckmann Coulter Inc., USA) using an Optima XPN 80 centrifuge
(Beckman Coulter Inc., USA), at 130,000 � g for 65 h at 20°C. The ensuing centrifuged RNA gradients
were then fractionated using a peristaltic pump (ISM850; Ismatec, Switzerland) and the buoyant density
of each fraction was measured by an AR200 digital refractometer (Reichert, USA).

For RNA precipitation, all fractions were mixed with isopropanol, and RNA pellets were air dried and
resuspended in 20 mL of RNase-free sterile water. The cDNA for each fraction was synthesized using the
total RNA as a template, according to the manufacturer’s instructions provided with HiScript II reverse
transcription SuperMix (Bio-Rad, CA, USA). Copy numbers of the fungal internal transcribed spaced (ITS)
gene in each fraction were determined by quantitative PCR (qPCR), using the primer set ITS1F-ITS2 (78)
with synthesized cDNA as the template, in a Bio-Rad S1000 machine (Bio-Rad Laboratories, CA, USA).
The thermal cycle protocol was as follows: 95°C for 3 min followed by 40 cycles of 95°C for 30 s, 55°C for
30 s, and 72°C for 30 s, with a 10-min final extension at 72°C. A standard curve was derived using a serial
10-fold dilution of plasmids harboring the ITS gene. Every amplification yielded a single peak and the
amplification efficiencies of our assays were 91.0 to 96.5%, with high coefficients of determination (r2 =
0.961 to 0.998).
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Illumina HiSeq sequencing and bioinformatics analysis.We chose RNA samples from the [13C]cel-
lulose microcosms and the corresponding fractions from [12C]cellulose microcosms at high density for
further analysis. These RNA samples were reverse transcribed into cDNA for their Illumina amplicon
sequencing. For this, the same primer sets were used as for the ITS gene amplification described above.
The PCR products were purified using an EZNA gel extraction kit (Omega, USA). Then, to yield the
sequencing libraries, the NEBNext Ultra DNA library preparation kit was used according to the manufac-
turer’s instructions. High-throughput sequencing was performed on an Illumina HiSeq 2500 platform
(Illumina, San Diego, CA, USA) to generate 250-bp paired-end reads. The assembly of these paired-end
reads was done using the FLASH tool (79), with the Quantitative Insights into Microbial Ecology (QIIME)
pipeline (80) used to perform the quality filtering of reads. The resulting high-quality sequences were
then clustered into operational taxonomic units (OTUs) at a 97% similarity by the UPARSE algorithm
(81). Representative sequences, those most abundant per OTU, were taxonomically annotated with the
RDP classifier (34). To determine differences between samples, a randomly selected subset of 108,055
sequences per sample underwent a downstream analysis.

Statistical analyses. Significant differences in the proportions of cellulose-derived 13C, the Shannon
diversity index, observed OTUs, and the NTI values for the three fertilization treatments were determined
by one-way analysis of variance (ANOVA), followed by a least-significant-difference (LSD) test at a P value
of ,0.05, in SPSS 19.0 for Windows (IBM Corp., Armonk, NY, USA). Both a principal-coordinate analysis
(PCoA) and hierarchical clustering with unweighted pair group method with arithmetic mean (UPGMA)
were carried out for fungal communities according to their relative abundance matrix based on Bray-
Curtis distances, using the “vegan” and “stats” packages for R (v4.0.3), respectively. Significantly different
biomarkers at the genus level were identified using Welch’s t test (P , 0.05) in statistical analysis of
metagenomic profiles (STAMP) (82). Relationships between cellulose decomposition and fungal commu-
nity characteristics were assessed using linear regression models.

To estimate the phylogenetic community structure of soil fungi, the NTI was calculated for each sam-
ple using the ses.mntd function in the “picante” package for R (83). An NTI value significantly greater
than zero indicates that coexisting species have closer associations than expected by chance (phyloge-
netic clustering). Conversely, an NTI significantly less than zero indicates that the species have more dis-
tant associations than expected by chance (i.e., phylogenetic overdispersion) (49). For these analyses, a
phylogenetic tree based on aligned representative sequences was constructed in MEGA 7.0 software.

Data availability. The raw sequence data were submitted to the NCBI Sequence Read Archive (SRA)
with accession number PRJNA774483.
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