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Abstract: Recent advances in high-resolution three-dimensional X-ray CT imaging have made
it possible to visualize fluid configurations during multiphase displacement at the pore-scale.
However, there is an inherited difficulty in image-based curvature measurements: the use of voxelized
image data may introduce significant error, which has not—to date—been quantified. To find the best
method to compute curvature from micro-CT images and quantify the likely error, we performed
drainage and imbibition direct numerical simulations for an oil/water system on a bead pack
and a Bentheimer sandstone. From the simulations, local fluid configurations and fluid pressures
were obtained. We then investigated methods to compute curvature on the oil/water interface.
The interface was defined in two ways; in one case the simulated interface with a sub-resolution
smoothness was used, while the other was a smoothed interface extracted from synthetic segmented
data based on the simulated phase distribution. The curvature computed on these surfaces was
compared with that obtained from the simulated capillary pressure, which does not depend on the
explicit consideration of the shape of the interface. As distinguished from previous studies which
compared an average or peak curvature with the value derived from the measured macroscopic
capillary pressure, our approach can also be used to study the pore-by-pore variation. This paper
suggests the best method to compute curvature on images with a quantification of likely errors:
local capillary pressures for each pore can be estimated to within 30% if the average radius of
curvature is more than 6 times the image resolution, while the average capillary pressure can also be
estimated to within 11% if the average radius of curvature is more than 10 times the image resolution.

Keywords: pore-scale imaging; multiphase flow; capillary pressure; interfacial curvature; direct
numerical simulation

1. Introduction

Immiscible fluid displacement in porous media is common in a variety of industrial applications,
such as hydrocarbon recovery through water injection, carbon capture and storage in the subsurface
(CCS) and biological water filtration [1–3]. When displacements occur, the arrangement of fluid phases
in contact with each other and a solid is governed by energy balance; displacements move toward
local energy minima at a pore-by-pore level [4]. Hence, it is of interest to study the interfaces of the
phases since the change in the interfacial energy primarily controls the change in the energy of the
system [5]. Furthermore, the curvature of the interface can be used to estimate capillary pressure from
the Young-Laplace equation [6,7].

To help frame the analysis of interfaces, it is useful to introduce some properties of the surface.
In general, at an arbitrary point on surface, two principal curvatures (κ1 and κ2) which are orthogonal
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to each other can be defined. Using these principal curvatures, mean curvature (κm) and Gaussian
curvature (κG) are defined as:

κm =
1
2
(κ1 + κ2), (1)

κG = κ1κ2. (2)

There are other useful measures of the topology of surface called Minkowski functionals.
The zero-order Minkowski functional (M0) is the volume enclosed by a surface. The first- to third-order
Minkowski functionals are defined as:

M1 =
∫

dS, (3)

M2 =
∫

κmdS, (4)

M3 =
∫

κGdS. (5)

The first-order Minkowski functional (M1) is the total area of the surface, the second-order (M2)
and the third-order Minkowski functional (M3) are the surface integral of mean curvature and Gaussian
curvature, respectively.

In immiscible fluid displacements, based on the Young-Laplace equation, capillary pressure (Pc)
which is the pressure difference across the interface locally is related to the mean curvature by:

Pc = 2σκm, (6)

where σ is the interfacial tension between the two phases. Traditionally, in oil/water systems,
the capillary pressure is measured in a laboratory based on the macroscopic definition of Pc = Po − Pw,
where Po and Pw are the pressure in oil and water phases, using, for instance, the porous plate method
in which the pressure of each phase is measured using two external pressure transducers [8,9].

More recently, high-resolution three-dimensional X-ray imaging has been used to measure the
curvature of the interface extracted from segmented CT images during two-phase flow experiments
to derive capillary pressure using Equation (6). Armstrong et al. [6] used synchrotron-based
tomographic datasets of oil/water drainage and imbibition experiments on a bead pack [10].
The capillary pressure obtained from curvature measurements showed fairly good agreement with
that obtained from pressure transducers for imbibition cycles, whereas a systematically lower capillary
pressure was estimated for drainage. Li et al. [11], applying their improved curvature computation
method to the same dataset, provided a better agreement between the pressure measurements
and values derived from curvature computation. Using a similar curvature measurement method,
Herring et al. [12] estimated the capillary pressure for a range of non-dimensional curvature between
0 and approximately 0.225 voxel−1 based on their air/water drainage and imbibition experiments on a
Bentheimer sandstone.

The use of image based interface curvature measurements is not limited to the estimation of
capillary pressure. AlRatrout et al. [13] showed the relationship between the degree of wettability
alteration and pore wall surface roughness. Using micro-CT images obtained during water-flooding
experiments on altered wettability rocks, they performed curvature measurements on both the
oil/water interface and the pore wall surface while providing an estimate of contact angle at
three-phase contact lines. They demonstrated a relationship between surface roughness, curvature and
contact angle, where rougher surfaces, which retained water after primary drainage, tended to be more
water-wet. Later, Lin et al. [14,15] demonstrated the distinct difference in flow behavior between a
water-wet and mixed-wet state based on water-flooding experiments on Bentheimer sandstones. They
observed that for the mixed-wet system the oil/water interfaces had two equal, but opposite, curvatures
in orthogonal directions which means that they are approximately minimal surfaces, resulting in
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efficient displacement of oil. There is a distinct difference in the Gaussian curvature—the product of
the two principal curvatures—with wettability. Strongly water-wet systems have interfaces with a
positive Gaussian curvature, while mixed-wet media have mainly interfaces with a negative Gaussian
curvature. These experimental findings can be interpreted using the Gauss-Bonnet theorem [16]:

χ =
1

4π
M3, (7)

where χ is the Euler characteristic which is the number of oil clusters minus the number of holes in the
clusters. A smaller, negative, χ is associated with better connectivity. M3 is the third-order Minkowski
functional (see Equation (4)) computed on both the oil/water and oil/solid interfaces. This relation
suggests that the negative Gaussian curvature observed in mixed-wet states is related to a negative χ,
hence better phase connectivity.

Using the same experimental datasets as in Lin et al. [14,15], Blunt et al. [17] used the measured
interface curvatures to derive a thermodynamically consistent contact angle based on conservation
of the Helmholtz free energy. This methodology uses curvature and interfacial area measurements
directly to inform the contact angle to be used in pore-scale modeling studies. Khanamiri et al. [18]
provided a geometric description of the free energy of a porous system with two immiscible fluids
using a linear combination of Minkowski functionals. Combining the geometric description with a
thermodynamic description of free energy [5], they have estimated the amount of dissipated energy in
drainage and imbibition processes.

However, there is an inherited difficulty in these image-based curvature measurements: the use
of voxelized images may introduce significant error, which has not—to date—been quantified.
Although several studies have discussed the validity of the method based on comparison between
macroscopic capillary pressure obtained from transducers and the average or peak value of the
computed mean curvatures, a wide range with some negative values have been observed, which are
not expected for the water-wet media studied [6,11,12]. In fact, it is not clear how the distribution of
measured curvatures represents the true local capillary pressure variation, which should be negligible
in capillary equilibrium.

We study the accuracy of the image-based curvature computation using direct numerical
simulations of drainage and imbibition for an oil/water system in complex porous media.
Color-gradient two-phase lattice Boltzmann simulations are performed on synthetic images of a
bead pack and micro-CT images of a Bentheimer sandstone, then the fluid configuration and pressure
distribution after drainage and imbibition are obtained. We use these computations as a benchmark
against which to compare image-based estimates of curvature. We show the comparison between
computed curvatures on oil/water interface surfaces and those obtained from fluid pressure calculating
both an averaged value for an entire sample and the pore-by-pore distribution. We show that the wide
range of computed curvature distribution in a simple water-wet state in previous studies is likely due
to errors in the measurements, and then suggest the best method to compute curvature from images
and quantify the likely error.

2. Methods

2.1. The Color-Gradient Two-Phase Lattice Boltzmann Method

The color-gradient LB model proposed by Halliday et al. [19] was used. Our LB model was
constructed with a 3D19Q lattice model which consists of a set of 19 discrete lattice velocity vectors, ei
in three-dimensional space. We define particle distributions of two immiscible fluids, labeled red and
blue, as f r

i and f b
i , respectively. The fluid density (ρr and ρb) and velocity (u) at position x and time t

are obtained by:
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ρk = ∑
i

f k
i (x, t), k = r or b, (8)

ρu = ∑
i

fi(x, t)ei, (9)

where fi is the total particle distribution given by fi = f r
i + f b

i ; ρ is the total fluid density given by
ρ = ρr + ρb. The lattice Boltzmann equation for the total particle distribution is written as:

fi(x + eiδt, t + δt) = fi(x, t) + Ωi(x, t) + φi, (10)

where δt denotes the lattice time step which is set to unity and Ωi(x, t) and φi are the collision operator
and the body force term, respectively. For the collision operator, we used the Multiple-Relaxation-Time
(MRT) collision operator [20] expressed as:

Ωi = −(M−1SM)i,j
[

f j − f eq
j
]
, (11)

where M and S are the transformation matrix and the diagonal relaxation matrix, respectively. f eq
i is

the equilibrium distribution function which is obtained by a second-order Taylor expansion of the
Maxwell-Boltzmann distribution with respect to the local fluid velocity. The location of the interface
was tracked using a color function ρN defined by:

ρN(x, t) =
ρr(x, t)− ρb(x, t)
ρr(x, t) + ρb(x, t)

, −1 ≤ ρN ≤ 1. (12)

Using the color function, the interfacial tension between two fluids was computed as a spatially
varying body force, F, based on the continuum surface force (CSF) model [21] given by:

F = −1
2

σκm∇ρN , (13)

where σ is the interfacial tension and κm is the mean curvature of the interface. This spatially varying
body force F is incorporated into the lattice Boltzmann equation through the body force term φi. For the
MRT model, this is performed by transforming the forcing term proposed by Guo et al. [22] using the
scheme presented in Yu and Fan [23]. After application of the interfacial tension (F) to the particle
distributions, the recoloring algorithm proposed by Latva-Kokko and Rothman [24] is applied to these
distributions to ensure phase segregation and maintain the interface. This results in a slightly diffusive
interface whose thickness is about 2 to 3 lattice units. Further details of our LB model are provided
in our previous publications [25,26]. The only difference is that we used the MRT collision operator,
while the Single-Relaxation-Time (SRT) collision operator [27] was used in [25,26].

At solid-fluid boundary lattice nodes, a full-way bounce back boundary condition was
implemented to achieve the non-slip boundary condition. In addition, the wettability of the solid
surface was modeled by specifying contact angles using the wetting boundary condition presented in
Akai et al. [25]. This wetting boundary condition accurately assigns contact angles for 3D arbitrary
geometries with smaller spurious currents compared to the widely used fictitious density boundary
condition [25]. For the inlet and outlet boundaries of a simulation domain, we used a constant pressure
and velocity boundary condition [28].

2.2. Curvature Computation on Voxelized Images

We used a curvature computation method presented in the literature [6,7,11,12,14,29]. In this
approach, curvature was measured on a smoothed fluid interface extracted from voxelized, segmented
image data through the fitting of a quadratic form locally to the interface [29].
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We started with three-phase segmented label data (oil, water and solid) obtained from raw
gray-scale CT images. Using the marching cubes algorithm [30], the oil/water interface was extracted
from the label data. Since this surface had a staircase shape, it had to be smoothed before computing
curvature. In this study, we used Laplacian smoothing [31] since our previous study [32] showed
that Laplacian smoothing gave the most accurate curvature estimation among the three smoothing
methods tested: constrained Gaussian smoothing, Laplacian smoothing and boundary preserving
Gaussian smoothing [33].

The extracted surface with a staircase shape was modeled as a triangulated surface, then Laplacian
smoothing, in which the position of a vertex is moved to the average position of its neighboring vertices
in a single iteration, was applied with multiple iterations on the surface. In this study, the extraction
of the interface with the marching cubes algorithm was performed with commercial image analysis
software, while Laplacian smoothing was performed with Paraview.

After the generation of a smoothed triangulated surface, the elemental triangles were fitted by a
quadratic form:

ax2 + by2 + cz2 + 2exy + 2 f yz + 2gzx + 2lx + 2my + 2nz + d = 0. (14)

Then, the principal curvatures and directions of the principal curvatures were obtained from the
eigenvalues and eigenvectors of Equation (14) [6]. The number of neighboring triangles to be used
for the fitting at the center of a triangle can be chosen. We used a fixed value of 4 neighbors in the
following analyses.

3. Results

First, in Section 3.1, using analytical surfaces, the validity of the curvature computation
method described in Section 2.2 was investigated. Based on the analytical surfaces, synthetic
voxelized data were generated. Curvature was estimated on both the analytically generated surfaces
and the surfaces extracted from the synthetic voxelized data. The accuracy of the curvature
computation was evaluated by comparing computed curvature values with the analytical values.
Second, in Section 3.2, to demonstrate the error in curvature computation near three-phase contact
lines, the oil/water interface during a drainage event in a square tube was generated by direct
numerical simulation, then computed curvature values on the interface were compared with analytical
values. Finally, in Section 3.3, we measure curvature on the oil/water interface after drainage and
imbibition processes using the results of direct numerical simulations performed on synthetic images
of a bead pack and micro-CT images of a Bentheimer sandstone.

3.1. Curvature of Analytical Surfaces

We studied a sphere and a catenoid. The former represents the oil/water interface found in a
two-phase displacement process for a strongly water-wet or a strongly oil-wet medium, while the
latter represents the interface observed for a mixed-wet state after aging of rock samples whose local
contact angles varies around 90◦ [15,17]. A catenoid has a zero mean curvature, with two equal and
opposite curvatures in orthogonal directions. Hence, the Gaussian curvature is negative [34].

The sphere had a unit radius, while the minimum radius of curvature of the catenoid was also 1
(see Appendix A, Equation (A1)). 201 × 101 data points were generated by changing the parameters
u and v for every π/100 in the range (u, v) ∈ [0, 2π] × [−1/2π, 1/2π]. A surface was generated
that was comprised of triangles connecting analytically computed points. We refer to these surfaces
as an analytical surface. The curvature was computed on the analytical surfaces using the method
described in Section 2.2. Figure 1 shows these analytical surfaces colored by computed local mean
and Gaussian curvatures. The computed curvatures were sampled for every 0.05 size interval in the
z-direction within the range z ∈ [−1 : 1], then average values of the mean and Gaussian curvature
were calculated for each interval and compared with their analytical values (Figure 2). For all bins,
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the standard deviation of the computed mean and Gaussian curvatures was of the order of 10−3. This
suggests that when the surface is sufficiently smooth, the standard method to compute curvature
in which a quadratic equation is fitted to surfaces provides an accurate estimation with negligible
standard deviation.

a b c d

-2.0 0.0 2.0

curvature

Figure 1. Analytical surfaces of the sphere (a,b) and catenoid (c,d). The surfaces are colored by the
computed mean curvatures (a,c) and Gaussian curvatures (c,d). The analytical solutions are provided
in Equation (A3).
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Figure 2. Comparison between computed and analytically obtained mean and Gaussian curvature
as a function of z-coordinate. (a) Mean curvature of the sphere; (b) Gaussian curvature of the sphere;
(c) Mean curvature of the catenoid; (d) Gaussian curvature of the catenoid.

Next, synthetic voxelized data were generated based on the analytical surfaces. The rectangular
region (x, y, z) ∈ [−1.5, 1.5]× [−1.5, 1.5]× [−1, 1] was sampled with 4 grid sizes of ∆ = 0.025, 0.05,
0.1 and 0.2. Then, a binary label was assigned to each grid block based on the analytical surfaces,
i.e., a grid block was labeled as 0 for the inside of the analytical surface and labeled as 1 for the outside.
The interface between these labels, which had a staircase shape, was extracted from the synthetic
voxelized data. Then, applying Laplacian smoothing, smooth surfaces were generated. We refer to
these surfaces as a smoothed surface. Consequently, 4 smoothed surfaces corresponding to grid sizes
of ∆ = 0.025, 0.05, 0.1 and 0.2 were prepared for the sphere and catenoid.
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Curvature was computed on the smoothed surfaces. Figure 3 shows these smoothed surfaces
colored by the computed local mean curvatures. Here, the surfaces were obtained using 600 smoothing
iterations. The impact of the number of smoothing iterations will be discussed later in this section.
The computed local curvatures were sampled for every 0.2 size interval, which is the largest grid
block size among the 4 grid sizes, in the z-direction within the range z ∈ [−1:1]. Then, the average
and standard deviation of the mean and Gaussian curvature for each interval were computed.
The comparison between computed and analytical values for mean curvature of the sphere and
Gaussian curvature of the catenoid are shown in Figures 4 and 5, respectively. As shown in Figures 4d
and 5d, when the grid size does not have sufficient resolution to capture a feature, using too many
smoothing iterations causes shrinkage of a feature in the sphere and flattening of a feature in the
catenoid around z = 0, resulting in errors in the estimation of curvature.

e f g h

-2.0 0.0 2.0

curvature

a b c d

Figure 3. The smoothed surfaces extracted from the voxelized images for different grid sizes. The sphere
surface with (a) ∆ = 0.025, (b) ∆ = 0.05, (c) ∆ = 0.1 and (d) ∆ = 0.2. The catenoid surface with
(e) ∆ = 0.025, (f) ∆ = 0.05, (g) ∆ = 0.1 and (h) ∆ = 0.2. These surfaces were obtained with
600 iterations of Laplacian smoothing and are colored by the computed mean curvature.

To quantify error in relation to the grid resolution of the original voxelized data, we define
a dimensionless feature size, κ∗ = ∆/R, where R is the minimum absolute value of the radius of
curvature, which is unity for our sphere and catenoid. The first- to third-order Minkovski functionals,
M1, M2 and M3, of the sphere and catenoid were obtained from the computed curvature on the
smoothed surfaces. These functionals quantify the surface area, and the surface-averaged mean
and Gaussian curvature—see Appendix A, Equations (A4) and (A5) for the mathematical details.
Then, they were compared with their analytical values obtained with Equations (A4) and (A5). Here,
we also examined the impact of smoothing by changing the number of smoothing iterations. Figure 6
shows the errors in the estimation of M1, M2 and M3. As we can see in Figure 6a,b for κ∗ = 0.2 with
600 and 1000 iterations: over-smoothing causes shrinkage in an object, resulting in an underestimate
of M1, the surface area, with an overestimate of curvature. In these cases, the errors cancel in the
calculation of M2, since we integrate a larger curvature over a smaller area. In contrast, when the
dimensionless feature size is large, insufficient smoothing can cause significant errors in the estimation
of M3 as seen in Figure 6c,f for κ∗ = 0.025 with 300 iterations.
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Figure 4. The computed mean curvatures together with the values plus and minus one standard
deviation (σ) on the smoothed surfaces of the sphere compared to the analytical value as a function
of the z-coordinate. The mean curvature of the sphere for (a) ∆ = 0.025, (b) ∆ = 0.05, (c) ∆ = 0.1 and
(d) ∆ = 0.2.
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Figure 5. The computed Gaussian curvatures together with the values plus and minus one standard
deviation (σ) on the smoothed surfaces of the catenoid compared to the analytical value as a function
of the z-coordinate. The Gaussian curvature of the catenoid for (a) ∆ = 0.025, (b) ∆ = 0.05, (c) ∆ = 0.1
and (d) ∆ = 0.2.

There was an optimum resolution to accurately compute curvature with voxelized data. When the
resolution of original voxelized data was too fine, computed curvatures showed a large standard
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deviation. This large standard deviation could be reduced by applying more smoothing by increasing
the number of smoothing iterations. On the other hand, when the resolution was coarse, there was a
significant deviation from the analytical solution. This deviation was caused by the shrinkage of the
sphere and by the flattening of the catenoid. Overall, the curvature computation method described in
Section 2.2 with 600 iterations of Laplacian smoothing estimated curvature within a 10 % error for the
range of dimensionless feature size 0.025 ≤ κ∗ ≤ 0.2.
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Figure 6. Errors in the estimation of M1, M2 and M3 as a function of dimensionless resolution, ∆/R.
M1 is the surface area, M2 is the surface-averaged mean curvature and M3 is the surface-averaged
Gaussian curvature. Errors in (a) M1, (b) M2 and (c) M3 for the sphere. Errors in (d) M1, (e) M2 and
(f) M3 for the catenoid. Different iterations of the smoothing procedure were considered.

3.2. Curvature of the Oil/Water Interface in a Simple Pore Geometry

3.2.1. Simulation Conditions

In this section we estimate interfacial curvature where a solid is present. Drainage simulations for a
square tube with a pore width of 36 µm whose inscribed pore radius is therefore 18 µm were performed.
A simulation domain consisting of 144 × 36 × 36 grid blocks with a resolution of 1 µm/voxel was
used. Void buffer regions of 12 × 60 × 60 grid blocks were attached to the inlet and outlet of the
simulation domain. Oil, the non-wetting phase, was injected in the x direction from the inlet face at
x = 0 with a constant velocity, while a constant pressure boundary condition was applied for water,
the wetting phase, at the outlet face at x = 168 µm. The capillary number was defined as Ca = µoqo/σ,
where µo and qo are the viscosity and Darcy velocity (the total flow rate divided by the cross-sectional
area perpendicular to the flow direction) of the injected oil and σ is the interfacial tension between the
oil and water. The injection velocity of oil was chosen to achieve a capillary number of Ca = 1× 10−5,
which is sufficiently low that viscosity forces were insignificant. Six simulations were conducted with
different contact angles ranging from 0◦ to 75◦ to have a range of radius of curvature of the interface.
The simulations were stopped when the interface reached the middle of the domain.
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3.2.2. Curvature of the Interface

First, to validate our direct numerical simulation model, the capillary pressure (Psim
c ) was obtained

from the simulated fluid pressure in the oil and water phases, based on the following:

Psim
c =

1
No

∑
φ>0.9

Psim − 1
Nw

∑
φ<−0.9

Psim, (15)

where No and Nw are the number of oil and water voxels whose color function is ρN > 0.9 and ρN < −0.9,
respectively (see Equation (12) for the definition of the color function). Psim is the fluid pressure in
each voxel. Here, we used the voxels with |ρN | > 0.9 to remove oil/water interface regions in the
simulations. The capillary pressure obtained was compared with the analytically derived capillary
pressure provided in Øren et al. [35] for which wetting layers were present in the corners (θ < 45◦)
and in Blunt [4] for which wetting layers were absent (θ ≥ 45◦). As shown in Table 1, the relative
error in the estimation of capillary pressure was less than 5.6% for the range of contact angles studied
(0◦ ≤ θ ≤ 75◦). This study demonstrates that for a simulation study we have an independent method
to compute capillary pressure and curvature, which does not depend on the explicit consideration of
the shape of the fluid-fluid interface.

Table 1. Comparison of capillary pressure between analytical and simulated values. The expressions of
analytical capillary pressure for a square tube are provided in Øren et al. [35] for when wetting layers
were present in the corners (θ < 45◦) and in Blunt [4] for when wetting layers were absent (θ ≥ 45◦).

Contact Angle [Degrees] Capillary Pressure Relative Error
Analytical [−] Simulated [−]

0 1.05× 10−2 1.11× 10−2 5.6%
15 1.03× 10−2 1.05× 10−2 2.7%
30 9.52× 10−3 9.55× 10−3 0.3%
45 7.86× 10−3 7.78× 10−3 −1.0%
60 5.56× 10−3 5.51× 10−3 −0.9%
75 2.88× 10−3 2.86× 10−3 −0.6%

Next, two types of surface were prepared for the computation of curvature. It is possible to
extract the oil/water interface from the simulations with a sub-grid resolution smoothness. This was
performed by extracting the surface corresponding to the color function ρN = 0. We refer to these
surfaces as simulated interfaces. An example of our simulated phase distribution and the simulated
interface is shown in Figure 7. The other surface is a smoothed interface. This surface was generated
based on synthetic voxelized data from the simulated phase distribution. First, simulation results with
a resolution of 1 µm were labeled as oil, water and solid based on the value of color function in a grid
block (Figure 7c). This synthetic voxel data was then resampled to different grid sizes of ∆ = 1, 2, 3 and
4 µm as shown in Figure 8. Then, the staircase interface extracted from the label data (Figure 7d) was
smoothed with 600 iterations of Laplacian smoothing.

The curvature was then computed on total of 24 smoothed interfaces (6 contact angles × 4 grid
resolutions). Since significant error was observed near the three-phase contact lines in the smoothed
interfaces as shown in Figure 9, we decided to discard curvature values within 3 voxels from the pore
walls. Figure 10 shows the comparison between analytical and computed curvature for the 24 surfaces.
We see that, for all contact angles, the error became larger as the grid size became larger. This was
because for a low resolution, the number of labeled grid voxels within the pore space was not sufficient
to accurately capture the shape of the interface. We could improve the match to the analytical values
by changing the number of smoothing iterations for different grid resolutions, however, it is not our
purpose to optimize the level of smoothing depending on grid resolutions because a variety of feature
sizes can exist in different pore sizes for an application to complex porous media.
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a b c

d

displacement
direction, x

Figure 7. An example of the simulation results for a contact angle of θ = 45◦. (a) The simulated
phase distribution. Oil is shown in red, while water and solid phase are transparent; (b) The synthetic
voxelized data from the simulated phase distribution. Here, only oil is shown; (c) The simulated
interface extracted from the simulated phase distribution corresponding to the color function of ρN = 0
(see Equation (12)) (d) The staircase interface extracted from the synthetic voxelized data.

a b c d

Figure 8. Examples of the synthetic voxelized data resampled from the simulated phase distribution
for a contact angle of θ = 45◦ for grid sizes of (a) ∆ = 1, (b) 2, (c) 3 and (d) 4 µm.

The curvature computation method we used was essentially similar to that in Li et al. [11]
except for the surface smoothing method: they used constrained Gaussian smoothing, while we
used Laplacian smoothing. We also tested constrained Gaussian smoothing for these cases; however,
it was found that constrained Gaussian smoothing was inadequate resulting in larger errors when
the curvature was small (contact angles close to 90◦). We refer to Akai et al. [32] for a further detailed
comparison of smoothing methods. Furthermore, Li et al. [11] used an average weighted by the distance
from the solid to obtain a representative curvature value for a patch of the interface. However, this
was not appropriate for our cases—computed curvatures away from the solid wall do not necessarily
give an accurate estimation as shown in Figure 9. This was also concluded from our other test cases
reported in Akai et al. [32].

In conclusion, for this pore structure with an inscribed radius of 18 µm, most points for a grid
resolution finer than or equal to 3 µm fell in the range of ±30% error. In other words, a voxel size
6 times smaller than or equal to the inscribed radius of the pore space provides curvature estimations
within ±30% error.
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a b

mean curvature [μm-1]

Figure 9. Distribution of computed mean curvature on (a) the simulated surface and (b) the smoothed
surface for θ = 45◦. The grid size of these surfaces are 1 µm/voxel. The analytical value of mean
curvature for this case is κm = 0.04 µm−1 and uniform everywhere. We see large errors near the
three-phase contact line.
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Figure 10. Comparison between analytical and computed dimensionless curvature (κ∗) for the
24 surfaces. ±30% error is indicated by the dotted lines.

3.3. Curvature of the Oil/Water Interface in Complex Pore Spaces

3.3.1. Simulation Conditions

Synthetic bead pack images and micro-CT images of a Bentheimer sandstone were used in this
section to study the interfacial curvature in complex pore spaces. These images had a resolution of
3.5 µm/voxel. Pore structures with a size of 256 × 256 × 256 voxels were cropped from the original
images and used for the simulations. The porosity of these pore structures were 36% for the bead pack
and 19% for the Bentheimer sandstone. For the analysis of the simulation results, the pore structures
were divided into pore regions using commercial image analysis software, resulting in 426 and 279
pore regions for the bead pack and Bentheimer sandstone, respectively. The pore size was defined as
the radius of the largest sphere that could fit in each pore region. The mean pore radius which accounts
for 50% of the pore volume was 37 µm and 30 µm for the bead pack and Bentheimer sandstone,
respectively. Hence, the grid resolution was approximately 10 times smaller than the mean pore radius.
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In Section 3.2, we showed that a grid resolution approximately 6 times the inscribed radius of a channel
provided answers accurate to within 30%: we expect in this case, therefore, that the errors will be
comparable or smaller.

Similar to a laboratory porous plate capillary pressure measurement, oil-wet and water-wet
porous plates were attached to the −x and x faces of the porous domain, respectively. This porous
plate consisted of a mesh of square pores 5 voxels in width and 20 voxels in length with a contact angle
of 150◦ for the oil-wet porous plate and 30◦ for the water-wet porous plate. These porous plate domains
were followed by 10 slices of a complete void space as a buffer region. Therefore, the simulation
domain consisted of 316 × 256 × 256 voxels (Figure 11). Identical density and viscosity of 1000 kg/m3

and 1 mPa were used for the oil and water phases. The contact angle of the pore structure was set to
45◦ everywhere. The interfacial tension between water and oil was 25 mN/m.

Drainage simulations were performed in the +x direction. Initially, the upstream void space
domain was filled with oil, while the rest of pore space was filled with water. During the
drainage simulation, the pressure of oil at the upstream boundary (P+

o ) and the pressure of water
at the downstream boundary (P−w ) were controlled by constant pressure boundary conditions.
Thus, the drainage simulation was performed by imposing a constant macroscopic capillary pressure
(PM

c ), which is given by: PM
c = P+

o − P−w . The macroscopic capillary pressure applied was 1500 Pa
and 2500 Pa for the bead pack and Bentheimer, respectively. Since these capillary pressures were
below the capillary threshold of the water-wet porous plate, we did not observe breakthrough of oil to
the downstream buffer region: the downstream buffer region remained completely filled with water.
The simulations were stopped when the capillary number of the displacement became smaller than
1.0 × 10−6.

Imbibition simulations were then performed in the −x direction by reducing the macroscopic
capillary pressure. This was performed by reducing P+

o while maintaining the same P−w as assigned for
the drainage simulations. For both the bead pack and Bentheimer, the macroscopic capillary pressure
was reduced to 1000 Pa. The imbibition simulations were also stopped when the capillary number
reached 1.0 × 10−6.

20 slices of 
the oil-wet porous plate

20 slices of 
the water-wet porous plate

10 slices of 
the void region

10 slices of 
the void region

Drainage 
in the x direction

Imbibition
in the -x direction

The cross-section of
the porous plate

Figure 11. The simulation model used for the study. (Left) the pore structure of the bead pack. Here,
pore space is shown in white, while solid is transparent. (Right) the cross-section of the porous plate
attached to the porous domain. Here, pore space is shown in white, while solid is black. This porous
plate consisted of the mesh of square pores 5 voxels in width and 20 voxels in length with a contact
angle of 150◦ for the oil-wet porous plate and 30◦ for the water-wet porous plate.
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3.3.2. Curvature of the Interface

Figure 12 shows the fluid configurations at the end of the drainage and imbibition simulations.
All the analyses presented below were performed only on the pore structure domain; the upstream and
downstream buffer regions and porous plates were excluded. Table 2 summarizes the oil saturation
and average capillary pressure at the end of the drainage and imbibition simulations, obtained from
the computed phase pressures using Equation (15). Note that the capillary pressure shown here was
not consistent with the macroscopic capillary pressure imposed. This was partly because the highest
capillary pressures locally were observed for interfaces in the oil-wet porous plate region which was
excluded from the analysis and partly because the simulations terminated at a capillary number of
1.0 × 10−6 were still in a transient regime and had not yet reached capillary equilibrium.

a b

c d

Drainage in
the x direction

Imbibition in
the -x direction

Figure 12. Fluid configurations at the end of (a) the drainage in the bead pack, (b) imibibition in the
bead pack, (c) drainage in the Bentheimer sandstone and (d) imibibition in the Bentheimer sandstone.
Here, oil and water are shown in red and transparent blue, respectively. The drainage simulations were
performed from left to right, while the imbibition simulations were performed from right to left.
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Table 2. Summary of the simulation results after the drainage and imbibition simulations. These values
were obtained only for the pore structure domain.

Bead Pack Bentheimer Sandstone

So Pc So Pc
% Pa % Pa

After drainage 83% 1353 71% 2002
After imbibition 71% 1047 51% 1322

Similar to Section 3.2.2, the oil/water interface was obtained from the simulation results in two
ways: the simulated and smoothed interface. For the smoothed interfaces, Laplacian smoothing with
600 iterations was applied. Curvature was computed on these surfaces. Figures 13 and 14 show
the histogram of the computed local curvatures of the drainage and imbibition simulations for the
bead pack and Bentheimer sandstone, respectively. Here, both the computed curvatures without
the distance cutoff and with 3 voxels of distance cutoff are shown. The average curvature was also
obtained from the simulated fluid pressure using Equations (6) and (15) as indicated by vertical dotted
lines in the figures.

Here, we can make the following three observations. First, the histograms obtained from the
smoothed interfaces without the distance cutoff showed a wide distribution with many negative mean
curvature values which was similar to the distribution presented in Herring et al. [12], whereas the
histogram obtained from the simulated interfaces showed a narrower distribution with few negative
values. This indicates that the overall distribution of the curvatures computed on the smoothed
interfaces was distorted by erroneous values, while this was not the case for the simulated interfaces.
Second, when the 3 voxel distance cutoff was applied, the histograms computed on the smoothed
interfaces became similar to those computed on the simulated interfaces. This suggests that by
removing the erroneous values appearing close to three-phase contact lines, curvatures can be properly
estimated with the smoothed interfaces. Third, however, the peak curvature values of these histograms
were shifted to smaller values. This is evident for drainage in Bentheimer sandstone for both the
smoothed and simulated interfaces. This was because the application of the distance cutoff removed
data points not just at the edges of large surface patches but also the entire surface in small pores
whose radii were smaller than 3 voxels where there were high interfacial curvatures.

Figure 15 shows the comparison between the average curvatures obtained from the average fluid
pressure in the porous domain and that obtained from the average value of the computed curvatures
on the smoothed interfaces with the distance cutoff (Figures 13b and 14b ) and the simulated interfaces
without the distance cutoff (Figures 13c and 14c) . As discussed above, because the distance cutoff had
to be applied to the smoothed interfaces to remove erroneous values, for drainage in the Bentheimer
sandstone, the curvature was 36% lower than that found from the fluid pressures, which, as discussed
previously, should be close to the correct value. For the other three cases whose dimensionless
curvature was less than 0.1 voxel−1, the computed curvatures on the smoothed interfaces were within
11% of the values found from the average pressure. In this specific case at a resolution of 3.5 µm/voxel,
a capillary pressure up to 1400 Pa can be estimated within 11% error (see Equation (6)). For the
simulated interface, for which the distance cutoff was not necessary, the difference was less than 4% in
all cases.
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Figure 13. Histograms of the computed curvatures for the bead pack. (a) Interfacial curvature computed
on the smoothed interface after drainage and imbibition without the distance cutoff and (b) with the
distance cutoff. (c) Interfacial curvature computed on the simulated interface after the drainage and
imbibition without the distance cutoff and (d) with the distance cutoff.
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Figure 14. Histograms of the computed curvatures for the Bentheimer sandstone. (a) Interfacial
curvature computed on the smoothed interface after drainage and imbibition without the distance
cutoff and (b) with the distance cutoff. (c) Interfacial curvature computed on the simulated interface
after the drainage and imbibition without the distance cutoff and (d) with the distance cutoff.
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Figure 15. Comparison between the curvature obtained from the average capillary pressure
in the porous domain and that obtained from the average curvatures on fluid interfaces after
drainage and imbibition for the bead pack and Bentheimer sandstone. The circles show the average
value of the computed curvatures on the simulated interfaces without the distance cutoff (see
Figures 13b and 14b), while crosses show that computed on the smoothed interface with the distance
cutoff (see Figures 13a and 14c).

To further investigate the accuracy of the interfacial curvature estimates, curvature was measured
on a pore-by-pore basis. First, we obtained the capillary pressure by applying Equation (15) for each
pore region. Equation (6) was then used to find the mean curvature. Next, we found the average of
computed curvatures on both the smoothed and simulated interfaces for each pore region.

Figure 16 compares the dimensionless curvature obtained from fluid pressure and computed
values on the interfaces after applying the 3 voxel distance cutoff. For both the drainage and imbibition
on the bead pack and Bentheimer sandstone, computed curvatures on the simulated interfaces showed
good agreement with those derived from fluid pressure as shown in the lower figures of Figure 16a–d.
Although the curvatures on the smoothed interfaces showed larger deviation from the values obtained
with fluid pressure, curvatures in most pore regions less than 0.15 voxel−1 fell within ±30% of the
pressure-driven values as shown in the upper figures of Figure 16a–d.

The range of dimensionless curvatures for each pore region shown in Figure 16 indicates the
variations of local capillary pressure. Hence, as distinguished from previous studies [6,11,12] which
used comparisons between a curvature value obtained from transducer-based macroscopic capillary
pressure and a mean or peak value of computed curvatures, the range of our values shown in Figures 13
and 14 is supported by the good agreement between the computed curvatures and those obtained
from fluid pressure on a pore-by-pore basis.
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Figure 16. Comparison between the dimensionless mean curvature (κ∗) obtained from the simulated
fluid pressure and that obtained from the fluid interfaces. (a) Bead pack after drainage; (b) Bead pack
after imbibition; (c) Bentheimer sandstone after drainage; (d) Bentheimer sandstone after imbibition.
Here, a unit slope indicating perfect agreement in these values is shown by a black solid line,
while ±30% difference is shown by the black dotted lines.

4. Conclusions

To conclude, our suggested curvature measurement method and its likely error can be summarized
as follows: (1) imaging should be performed with a voxel size that is at least 6 times smaller than
the average pore radius; (2) application of 600 iterations of Laplacian smoothing on the extracted
interface with 3 voxels of distance cutoff estimates curvature within a single pore within ±30% error;
(3) when this method is applied to complex porous media in which variety of pore sizes exists, local
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curvatures whose values are less than 0.15 voxel−1 can be estimated within ±30% error; (4) local
capillary pressures for each pore can also be estimated within the same degree of error; (5) the average
capillary pressure can be estimated within ±11% error if the voxel size is at least 10 times smaller than
the average radius of curvature (a dimensionless curvature of 0.1 voxel−1).

Finally, because the simulated interface gave consistent curvatures for each pore region to those
from fluid pressure, direct numerical simulations and interfaces extracted from the simulations with
sub-resolution smoothness are a useful tool to investigate complex morphology of the interface during
immiscible fluid displacement [15,17,18].
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Appendix A. Analytical Expression of a Sphere and Catenoid Surface

Using the parameters u and v, the surface of a sphere, SS(u, v), and a catenoid, SC(u, v),
are given by:

SS(u, v) =

 x
y
z

 =

 c cos v cos u
c cos v sin u

c sin v

 , SC(u, v) =

 x
y
z

 =

 c cosh( v
c ) cos u

c cosh( v
c ) sin u

v

 , (A1)

where the superscripts S and C indicate a surface for a sphere and catenoid, respectively; c is a constant
which was set to 1 in this study. We consider (u, v) ∈ [0, 2π]× [− 1

2 π, 1
2 π]. The principal curvatures, κ1

and κ2, of the these surfaces are written as:

κS
1 =

κS
2 =

1
1

,
κC

1 =

κC
2 =

sech2 v
− sech2 v

. (A2)

Therefore, the mean curvature, κm = 1
2 (κ1 + κ2), and Gaussian curvature, κG = κ1κ2, are given by:

κS
m =

κS
G =

1
1

,
κC

m =

κC
G =

0
− sech4 v

. (A3)

Using these equations, the first to third-order Minkowski functionals can be obtained as:

MS
1 =

∫
dS = 2π [sin v]v2

v1

MS
2 =

∫
κmdS = MS

1 = 2π [sin v]v2
v1

(A4)

MS
3 =

∫
κGdS = MS

1 = 2π [sin v]v2
v1

,

for the sphere and

MC
1 =

∫
dS = 2π

[
sinh(2v) + 2v

4

]v2

v1

MC
2 =

∫
κmdS = 0 (A5)

MC
3 =

∫
κGdS = −2π [tanh(v)]v2

v1
,
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for the catenoid. Here, the surface integral is performed for the range of u ∈ [0, 2π] and v ∈ [v1, v2],
where v1 and v2 are an arbitrary number which satisfies −1/2π ≤ v1 ≤ v2 ≤ 1/2π and are related to
the integration interval in the z-direction through Equation (A1). For the analysis provided in Figure 6,
v1 and v2 were set to −1 and 1, respectively.
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