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Abstract 

Rationale: Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic 
interstitial pneumonia. Some miRNAs may be associated with IPF and may affect the occurrence and 
development of IPF in various pathways. Many miRNAs and genes that may be involved in the 
development of IPF have been discovered using chip and high throughput technologies.  
Methods: We analyzed one miRNA and four mRNA databases. We identified hub genes and pathways 
related to IPF using GO, KEGG enrichment analysis, gene set variation analysis (GSVA), PPI network 
construction, and hub gene analysis. A comprehensive analysis of differentially expressed miRNAs 
(DEMs), predicted miRNA target genes, and differentially expressed genes (DEGs) led to the creation of 
a miRNA-mRNA regulatory network in IPF.  
Results: We found 203 DEGs and 165 DEMs that were associated with IPF. The findings of enrichment 
analyses showed that these DEGs were mainly involved in antimicrobial humoral response, antimicrobial 
humoral immune response mediated by antimicrobial peptide, extracellular matrix organization, cell 
killing, and organ or tissue specific immune response. The VEGFA, CDH5, and WNT3A genes overlapped 
between hub genes and the miRNA-mRNA regulatory network. The miRNAs including miR-199b-5p, 
miR-140-5p, miR-199a-5p, miR-125A-5p, and miR-107 that we predicted would regulate the VEGFA, 
CDH5, and WNT3A genes, which were also associated with IPF or other fibrosis-related diseases. GSVA 
indicated that metabolic processes of UTP and IMP, immune response, regulation of Th2 cell cytokine 
production, and positive regulation of NK cell-mediated immunity are associated with the pathogenesis 
and treatment of IPF. These pathways also interact with VEGFA, CDH5, and WNT3A.  
Conclusion: These findings provide a new research direction for the diagnosis and treatment of IPF. 
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Introduction 
The four types of idiopathic interstitial 

pneumonia (IIP) comprise a nonspecific type with 
fibrosis, and the usual, acute, and desquamative types 
[1]. Idiopathic pulmonary fibrosis (IPF) is one of the 
most aggressive forms of IIP [2]. The etiology of IPF is 
unknown and it mainly occurs in elderly persons [3]. 
The disease course of IPF is variable and 

unpredictable, but progression to end-stage 
respiratory insufficiency and death usually occurs 2–4 
years after the onset of symptoms and diagnosis [4]. 
The lives of patients with IPF who experience acute 
respiratory deterioration are affected [5]. Idiopathic 
interstitial pneumonia has attracted considerably 
more attention than other forms of lung interstitial 
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disease due to its poor prognosis and lack of response 
to conventional therapies [6]. Therefore, the 
mechanisms of IPF should be clarified and relevant 
biomarkers should be identified to increase diagnostic 
accuracy and develop more effective treatments for 
IPF. 

MicroRNAs (miRNAs or miRs) generally 
comprise 18–23 nucleotides, and they regulate gene 
activity at the post-transcriptional and translational 
levels [7]. Some miRNAs may regulate the occurrence 
and development of IPF by regulating fibroblast 
proliferation, collagen production, and other 
pathways [8, 9].  

Complex networks of molecular processes lead 
to diseases such as IPF. Gene chips (DNA 
microarrays) have become important for rapidly 
acquiring large-scale information on gene expression 
profiles [10]. Many genes that might be associated 
with the development of IPF have recently been 
discovered using chip and high throughput 
technologies [11]. However, the results of various 
studies are limited or inconsistent, due to differences 
in technology platforms or insufficient sample size. 
Nonetheless, large amounts of valuable biological 
information can be generated via integrative analysis 
using bioinformatic methods [12]. The results of a 
series of analyses may provide insight into the 
diagnosis and treatment of IPF. Therefore, the present 
study aimed to identify differentially expressed genes 
(DEGs) and differentially expressed miRNAs (DEMs) 
between normal and IPF lung tissues using mRNA 
and miRNA expression profiles downloaded from the 
Gene Expression Omnibus (GEO) [13] and a 
bioinformatic approach. 

Methods 

Microarray data 
We included datasets to compare mRNA or 

miRNA expression in IPF and normal tissues. Search 
terms approximately comprised “idiopathic 
pulmonary fibrosis” and “idiopathic interstitial 
pneumonia”. We first read the title and summary of 
the datasets, selected those of interest, and then 
further evaluated all the information in the datasets to 
select the most appropriate datasets.  

The inclusion criteria included:  
(1) The source of each dataset is the microarray 

data of total RNA or miRNA extracted from the lung 
tissue of IPF patients; 

(2) Samples were obtained in the same way; 
(3) The dataset should contain two sets of data, 

namely the IPF group and the control group; 
(4) The number of samples in the dataset should 

be greater than or equal to 10; 

(5) The dataset should provide raw data or 
matrix file that can be processed to obtain the 
appropriate LogFC values; 

(6) The quality of the dataset should be qualified 
to obtain enough DEGs, and the DEGs can effectively 
divide the samples into IPF group and control group. 

The exclusion criteria included:  
(1) The samples of the dataset are not lung tissue; 
(2) The data of the dataset is not microarray data; 
(3) No control group; 
(4) Experiments on animals; 
(5) The number of samples is less than 10. 
Finally, the miRNA dataset GSE21394 [14] and 

the mRNA datasets GSE10667 [15], GSE15197 [16], 
GSE47460 [17], and GSE110147 [18] were selected 
from the GEO database (https://www.ncbi.nlm.nih 
.gov/geo) for further investigation. GSE21394 was 
based on GPL8936 (Agilent-019118 Human miRNA 
Microarray 2.0 G4470B (Probe Name version)) 
platform. GSE10667 was based on GPL4133 
(Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F (Feature Number version). GSE15197 
and GSE47460 were based on the GPL6480 
(Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F; Probe Name version), and GSE110147 
was based on GPL6244 ([HuGene-1_0-st] Affymetrix 
Human Gene 1.0 ST Array transcript [gene] version) 
platform. We obtained the following IPF and control 
tissues as follows, respectively: nine and five from 
GSE21394, 23 and 14 from GSE10667, eight and 12 
from GSE15197, 33 and 17 from GSE47460, and 22 and 
11 from GSE110147. 

Identification of DEGs 
We corrected the backgrounds, standardized 

and normalized GSE10667, GSE15197, and GSE47460 
using the limma package (Version: 3.48.0) in R 
(http://www.bioconductor.org/packages/release/bi
oc/html/limma.html), and the affyPLM package 
(Version: 1.68.0) in R (http://www.bioconductor 
.org/packages/release/bioc/html/affyPLM.html) for 
GSE110147 and created a probe gene expression 
matrix. Among them, “normexp” [19] and “quantile” 
[20] were used for background correction and 
normalization of Agilent datasets, while Robust 
Multichip Average (RMA) [21] was used for the 
processing of GSE110147. We converted probes into 
corresponding genetic symbols using Perl 
(https://www.perl.org/). We used perl script to 
convert the probe IDs in the probe expression 
matrices to the corresponding gene symbols in the 
platform files [22]. Then, we used Limma package to 
analyze each obtained matrix file of gene symbols, 
calculated p values and |logFC|, and screen 
differential genes according to same criteria [23]. Our 
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criteria for screening DEGs were P < 0.05 and an 
absolute value of logFC > 1. The RobustRankAggreg 
(RRA) package (Version: 1.1) in R (https:// 
cran.rstudio.com/bin/windows/contrib/4.1/Robust
RankAggreg_1.1.zip) reviews the sequences of each 
gene in each list and assumes that each gene identified 
in each experiment is randomly arranged; this is 
suitable for comparing multiple sequencing gene lists 
[24]. We used the RRA package to integrate the four 
TXT files of all genes in logFC sequencing, and saved 
the integrated upregulated and downregulated DEG 
lists for subsequent analysis. 

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment 
analyses of DEGs 

We used R software to analyze the pathways of 
GO and KEGG. The “org.Hs.eg.db” package (Version: 
3.13.0; http://www.bioconductor.org/packages/ 
release/data/annotation/html/org.Hs.eg.db.html) 
was used to convert the gene symbols to entrezIDs 
[25]. Packages used for GO and KEGG enrichment 
analyses include “clusterProfiler” (Version: 4.0.0; 
http://www.bioconductor.org/packages/release/bi
oc/html/clusterProfiler.html), “ggplot2” (Version: 
3.3.3; https://cran.r-project.org/web/packages/ 
ggplot2/) and “enrichplot” (Version: 1.12.0; 
http://www.bioconductor.org/packages/release/bi
oc/html/enrichplot.html) [26]. The utility database 
KEGG is a resource for understanding advanced 
functional and biological systems (such as cells, 
organisms, and ecosystems) [27]. This database also 
comprises a large dataset of information generated at 
the molecular level, especially by genome sequencing 
and other high-throughput experimental technologies 
[27]. GO is popular in bioinformatics, as it covers the 
following aspects of biology: cellular components 
(CCs), molecular functions (MFs), and biological 
processes (BPs) [28]. Values with P < 0.05 were 
considered statistically significant. 

Gene Set Variation Analysis (GSVA)  
GSVA is a gene set enrichment method that 

estimates variations in pathway activity over a sample 
population without supervision [29]. We downloaded 
the GO and KEGG databases of gene sets from the 
Molecular Signatures Database on the GSEA website 
(https://www.gsea-msigdb.org/gsea/index.jsp). 
During the above screening for DEGs, we obtained a 
matrix file of gene symbols. Using GSVA (Version: 
1.40.0) (http://www.bioconductor.org/packages/ 
release/bioc/html/GSVA.html), limma, and GSEA 
Base (Version: 1.54.0) (http://www.bioconductor.org 
/packages/release/bioc/html/GSEABase.html) in R, 
we processed the matrix files of gene symbol and GO 

and KEGG databases and the pathways and functions 
were scored according to the degree of absolute 
enrichment of a gene set in each sample [30]. After 
that, we obtained the functions and pathways matrix 
files of GO and KEGG. The main content of the matrix 
files was the GSVA score for each function or pathway 
corresponding to each sample. After obtaining the 
matrix files of GO and KEGG, we used limma to 
analyze differential GSVA scores between IPF and 
normal samples, and then calculated p values and 
|logFC|. Our criteria for screening the differential 
GSVA scores were P < 0.05 and an absolute value of 
logFC > 0.2. We used RRA to integrate the four TXT 
files of all functions or pathways in logFC sequencing, 
and saved the upregulated and downregulated 
differentially expressed functions and pathway lists 
for subsequent analysis. 

Protein-protein interaction network 
construction and Hub gene analysis 

We used the Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) database 
(http://string-db.org/) to analyze PPI information 
[31]. The STRING database collects, scores, and 
integrates all publicly available sources of 
protein-protein interaction information, and 
supplements them with computational predictions 
[32]. We mapped known DEGs to the STRING 
database to determine potential PPI relationships. 
Combined scores of interactions > 0.4 were 
considered statistically significant. Cytoscape 
analyzes and visualizes massive networks and 
provides greater flexibility in importing additional 
data into, and visualizing data in the network [33]. 
CytoHubba is a Cytoscape plugin that explores PPI 
network hub genes [34]. We identified the top 20 
scoring genes as hub genes. 

Identification of DEMs 
We corrected the background, standardized, and 

normalized GSE21394 using limma R and obtained a 
probe gene expression matrix. We converted probes 
into corresponding genetic symbols using Perl. After 
obtaining the matrix file of gene symbols, we 
analyzed the differential expression of miRNAs 
between IPF and normal samples using limma R, and 
then calculated p values and |logFC|. Our criteria for 
screening DEMs were P < 0.05 and an absolute value 
of logFC > 1. 

Prediction of target genes of DEMs and 
intersection of DEGs 

Functional enrichment (FunRich) is an analytical 
tool for gene or protein functional enrichment and 
protein-protein interaction network analysis [35]. The 
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microRNA enrichment function in FunRich can be 
used to analyze miRNA enrichment, predict 
microRNA targets, or identify microRNAs through 
given target genes [35]. Functions of the DEM target 
genes were analyzed to predict target genes using the 
FunRich [35] database (http://www.funrich.org/). 
We obtained a list of miRNAs and predicted target 
mRNAs. Target gene, DEG, and DEM data were 

integrated using Perl to acquire information about 
DEM and DEG interactions. 

Construction of miRNA-mRNA network  
Interactions between DEMs and DEGs was 

analyzed using Cytoscape, and a network between 
miRNAs and mRNAs was constructed. 

 

 
Figure 1. Differential expression analysis of DEGs in GSE10667, GSE15197, GSE47460, and GSE110147 using volcano plots. DEGs in (A) GSE10667 show 239 upregulated and 
172 downregulated genes. (B) GSE15197 shows 451 upregulated and 192 downregulated genes. (C) GSE47460 shows 512 upregulated and 427 downregulated genes. (D) 
GSE110147 shows 2074 upregulated and 1300 downregulated genes. Red, green, and black dots respectively indicate downregulated, upregulated, and not significantly changed 
mRNAs. 
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Results 
Identification of DEGs 

The GSE10667 database revealed 411 DEGs (239 
and 172 upregulated and downregulated, 
respectively) that were expressed > 2-fold in IPF 
tissues compared with controls (Figures 1A and 2A). 
The GSE15197 database showed 643 DEGs (451 and 
192 upregulated and downregulated, respectively) 
that were expressed > 2-fold in IPF tissues compared 
with controls (Figures 1B and 2B). The GSE47460 
database contained 939 DEGs (512 and 427 
upregulated and downregulated, respective) that 
were expressed > 2-fold in IPF tissues compared with 
controls (Figures 1C and 2C). We used the same 
method to analyze the GSE110147 database and 
identified 3,374 DEGs, among which 2,074 and 1300 
were upregulated and downregulated, respectively 
compared with the control group (Figures 1D and 
2D). The RRA method also uncovered 203 integrated 
DEGs, comprising 92 and 111 that were upregulated 
and downregulated, respectively (Table S1). The first 
20 each of upregulated and downregulated genes 
were plotted on a heatmap (Figure 2E). 

Pathway enrichment findings 
We used R software to analyze the functional 

and pathway enrichment of 203 DEGs and determine 
their biological activities. Figure 3 shows the findings 
of BP, CC, MF, and KEGG pathways. Antimicrobial 
humoral response, antimicrobial humoral immune 
response mediated by antimicrobial peptide, 
extracellular matrix organization, cell killing, organ or 
tissue specific immune response and extracellular 
structure organization were the most enriched terms 
in BP (Figure 3A). Those in CC were membrane 
region, axoneme part, membrane raft, membrane 
microdomain, and endocytic vesicle lumen (Figure 
3A). The most enriched terms in MF were 
glycosaminoglycan binding, heparin binding, sulfur 
compound binding, receptor ligand activity, and 
cytokine binding (Figure 3A). The most enriched GO 
functions according to the size of the different FDR 
values were shown in Figure 3B, and those in KEGG 
were AGE-RAGE signaling pathway in diabetic 
complications, fluid shear stress and atherosclerosis, 
staphylococcus aureus infection, amoebiasis, and 
bladder cancer (Figure 3C and 3D). 

GSVA analysis 
The differential scores of seven (four 

upregulated and 3 downregulated) KEGG (Figure 4A) 
and 55 (46 upregulated, and nine downregulated) GO 
terms (Figure 5A) in the GSE10667 database 

significantly differed between control and IPF tissue 
samples. We found 21 (two upregulated and 19 
downregulated) KEGG terms (Figure 4B) and 94 (10 
upregulated, and 84 downregulated) GO terms in the 
GSE15197 dataset (Figure 5B). We found 68 (18 
upregulated, and 50 downregulated) KEGG terms 
(Figure 4C) and 810 (257 upregulated and 553 
downregulated GO) terms in the GSE47460 dataset 
(Figure 5C). We identified 57 (33 upregulated and 24 
downregulated) KEGG terms (Figure 4D) and 1,520 
(1001 upregulated and 519 downregulated) GO terms 
in the GSE110147 dataset (Figure 5D). The RRA 
findings revealed three KEGG (Tables S2 and 3, 
Figure 4E) and 29 GO differential functions and 
pathways (Figure 5E). The three KEGG functions 
were inhibitory (graft versus host disease, allograft 
rejection, type I diabetes mellitus), whereas the 14 GO 
pathways and functions were activated; the functions 
and pathways with the most significant differences 
were UTP metabolic process, GTP biosynthetic 
process, tonic smooth muscle contraction, IMP 
metabolic process, immunoglobulin complex), and 15 
inhibited pathways and functions; the five functions 
and pathways with the most significant differences 
were antigen processing and presentation of peptide 
antigen via MHC class IB, positive regulation of 
vasculogenesis, regulation of T helper 2 cell cytokine 
production, positive regulation of natural killer 
cell-mediated immunity, and MEK binding. 

PPI network construction and Hub gene 
analysis 

We analyzed interactions among 203 DEGs using 
STRING (version 11.0) to identify physical PPIs 
between the underlying nodes of IPF. We evaluated 
the data using Cytoscape (Figure 6A) and analyzed 
the hub genes of MCC using the cytoHubba plugin. 
Twenty genes with the highest scores (IL6, VEGFA, 
IGF1, SPP1, CDH5, WNT3A, PROM1, SOX2, ICAM1, 
EDN1, MMP1, COL1A1, MMP7, CSF3, CAV1, 
POSTN, COL3A1, COMP, LCN2, and HBEGF) were 
identified as hub genes (Figure 6B), suggesting that 
these genes play roles in the occurrence and 
development of IPF. The 20 hub genes comprised 11 
upregulated (IGF1, SPP1, PROM1, SOX2, MMP1, 
COL1A1, MMP7, POSTN, COL3A1, COMP, LCN2) 
and nine downregulated (IL6, VEGFA, CDH5, 
WNT3A, ICAM1, EDN1, CSF3, CAV1, HBEGF) genes. 

Identification of DEMs 
The expression of 165 (83 upregulated and 82 

downregulated) miRNAs in the GSE21394 database 
was > 2-fold higher in IPF, than in control tissues 
(Figure 7A and B). 
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Figure 2. Heatmaps of DEGs in GSE10667, GSE15197, GSE47460, and GSE110147. (A) GSE10667, (B) GSE15197, (C) GSE47460, (D) GSE110147. (E) RobustRankAggreg (RRA) 
of four mRNA datasets. A–D: Blue, IPF; yellow, normal lung tissues. A–E: red and green, upregulated genes and downregulated genes, respectively. 

 

Construction of miRNA-mRNA network 
 We integrated target, DEG, and DEM data using 

Perl to determine interactions between DEMs and 
DEGs. We identified 13 miRNAs (miR-107, 
miR-125a-5p, miR-133b, miR-140-5p, miR-142-3p, 
miR-199a-3p, miR-199a-5p, miR-199b-5p, miR-28-5p, 
miR-324-5p, miR-34c-5p, miR-429, and miR-520b) and 
13 mRNAs (WNT3A, CDH5, DAPK2, EMP2, GPM6A, 

STXBP6, VEGFA, LRRC32, ADRB1, SLC6A4, 
CCDC85A, FOXF1, and CXCL14). All miRNAs were 
upregulated except miR-520b. All genes for these 
mRNAs were downregulated except CXCL14. We 
evaluated the interaction information using 
Cytoscape to create a miRNA-mRNA network (Figure 
7C). 
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Figure 3. GO and KEGG pathway enrichment analyses of integrative DEGs. GO functional annotation of (A) biological processes, cellular components, and molecular functions 
of integrative DEGs. (B) The most significant GO functions. (C) and (D) KEGG enrichment analysis of integrative DEG pathways.  

 

Discussion 
Idiopathic pulmonary fibrosis is a chronic and 

progressive fibrotic pulmonary disease with a poor 
prognosis [36]. Although many factors such as viral 
infections may trigger or exacerbate IPF, the primary 
cause remains unknown [37]. The incidence of IPF 
increases significantly with age and the prognosis is 
poor, as the median survival is 3 years, which is 
shorter than that for some cancers [37]. The 
pathological features and molecular mechanisms of 
IPF must be understood to diagnose and effectively 
treat IPF. The main pathological features of IPF are 
increased fibroblast proliferation, activation, and 
aggregation, and collagen synthesis, as well as 
increased extracellular matrix protein and 

glycoprotein deposition [38, 39]. Some molecules and 
pathways have been associated with the occurrence 
and development of IPF, whereas others remain 
unknown. Microarray and bioinformatic analyses can 
facilitate better understanding of the pathogenesis of 
diseases and exploration of biomarkers. We analyzed 
the GSE10667, GSE15197, GSE47460, and GSE110147 
datasets in 86 IPF and 54 normal tissue samples. 
Because IPF is associated with microRNA, we 
analyzed miRNA datasets and constructed a 
miRNA-mRNA regulatory network to explore 
unknown molecular mechanisms of IPF. We analyzed 
the GSE21394 miRNA dataset in nine IPF and five 
normal samples. 

We identified 203 DEGs, of which 92 and 111 
mRNAs were respectively upregulated and 
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downregulated. The findings of enrichment analyses 
showed that these genes were mainly involved in 
immune response (GO: antimicrobial humoral 
response, antimicrobial humoral immune response 
mediated by antimicrobial peptide, cell killing, organ 
or tissue specific immune response; GSVA: 
immunoglobulin complex, antigen processing and 
presentation of peptide antigen via MHC class Ib, 
regulation of T-helper 2 cell cytokine production, 
positive regulation of natural killer cell mediated 
immunity). Studies have shown that the pathogenesis 
of IPF may be related to humoral response [40]. In the 
results of GO and KEGG analyses, we found that IPF 
may be related to antimicrobial humoral immune 
response mediated by antimicrobial peptide, which 
has not been reported. In addition, we also conducted 
GSVA for each mRNA to uncover DEG biological 

functions. Among the functions and pathways we 
have obtained, some functions or pathways have been 
proved to be involved in the regulation of pulmonary 
fibrosis, and some have not been reported. Inosine 
monophosphate (IMP) and uridine triphosphate 
(UTP) have not been found in IPF, but IMP is involved 
in the fibrotic process of lupus nephritis (LN) [41]. 
Whether the metabolic processes of IMP and UTP are 
involved in the process of pulmonary fibrosis awaits 
further investigation. The functions and pathways 
associated with the DEGs that we identified through 
enrichment analysis were also closely associated with 
IPF. Therefore, we determined biomarkers that are 
closely associated with the occurrence and 
development of IPF based on the differential genes 
identified herein.  

 
 

 
Figure 4. Volcano plots of differential GSVA scores for KEGG terms (A–D) and heatmap of RRA findings (E). (A) GSE10667: four upregulated and three downregulated. (B) 
GSE15197: two upregulated and 19 downregulated. (C) GSE47460: 18 upregulated and 50 downregulated. (D) GSE110147: 33 upregulated and 24 downregulated. (E) Heatmap 
of GSVA scores (KEGG) of four datasets using RRA. Red and green: upregulated and downregulated KEGG terms (dots A–D) and RRA findings (E). 
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Figure 5. Volcano plots of differential GSVA scores for GO terms (A–D) and heatmap (E) of four datasets. (A) GSE10667: 46 upregulated and nine downregulated. (B) 
GSE15197: 10 upregulated and 84 downregulated. (C) GSE47460: 257 upregulated and 553 downregulated. (D) GSE110147: 1001 upregulated and 519 downregulated. E. 
Heatmap of GSVA scores (GO) of four datasets using RRA. In Figure 5E, red represents upregulated GO terms and green represents downregulated GO terms. 

 
Twenty hub genes in IPF had the highest scores 

in the protein-protein network. Based on these results, 
we speculated that these predicted genes influence 
IPF via these enriched pathways and functions. 
Moreover, we created a miRNA-mRNA regulatory 
network in IPF based on our findings of 165 
differentially expressed miRNAs and mRNAs, 
predicted miRNA target genes, and DEGs. Our 
miRNA-mRNA regulatory network included the 
VEGFA, CDH5, and WNT3A genes that were also hub 
genes in our PPI analysis. Among them, VEGFA 
activates NK cells [42]. Studies have shown that 
natural killer (NK) cells can inhibit liver [43] and lung 
fibrosis [44]. We found that VEGFA is downregulated 
in patients with IPF, which may result in the 
inhibition of NK cell-mediated immunity, and the 
subsequent promotion if IPF development. Since 
WNT3A can also activate NK cells [45], 
downregulated WNT3A may also contribute to the 
incidence of IPF. The significance of CDH5 in the 
pathogenesis of IPF is still unknown. Previous studies 

have found that Th2 responses damage tissues and 
fibrotic responses, while Th1 responses ameliorate the 
latter [46, 47]. The function of TH2 cells is negatively 
regulated by CDH5 [48], and downregulated CDH5 
may weaken Th2 cell regulation, thus promoting the 
occurrence and development of IPF.  

MicroRNAs are short (19 to 25 nucleotides) 
single-stranded ribonucleic acids that regulate gene 
expression after transcription [49]. Several past 
studies showed that the expression of different 
miRNAs in samples of IPF patients is different from 
that in control samples [49]. Previous studies have 
found that microRNAs play important roles in 
occurrence and development of IPF, such as let-7d, 
miR-154, miR-21, et al. According to Pandit et al., 
Let-7 can inhibit the occurrence and development of 
IPF by inhibiting the phenotypic changes of alveolar 
epithelium [50]. The study of Milosevic J, et al. 
showed that miR-154 was upregulated in IPF and 
could regulated fibroblast migration and proliferation 
[51]. MiR-21 has also been shown to promote TGFβ
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1-induced fibrogenic activation of pulmonary 
fibroblasts in IPF [52]. In addition to studies of single 
miRNAs, miRNAs-mRNAs constitute networks and 
are involved in many important cellular pathways, 
which is very important for us to study IPF [53]. 
Previous studies have constructed miRNAs-mRNAs 
networks using multiple microarray datasets, and 
found other miRNAs related to IPF through data 
analysis [54, 55, 56]. We also found some miRNAs that 
may be related to IPF by screening different datasets, 
and constructed a new miRNAs-mRNAs network. In 
our study, the miRNAs regulating VEGFA in the 
network were miR-199b-5p, miR-140-5p, miR- 
199a-5p, the miRNA regulating CDH5 was 
miR-125a-5p, and that regulating WNT3A was 
miR-107. The miRNA, miR-199a-5p, is selectively 
upregulated in myofibroblasts of the injured lungs in 
fibroblastic foci of patients with IPF [57]. Furthermore, 

miR-125a-5P is elevated in macrophages exposed to 
silica, exosomes, recipient fibroblasts, and silicosis 
serum, suggesting that miR-125a-5p is associated with 
fibrosis [58]. The miRNA, miR-107 is overexpressed in 
cystic fibrosis [59]. The direct target of miR-199a-5P is 
VEGFA [60], and miR-107 inhibits WNT3A [61, 62]. 
Here, we confirmed that some MiRNAs, genes, 
pathways, and their regulatory relationships are 
involved in the development of IPF. However, the 
mechanisms of some miRNAs and genes in IPF have 
not been confirmed. The present study uncovered 
some novel potential biomarkers and molecular 
mechanisms associated with IPF. We plan to explore 
whether these biomarkers and mechanisms are 
involved in the occurrence and development of IPF 
and if so, to provide novel insights into the diagnosis 
and treatment of IPF. 

 
 

 
Figure 6. PPI network constructed with integrated DEGs and hub gene analysis. (A) Interaction network of all integrated DEGs. (B) Top 20 hub genes. 
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Figure 7. Volcano plot and heat map of DEMs in miRNA dataset GSE21394. (A) Volcano plot shows 83 upregulated (red dots), 82 downregulated (green dots), and not 
significantly changed mRNAs (black dots). (B) Heatmap of the DE-miRNAs of GSE21394. (C) Regulatory miRNA-mRNA network. Red and green, upregulation and 
downregulation, respectively. N, normal tissues; T, idiopathic pulmonary fibrosis. 

 
We comprehensively analyzed potential genes 

related to IPF and miRNAs in one miRNA and four 
mRNA datasets of IPF. Although potential targets for 
IPF progression have been predicted using 
microarray analyses [63, 64], the findings of our study 
are of greater significance. We obtained each GEO 
dataset using different correction methods. Thus, 
whether the biomarker results predicted by the matrix 
file based on background correction are reliable 
remains unclear. Most microarray analyses are 
conducted using GEO2R (http://www.ncbi.nlm.nih 
.gov/geo/geo2r/), express matrix, or single-chip 
datasets. Here, we used the raw data from Affymetrix 

(GSE110147) and Agilent (GSE10667, GSE15197, 
GSE47460) chips. For background correction, 
standardization and normalization of datasets with 
the same platform, we used same method to avoid 
high false-positive rates caused by analyzing 
individual microarrays and errors caused by the 
various correction methods used in different datasets. 
Although the dataset with different platform was 
processed in different method, it has been proved that 
it is feasible to integrate the different genes by using 
RRA package [65]. Our approach sheds light on the 
molecular mechanisms involved in the pathogenesis 
and treatment of IPF. However, our study has some 
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limitations. We included only one miRNA dataset 
(GSE21394), with nine IPF and five control lung 
tissues. The GSE32538 and GSE27430 have miRNA 
datasets with sufficient samples that meet the 
requirements [64], but they have been included in 
other studies. The differences among miRNAs 
obtained herein were minimal, and further analysis 
was difficult, which did not meet our inclusion 
criteria. Therefore, we analyzed GSE21394. Whether 
the many potential biomarkers and pathways 
identified herein are actually associated with IPF 
remains to be determined, and the roles of these 
molecular mechanisms in the occurrence and 
development of IPF await clarification. 

Conclusions 
We integrated four gene expression datasets to 

investigate DEMs associated with IPF progression. A 
total of 203 DEGs and 20 hub genes were identified, 
which may provide new potential targets for the 
diagnosis and treatment of IPF. We discovered 
potentially crucial roles of several functions and 
pathways in IPF. Besides, three genes identified in our 
miRNA-mRNA network overlapped with hub genes 
in IPF. Interactions among miRNAs, mRNAs, and 
pathways that contribute to the regulation of IPF 
warrant further investigation. 
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