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Abstract

Objective: To develop, apply, and evaluate, a novel web-based classifier for

screening for Parkinson disease among a large cohort of search engine users.

Methods: A supervised machine learning classifier learned to distinguish web

users with self-reported Parkinson’s disease from controls based on their inter-

actions with a search engine (Bing, Microsoft). It was then applied to groups of

web users with low or high risk for actual Parkinson’s disease. Textual content

of web queries was used to sort surfers into the different risk groups, but not

for classifying users as negative or positive for Parkinson’s disease. Disease

detection was unsolicited. Researchers did not have access to any identifying

data on users. Results: Applying the classifier (with an estimated positive pre-

dictive value of 25%) resulted in 17,843/1,490,987 (1.2%) web users over the

age of 40 years screened positive for Parkinson’s disease. This percentile was

higher in at-risk groups (Fisher exact P < 0.00001), including users who

searched for information regarding the disease (518/804, 64.4%), and users with

non-motor Parkinson’s symptom or with an affected relative (57/1064, 5.3%).

Longitudinal follow-up revealed that in all studied groups individuals classified

as having the disease showed a higher mean rate of progression in disease-re-

lated features (t-test P < 0.05). Interpretation: An automatic classifier, based

on mouse and keyboard interactions with a search engine, is able to reliably

trace individuals at high risk for actual Parkinson’s disease as well as to demon-

strate more rapid progression of disease-related signs in those who screened

positive. This ability raises novel ethical issues.

Introduction

Massive volumes of data, collected on the web from mil-

lions of users, can be analyzed to reveal disease trends in

the population. Studies have employed computer algo-

rithms to detect1,2 and predict3 infectious disease epi-

demics in real time, track health behaviors,4 and assess

the post-marketing safety profiles of drugs.5 Recent

refinement of machine learning algorithms has expanded

the focus from epidemiology to the health conditions of

individual web users. Algorithms were developed for use

with data from search engine queries to identify web users

with such diseases as cancer6,7 or Parkinson’s disease

(PD).8,9 However, such tools have remained untested and

no attempt has been made to validate their diagnostic

capacity with a general cohort of web users. This is the

first study that employs such an algorithm as a diagnostic

tool.

We use PD as a model to study the feasibility of

remote diagnosis among web users independent of the

content of typed text. Parkinson’s disease is a progressive

neurodegenerative disease diagnosed based on clinical

findings (bradykinesia with resting tremor, muscle rigid-

ity, or impaired gait). Remote diagnosis of PD individuals

who have not actively sought medical care represents a

new frontier with novel ethical challenges for medicine

and for the collaborative potential of medicine and tech-

nology companies.
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Methods

Interactions of web users with the Bing search engine

(Microsoft Corporation, Seattle, USA) are routinely

recorded to improve the performance of the engine, as

described in the Terms of Service. We collected data

between January 2016 and April 2017 from users in the

United States querying the search engine. These data

included an anonymized user identifier, contents of the

search terms, locations of the mouse pointer over time,

mouse clicks, and interactions with the keyboard (such as

typing errors, time to first keyboard event) during the

search process. This study was approved by the Behavioral

Sciences Research Ethics Committee of the Tech-

nion (Haifa, Israel) approval number 2018-032. The

methods were carried out in accordance with the relevant

guidelines and regulations. Obtaining informed consent is

not applicable to this study as data were collected using

anonymized user identifiers. For ethical reasons, no

attempt was made to identify users and researchers did

not have access to any database linking anonymized user

identifiers with IP addresses.

The relevant textual content of the queries was used to

sort individuals into one of the two groups on which we

trained the classifier (PD and control groups, see below). It

was also used to create groups with expected higher rates

of PD (unclassified and at-risk groups, see below). This

content was not used in order to classify users as having

PD in the three tested groups (general population, unclas-

sified, and at-risk groups, see below). The classifier was

not trained to distinguish PD from other types of parkin-

sonism (such as drug-induced).

Queries extraction process

Restricting our focus to queries containing a self-referral

(i.e., “I have. . .,” “My. . .”) limited the number of exam-

ined users, but complied with our underlying assumption

and should improve the reliability of our analysis.

For each of the study groups, we describe the specific

adaptation employed to identify the relevant set of

users:

1 PD group: Including only users for which at least one

of the queries contained one of the following search

phrases: "I have Parkinson’s" (or other possible equiva-

lent forms, e.g., "I’ve PD"); "I have been diagnosed with

Parkinson’s" (or other possible equivalent forms, e.g.,

"I’ve been diagnosed with PD"); "My Parkinson’s" (or

other possible equivalent forms, e.g., "My PD").

2 Control group: Including only users for which at least

one of the queries contained one of the following: "My

husband/wife/spouse has Parkinson’s" (or other possi-

ble equivalent forms, e.g., "My husband has PD");

"Husband/wife/spouse with Parkinson’s" (or other pos-

sible equivalent forms, e.g., "Husband with PD").

3 Unclassified group: To constrain the possibility of

retrieving users searching for information regarding

individuals with the last name “Parkinson,” we consid-

ered only queries containing health-related informa-

tion. We included only queries containing one of the

following words: treatment, cure, disease, medication,

medicine, drug, pain, doctor or diet. Additionally, we

considered queries regarding Parkinson medicines that

were FDA approved in the US, including Sinemet, Par-

copa, Rytary, Duopa, Stavelo, Mirapex, Requip, Apo-

kyn, Neupro, Eldepryl, Zelapar, Carbex, Azilect,

Tasmar, Comtan, Symmetrel, Artane, and Cogentin. To

discard queries by medical students regarding Parkin-

son’s disease, we eliminated all queries containing the

words patient, client or nurse.

4 At-risk group: To detect users searching with medical

queries regarding a symptom that increases the likeli-

hood of prodromal PD,10 we searched for queries con-

taining self-description ("I have," "I’ve," "I am," "I’m,"

"My"), and one of the following: brother or sister with

Parkinson’s, loss of smell, olfactory loss, constipation,

somnolence, daytime sleepiness, erectile dysfunction,

erectile, impotence, urinary dysfunction, depression,

screaming during sleep, kicking during sleep, night ter-

ror, anosmia, hypotension, or low blood pressure.

Feature extraction

Mouse-tracking data consists of a list of time-stamped

horizontal (x) and vertical (y) coordinates of the mouse

cursor locations on the browser page during the interac-

tions of a user.

We represented these data by extracting manually

defined features (see Data S1). Keyboard attributes

included the number of spelling mistakes in the query

text and the time from when the results page was shown

to the first click on the keyboard. To enrich this feature

set, we further employed an automated supervised long

short-term memory (LSTM, see below) model, which

learns additional machine-generated features from the

time-stamped raw data. This novel technique significantly

improved the model performance and distinguishes our

method from previous studies7,11 in which only hand-

crafted features were used.

In order to automatically extract features from the raw

mouse-tracking data, we predicted event-level mouse

movements. Our automatic feature extraction task poses

two challenges. First, in our setting, the mouse events are

sampled in a nonuniform manner, and, therefore, the time

gap between consecutive mouse events needs to be taken

into account. Second, the sampling of the mouse events is
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noisy and results in missing and corrupted data. To deal

with the first problem, we predicted not only the next

mouse position, but also the next event time stamp, allow-

ing our algorithm to derive the mouse velocity, accelera-

tion, and higher-level derivatives as intermediate quantities.

To cope with the problem of noisy and corrupted data, we

used robust scaling, that is, scaling the median of the

mouse events to zero and the average absolute value of the

25th percentile and the 75th percentile to 1.

The scaled features were then inserted into a LSTM

supervised model, followed by a fully connected layer,

which attempted to predict the raw features of the next

event. The model we employed for automatic feature

extraction is the LSTM model of the keras library

(https://keras.io/), using TensorFlow as the backend

framework. We used the Adam optimizer and the mean

squared error as the loss function. The dimension of the

network was set to 1024, the number of training epochs

was set to 7, the size of each batch to 256, and the learn-

ing rate was set to 0.002. We also examined the results

while using other values of these parameters, and we

report that the best results were achieved using the above

parameter values for the hyperparameters. The outputs of

the LSTM layer at the end of the session were chosen as

the representative features of this session. Full details of

the model and parameter choices for its training are given

in https://dl.acm.org/citation.cfm?doxml:id=3269206.3269250.

Using both the manually and the automatically extracted

features, we trained a classifier model that takes as an input

a feature vector, corresponding to a user session, and pro-

duces an output of the likelihood that the user has PD

(range 0–1). We examined multiple classification models

(e.g., logistic regression, SVM) in the Microsoft TLC

machine learning toolbox (https://azure.microsoft.com/en-

us/services/machine-learning-studio/) and report the best

results, achieved with the Boosted Decision Forest model,

where the learning rate is set to 0.08 and the number of trees

is 100. To provide a single score per user based on multiple

sessions, we employ majority vote as an aggregation func-

tion to decide whether a user has the condition, based on

the fraction of sessions with a score greater than 0.5.

Our code is publicly available on https://github.com/sc

ientistl/Parkinson-unsupervised-features.

Statistical methods

Performance of classifiers was estimated using the receiver

operating characteristic (ROC) and the area underneath

the curve (AUC). ROC was chosen as the measure of per-

formance for its suitability in the case of unbalanced

datasets, such as the ones we analyzed. Differences

between groups in the frequencies of users who were

screened positive for PD were tested using the Fisher

exact test. Means of slope of progression were compared

using a two-tailed t-test and were corrected by the Bon-

ferroni method. Values of P less than 0.05 were consid-

ered significant.

Results

Based on a content of a typed text, we first identified web

users with PD and web users that served as controls with-

out PD (Fig. 1, Step 1). The first group included users

who disclosed having PD in their search query, by typing

phrases such as "I have Parkinson’s” (PD group, 281 indi-

viduals, 144,898 queries, 46–1988 queries per individual,

median 612). The second group included web users who

typed sentences such as "My husband has Parkinson’s"

(control group, 163 individuals, 182,594 queries, 56–2054
queries per individual, median 898). Web queries from

two groups of users were used to train an automatic clas-

sifier. This classifier learned the complex behavioral fea-

tures that can be used to identify individuals with PD,

without relying on the content of the typed text.

The classifier was initially trained to calculate a score

representing the likelihood that an individual query was

produced by a user from the PD group (PD-likelihood

score, range 0–1). To improve the performance of the

classifier, we then grouped for each user the above calcu-

lated PD-likelihood scores of all her/ his single queries

(46–2054 queries per user), and applied a majority vote

aggregation criterion by calculating the fraction of ses-

sions with a score greater than 0.5. If more than 50% of

the queries received a PD-likelihood score greater than

0.5 this individual was classified as having PD. The resul-

tant ROC reveals that the AUC for this model is 0.93,

with true positive rates (sensitivity) of 0.93, 0.84, 0.62,

and 0.45 corresponding to false positive rates (1-speci-

ficity) of 0.2, 0.1, 0.05, and 0.01.

The three most informative features of the prediction

model (as reported by TLC) were the: (1) time elapsed

from the moment results were presented to the user until

first interaction event with the web page, (2) the average

time elapsed between every two consecutive mouse posi-

tions (also referred to as average dwell time), and (3) one

of the automatically learned features.

Following the training of the classifier, we applied this

tool to a large cohort of web users, over the age of

40 years inferred from their date of birth as reported at

registration to Bing (Fig. 1, Step 2). Users were included in

this cohort only on the basis of their reported age (general

population group, which comprised 1,490,987 individuals,

599,750,266 queries, number of queries per individual 42–
4894, median 401). We used an estimated false positive

rate of 0.01 paired with an estimated sensitivity of 0.45.

These values yields an estimated positive predictive value
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(PPV) of 25%, assuming a Parkinson’s prevalence of

0.75% in this age group.12–14 In this large cohort from the

general population, 17,843 of 1,490,987 (1.2%) individuals

were classified as having PD.

To validate the capability of the classifier to distinguish

PD from non-PD, we then applied this tool to individuals

from two additional groups of web users. We hypothe-

sized that in these two groups an increased prevalence of

affected individuals would be observed. Although the PPV

of the classifier in these two groups is likely to be higher

than in our general population group, due to higher a pri-

ori probability of PD,10 we used the same threshold of

classification (therefore, with an underestimation of the

true prevalence of PD in these groups). Also here, the

content of the typed text was only used to sort individu-

als to one of the studied group but was not used to clas-

sify individual as having PD or not.

The first validation group included users who repeatedly

typed specific search terms related to PD (unclassified

group, 804 individuals, 634,120 queries, number of queries

per individual 49–2588, median 780). In this group, a sig-

nificantly greater proportion of individuals were classified

as users with PD, 518/804 (64.4%, Fisher exact P-

value < 0.00001, relative to general population group). This

result is consistent with previous work indicating that the

majority of users who enter queries regarding medical con-

ditions actually suffer from these conditions 15.

The second validation group included users over the

age of 40 years who disclosed in their search query having

a non-motor symptom of the disease and/or a sibling

with PD (at-risk group 1,064 individuals, 713,802 queries,

number of queries per individual 52–3018, median 664).

Among this at-risk group, the model classified 57/1064

(5.3%, Fisher exact P-value < 0.00001, relative to general

population group) individuals as ones with PD (see Data

S2 for the number of individuals screened positive per

each of the reported risk factor). In this group, 6/64

(10%, Fisher exact P-value < 0.0005, relative to General

population group) of web users declared that one of their

siblings had the disease were classified as having PD.

Finally, to further verify the validity of the classification

(Fig. 1, Step 3), and to explore the possibility that this

classifier can be used to follow patients longitudinally, we

plotted over time, for each web user separately, 10% of

her/his PD-likelihood scores that had the lowest values

(one per query). We then fitted, to these 10% least

’parkinsonian’ sessions of each user, a regression line in

order to determine the slope of progression over time. In

all of the three studied groups (general population, unclas-

sified and at-risk groups), the mean of slope values of

individuals who were classified as having PD were not

found to be dissimilar to the mean of slope values of the

PD group that was used as a reference (Fig. 2, two-tailed

281 with PD vs 163 controls (spouses) 
sorted based on disclosing web-
queries   

A machine-learning classifier, blinded 
to the content of web-queries,  
learned to distinguish between PD 
and control (area uner the curve  0.93)

1,490,987 web users   

PD-related web-queries without 
personal disclosure of PD
(Unclassified group: 804 users)  

PD-Risk web-queries without 
personal disclosure of PD
(At-risk group: 1,064 users)   

No criteria for web-queries 
(General population: 1,490,987 
users)  

Sorting to groups based on 
content of web-queries   

Apply classifier 
developed in step 1, 
blinded to content of

web-queries 
  

Apply classifier 
developed in step 1, 
blinded to content of

web-queries 
  

Apply classifier 
developed in step 1, 
blinded to content of

web-queries 
  

1.2% screened 
positive for PD 

64.4% screened 
positive for PD 

5.3% screened 
positive for PD 

Step 1   

Step 2   

Step 3   

1.2% screened 
positive for PD 

64.4% screened 
positive for PD 

5.3% screened 
positive for PD 

Similar mean rate of progression 

Figure 1. Flowchart and the main findings of the study
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Figure 2. Progression of PD in individuals from the different study

groups. Means and standard errors are shown for individuals screened

positive (black) or negative (gray) for PD in each of the studied

groups. Black horizontal lines with asterisks represent significant

differences (t-test P < 0.05) between populations. The four

populations screened positive for PD are statistically indistinguishable

from each other, and the same applies for the four populations

screened negative for PD. See Data S3 for exact P-values
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t-test with Bonferroni correction, P-values ≥ 0.1). Simi-

larly, the mean of slope values of individuals classified as

not having PD from all study groups, were not dissimilar

to the control group (two-tailed t-tests with Bonferroni

correction, P- values ≥ 0.1). In contrast, for each of the

studied groups the mean of progression slopes signifi-

cantly differed between individuals who were classified as

having PD and those from the same group that were clas-

sified as not having the disease (two-tailed t-test with

Bonferroni correction, P-values < 0.05). These results

indicate that our classification results were nonrandom

and reflect the actual diagnostic medical condition of

individuals. These results also demonstrate the potential

of the classifier to document disease progression.

Discussion

Our study validates the successful application of a

machine learning algorithm to large-scale, web-based

screening for PD. As a screening tool, the algorithm has

an acceptable PPV (estimated as 25% here). This PPV is

not inferior to that of other commonly used screening

tests.16 A clinician examining a patient would diagnose

PD more accurately once motor signs become apparent.17

It has been shown that a simple solicited finger-tapping

task can predict increased risk PD18 but it remains to be

determined in future studies if an automatic algorithm

can perform better than a human clinician in identifying

prodromal PD when motor signs are subtle or absent. In

this study we did not attempt to distinguish prodromal

from motor PD.

To a reasonable degree, a human PD expert is capable

of distinguishing PD from other neurodegenerative dis-

eases (e.g., Multiple System Atrophy).19 Diagnostic accu-

racy drops from 83.9% to 73.8% when nonexperts

perform the diagnosis.20 In our study, we could not col-

lect data regarding the diagnostic process of individuals

in the PD group that served to train the classifier. It is

reasonable to assume that some users in this group had

other Parkinsonian syndromes. In order to establish, in

future studies, the true PPV and negative predictive value

(NPV) of a web screening tool, a validation of reported

diagnosis using other medical databases (or physical

examination of users) would be required. For ethical rea-

sons, we could not do it in this fully anonymized study

design. Due to all these limitations, in this study we did

not train our classifier to distinguish between PD and

other neurodegenerative diseases. We suspect that such a

task will be feasible as well in future algorithm refining

and development.

The ability to identify patients with PD, and to docu-

ment their motor decline, based on interactions with digi-

tal devices such as computer keyboards8,11,21 or mobile

touch screens22,23 was demonstrated in previous studies.

These algorithms, however, have never been validated in

real-life. Unlike in these aforementioned studies, the pre-

sent study provides validation of its algorithm tested in a

large cohort of web users considered to be at low or high

risk of actual PD. Increased frequency of PD cases detected

by our algorithm among web users who searched for PD-

related terms, reported a prodromal symptom of the dis-

ease or a blood-related relative with the disease enhanced

the validity of this method. This conclusion is also sup-

ported by the longitudinal progression of PD-related fea-

tures, as defined by the algorithm, which was much faster

among these with suspected PD in all tested groups.

Currently, an early diagnosis of PD would not change

the progression of the disease but may actually benefit an

individual with unexplained impairment of quality of life

due to constipation, insomnia, depression, or other non-

specific symptoms which would not have otherwise direc-

ted him to appropriate medical/neurological attention. In

addition, knowledge regarding a diagnosis would lead

some individuals to seek solutions (e.g., participation in

clinical trials testing disease-modifying therapies), and

may shape personal decisions regarding the future.

Parkinson’s disease web diagnosis could add to the

knowledge of the disease, for example, through future

studies comparing disease prevalence in different popula-

tions, or examining environmental factors that reduce or

increase the risk for PD or that contribute to disease pro-

gression. These potential benefits of unsolicited diagnosis,

such as the one demonstrated here, should be considered

in light of the ethical issues.

Unsolicited diagnosis raises important concerns. There

has been some discussion of the ethical issues raised by

unsolicited diagnosis in medical fields such as neurology,24

dermatology,25 and psychiatry,26 in cases where diagnosis

is made by "bystander" physicians uninvolved in the “pa-

tient’s” usual care. Issues that have been addressed include

the risk of misdiagnosis, stigma to patients, confidential-

ity, overdiagnosis, and overtreatment.26,27 These issues are

all relevant for the future drafting of ethical guidelines for

unsolicited web detection of diseases. Studies of public

attitude to the disclosure of unsolicited diagnoses indicate

that it is generally favorable,28 even in the case of serious

disease that cannot be modified, or in regards to informa-

tion that is of uncertain clinical significance.29

Our findings highlight the urgency in the need to

establish ethical guidelines for technology companies and

researchers involved in unsolicited web-derived diagnoses.

For obvious ethical reasons, we did not attempt identify-

ing subjects in this study. Our objective focused on

demonstrating that with the accelerating development of

remote, unsolicited web-based diagnosis ethical dilemmas

move outside of the sole area of responsibility of the
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medical profession to encompass technology companies

that develop capabilities to collect and analyze user infor-

mation on a massive scale. The absence of an ethical

framework dealing with this pertinent issue could harm

both users and commercial companies, and has far-reach-

ing implications for the current practice of medicine. Col-

laboration between the medical community, the public

and the leading technology companies is required to

develop an ethical framework and guidelines for the use

of web-based diagnostic tools, and for informing users of

their results. Such collaboration could improve users’

well-being while maintaining their rights to privacy, their

ability to receive clinically useful information, their

autonomy to choose between different possible courses of

action, and most notably, their right not to know.
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