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Abstract
Background Tumor spatial heterogeneity is an important
prognostic factor, which may be reflected in medical
images
Methods Image texture analysis is an approach of quantify-
ing heterogeneity that may not be appreciated by the naked
eye. Different methods can be applied including statistical-,
model-, and transform-based methods.

Results Early evidence suggests that texture analysis has the
potential to augment diagnosis and characterization as well
as improve tumor staging and therapy response assessment
in oncological practice.
Conclusion This review provides an overview of the appli-
cation of texture analysis with different imaging modalities,
CT, MRI, and PET, to date and describes the technical
challenges that have limited its widespread clinical imple-
mentation so far. With further efforts to refine its applica-
tion, image texture analysis has the potential to develop into
a valuable clinical tool for oncologic imaging.
Teaching Points
• Tumor spatial heterogeneity is an important prognostic
factor.

• Image texture analysis is an approach of quantifying
heterogeneity.

• Different methods can be applied, including statistical-,
model-, and transform-based methods.

• Texture analysis could improve the diagnosis, tumor staging,
and therapy response assessment.

Keywords Texture analysis . Fractal analysis . Cancer .CT .

MRI . PET

Introduction

Tumor heterogeneity

Imaging is used widely in oncologic practice for lesion char-
acterization, confirmation of diagnosis, staging, treatment
planning, targeting therapy, assessing treatment response,
and surveillance. Diagnosis and staging are typically based
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on a lesion’s anatomical appearance and the extent of tumor
spread on imaging. Different imaging modalities, such as X-
ray, ultrasound (US), computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomography
(PET), can be used singly or in combination, depending on the
tumor type, site, and clinical question to be answered. A
limitation that applies to all imaging modalities is that image
intepretation is based on a visual process. Yet, there are
features within each image that may not be appreciated readily
by the naked eye. Furthermore, when images are analyzed in a
more quantitative manner, standard region of interest analysis
may provide a mean parameter value, e.g., Hounsfield unit
(HU) on CT, signal intensity (SI) on MRI, or standardized
uptake value (SUV) on PET, but does not typically describe
the underlying spatial distribution.

Tumors are heterogeneous both on genetic and histopath-
ological levels (Fig. 1) with intratumoral spatial variation in
the cellularity, angiogenesis, extravascular extracellular ma-
trix, and areas of necrosis. Tumors with high intratumoral
heterogeneity have been shown to have poorer prognosis,
which could be secondary to intrinsic aggressive biology or
treatment resistance [1–3]. It is difficult to assess intratu-
moral heterogeneity with random sampling or biopsy as this
does not represent the full extent of phenotypic or genetic
variation within a tumor. Thus, a non-invasive method of
assessing the heterogeneity within a tumor might be of
clinical benefit, particularly in this age of personalized med-
icine, to select poor prognosis patients for more intensive
therapy. Hence, tumor heterogeneity is a clinically relevant

parameter for imaging that may be quantifiable and that
could augment standard reporting methods.

Texture analysis

Texture analysis refers to a variety of mathematical methods
that can be used to evaluate the gray-level intensity and
position of the pixels within an image to derive so-called
‘texture features’ that provide a measure of intralesional het-
erogeneity [4]. Different methods have been applied, includ-
ing statistical-, model-, and transform-based methods [5–12].
Statistical-based techniques have been most commonly ap-
plied and describe the distribution and relationships of gray-
level values in the image. Three orders of parameters are
described in statistical-based texture analysis. First-order sta-
tistics relate to gray-level frequency distribution within the
region of interest, which can be obtained from the histogram
of pixel intensities [13]. It is dependent on a single pixel value
rather than its interaction with neighboring pixels. First-order
statistics, based on histogram analysis, include mean intensity,
maximum intensity, minimum intensity, uniformity (uniformi-
ty of gray-level distribution), entropy (irregularity of gray-
level distribution), standard deviation of the gray-level histo-
gram distribution, skewness (asymmetry of the histogram),
and kurtosis (flatness of the histogram) (Appendix). Second-
order statistics are co-occurrence measurements calculated
using spatial gray-level dependence matrices. These matrices
determine how often a pixel of intensity i finds itself within a
certain relationship to another pixel of intensity j. Second-

Fig. 1 Non-small-cell lung
cancer showing spatial variation
in staining for angiogenesis
(CD34), pimonidazole
(hypoxia), and glucose trans-
porter protein expression
(Glut-1)
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order statistics based on a co-occurrence matrix (GLCM)
include entropy (randomness of the matrix), energy/angular
second moment (pixel repetition/orderliness and measures the
homogeneity of an image), homogeneity (uniformity of co-
occurrence matrix), dissimilarity (measurement of how differ-
ent each element in the matrix is), and correlation (measure-
ment of gray-tone linear dependencies). Another method to
derive second-order statistics is the run-length matrix (RLM),
which analyzes texture in a specific direction. A run is a length
of consecutive pixels with the same gray-level intensity in a
preset direction. The relationships between the run lengths
give rise to texture. Fine texture has more short runs with
similar gray-level intensities, whereas coarse texture has more
long runs with different gray-level intensities. Some of the
RLM parameters include short-run emphasis (SRE; measures
distribution of short runs in an image), long-run emphasis
(LRE), gray-level non-uniformity (GLNU; measures similar-
ity of gray-level values; GLNU is small if variation is less),
and run length non-uniformity (RLNU; measures the similar-
ity of run lengths; RLN is small if run lengths are similar).
Higher-order statistics are calculated using neighborhood
gray-tone-difference matrices, which examine the spatial rela-
tionship among three or more pixels and are thought to closely
resemble the human experience of the image [14, 15]. This is
calculated using the neighborhood gray-tone-difference ma-
trix (NGTDM). Examples of higher-order statistics include
contrast (number of local variations within the image), coarse-
ness (measurement of edge density), and busyness (measure-
ment of spatial rate of gray-level change). The application of
filters such as Laplacian of Gaussian bandpass filters in
statistical-based texture analysis of an image allows the ex-
traction of specific structures corresponding to the width of the
filters. Lower filter values (filter 0.5-1.0) will highlight struc-
tures with fine textures, and higher filter values highlight
structures with medium (filter 1.5-2.0) and coarse (filter 2.5)
textures in the filtered image.

Model-based approaches represent texture using sophis-
ticated mathematical models such as fractal analysis. Fractal
analysis is a form of pattern or geometric recognition. The
fractal dimension is a measurement of the irregularity or
roughness of a surface [13, 15]. Hence, the greater the
fractal dimension is, the rougher the texture.

Transform-based methods, such as Fourier, Gabor, and
wavelet transforms, analyze texture in a frequency or the
scale space. Fourier transform analyzes the frequency
content without spatial localization and hence is not often
used. Gabor transform is essentially a windowed-Fourier
transform derived by the introduction of Gaussian func-
tion, which then allows for frequency and spatial locali-
zation but is limited by its single filter resolution. This
problem is overcome by wavelet transform, which uses
multiple channels tuned to different frequencies [15]
(Appendix).

Texture analysis is not a new technique and has been
studied for medical imaging since 1973, when applied to
radiographs, and subsequently to ultrasound [16–18]. More
recently, texture analysis has been applied to CT (Figs. 2, 3)
and MRI, with an increasing number of PET studies [10,
19–31]. In oncological imaging, texture analysis is re-
emerging as a potential tool with an increasing number of
published studies. A major advantage of texture analysis is
that information is maximized from clinical images without
the need for additional acquisitions. Studies have focused in
several areas: feasibility, technical optimization, validation,
and potential clinical applications. This article reviews the
the current evidence for texture analysis of CT, MRI, and
PET/CT images and the clinical potential in the field of
oncology.

Texture analysis of computed tomography images

Although much of the heterogeneity visible on CT may
represent photon noise, which can mask any underlying
biological heterogeneity, texture analysis of CT images has
been shown to be feasible by reducing the effect of photon
noise while enhancing biological heterogeneity [6, 32]. A
few studies have compared texture features with other im-
aging and biological parameters (Table 1) [33–35], provid-
ing early evidence of potential correlates of CT texture. For
example, coarse texture features may reflect the underlying
vasculature as defined by CD34 [35]. Nevertheless, further
research in this area is still needed.

To date, studies that have been performed have focused
in several areas, where the addition of texture to current
methods may improve the detection, diagnosis, character-
ization, and response assessment (Table 2) [5, 32–34; 36–
43]. By highlighting certain features within a lesion of
interest, texture analysis has the ability to improve assess-
ment beyond direct visual analysis by a radiologist.

Diagnosis and characterization

Several studies have applied various texture analysis meth-
ods to improve lesion characterization based on the hypoth-
esis that there are texture differences between benign and
malignant lesions. In common, these studies have found that
there is greater heterogeneity and higher fractal dimension
in tumors than benign lesions, which has the potential to
contribute to the computer-aided diagnosis (CAD) of lung
or liver lesions. For example, Huang et al. investigated the
role of autocovariance function of unenhanced CT images
for classifying liver lesions as malignant (80 lesions) or
benign (84 lesions). The 2D normalized autocovariance
coefficient is a statistical-based texture feature that measures
the interpixel correlation within an image. The authors
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found that its accuracy was 81.7 % for differentiating ma-
lignant from benign lesions, but overlap precluded differen-
tiation of primary and secondary tumors [38]. Kido et al.
attempted to classify small lung lesions in high-resolution
CT images in two separate studies using fractal analysis [36,
37]. In the first study, they evaluated the use of fractal
analysis in differentiating benign from malignant lung
tumors by comparing either 2D binary or 3D gray-level

intensity mapping of the fractal dimension in biopsy-
proven lesions [37]. Benign hamartomas (n023) had
smaller 2D fractal dimensions (1.17 ± 0.05) compared to
bronchogenic carcinomas (n070) (1.23 ± 0.07), organizing
pneumonias (n013) (1.22 ± 0.07), and tuberculomas (n011)
(1.25 ± 0.07) (p<0.05). However, carcinomas (2.10 ± 0.11)
and hamartomas (2.12 ± 0.06) had smaller 3D fractal dimen-
sions compared to organizing pneumonias (2.29 ± 0.17) and

Fig. 3 Texture analysis of a T2-weighted MRI image of rectal cancer

Fig. 2 Texture analysis of
contrast-enhanced CT images
of a colon cancer with the ap-
plication of different filters
highlighting fine, medium, and
coarse textures
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tuberculomas (2.25 ± 0.08) (p<0.0001). The 3D fractal
dimension also differentiated adenocarcinomas (n061) from
squamous cell carcinomas (n09) [37]. In the second study,
the authors found that bronchoalveolar carcinomas (n030)
had greater fractal dimensions compared to non-
bronchoalveolar carcinomas (n040) [36]. Al-Kadi et al.
compared fractal analysis of dynamic contrast-enhanced
CT (wash-in/wash-out) images. The mean fractal dimension
was higher in aggressive/advanced stage tumors compared
to non-aggressive/early stage tumors with 83.3 % accuracy
for distinguishing between these two groups [5]. Goh et al.
found that the fractal dimension and fractal abundance were
higher for colorectal tumors compared to normal colon,
mean fractal dimension, and abundance (standard devia-
tion): 1.71 (0.07) and 7.82 (0.62), respectively, for tumor
and 1.61 (0.07) and 6.89 (0.47), respectively, for normal
colon (p≤0.001) (Fig. 4) [8]. Cui et al. studied 220 nodes in
colorectal cancer and suggested that CT texture features of
malignant and benign nodes differed, with greater heteroge-
neity noted in malignant nodes with a predictive accuracy of
88 % [39]. In a study that included 44 patients with gliomas,
Skogen et al. found that coarse texture entropy and unifor-
mity could distinguish between low- and high-grade tumors.
Entropy >5.2 had a sensitivity and specificity of 76 % and
82 %, respectively; uniformity ≤0.025 had a sensitivity and
specificity of 64 % and 95 %, respectively, for high-grade
tumors [40].

Therapy response assessment

To date, few studies have assessed the potential of texture
analysis for response assessment (Figs. 5, 6, 7). Goh et al.
investigated the potential of texture analysis to improve
response assessment in renal cell cancer metastases treated

with tyrosine kinase inhibitors. This study found that texture
analysis was a better predictor of response than current
response assessment methods based on size and/or enhance-
ment change (RECIST and modified Choi). The percentage
changes from baseline values of texture features after
two cycles of TKI therapy for metastatic renal cancer were
correlated with measured time to progression. Using a
threshold identified by ROC analysis, the percentage change
of −2 % or less from baseline for uniformity at a filter value
of 2.5, disease-free survival was significantly better in the
group with greater than −2 % change in uniformity (p0
0.008) and performed better than standard response assess-
ment after two cycles of TKI therapy [41].

Relationship with clinical outcome: A potential prognostic
biomarker?

Several studies have assessed the potential of texture anal-
ysis to improve the prognostic information of current imag-
ing and confirm the hypothesis that greater tumor
heterogeneity is an indicator of poor clinical prognosis
[33, 42–44]. Texture analysis as a post-processing tool
may complement the prognostic information obtained from
standard imaging.

Ganeshan et al. found that coarse texture entropy on CT
in seemingly normal liver of patients with colorectal cancer
correlated with patient survival and postulated that this may
be related to micrometastasis formation [42]. The authors
also investigated patients with colorectal metastases. They
normalized finer texture values (filter 1.0-2.0) to the
corresponding texture values obtained from the coarsest
filter (filter 2.5) to account for the contribution to the overall
texture by the different texture features obtained from dif-
ferent levels of image filtration. It was found that the

Table 1 Studies correlating
texture features to other imaging
and biological parameters

aSD standard deviation of the
histogram

Cancer
type

Features investigated Correlate Author, year

Esophagus Non-contrast CT. Coarse
texture uniformity
(r0−0.754, p<0.0001)

SUVmean Ganeshan et al., 2012 [33]

Entropy (r00.748, p00.0001)

NSCLC Contrast-enhanced CT SUVmax Al-Kadi et al., 2008 [12]

Fractal dimension

NSCLC Non-contrast CT SUVmax Ganeshan et al., 2008 [44]

Coarse texture

Uniformity (r0−0.52, p00.03)

Entropy (r00.51, p00.03)

NSCLC Contrast-enhanced CT Histological: CD34
and pimonidazole

Ganeshan et al., 2012 [35]

Medium and coarse texture;
SDa (r0−0.579, p<0.001)
(r00.591, p<0.001)
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Table 2 Studies investigating the use of CT texture analysis in diagnosis, treatment response assessment, and as a prognostic tool

Diagnosis and characterisation Method Study findings Author, year

Diagnosis

Lung

Pulmonary nodules Fractal analysis 3D fractal dimension was higher in
organizing pneumonias/tuberculomas
than carcinomas/hamartomas (p<0.001)
and higher in adenocarcinomas than
squamous cell (p<0.05)

Kido et al., 2002 [37]

Bronchoalveolar carcinoma
vs. non-bronchoalveolar
carcinoma

Fractal analysis Fractal dimension higher for bronchoalveolar
carcinomas (2.38±0.05/2.16±0.01) than
non- bronchoalveolar carcinomas (2.19±0.05/
2.06±0.01 internal/peripheral; p<0.0001)

Kido et al., 2003 [36]

Lung cancer Fractal analysis Fractal dimension was higher for stage III and
IV cancers than stage I (2.046 vs. 1.534). 83.8 %
of stage IV tumors were classified as aggressive
with a threshold of 1.913

Al-Kadi et al., 2008 [5]

Liver

Hepatic tumors Texture analysis Autocovariance function differed between
malignant (HCC and colorectal metastases)
and benign lesions. Sensitivity of 75.0 %
and specificity of 88.1 % were achieved
with the proposed diagnostic system

Huang et al., 2006 [38]

GI tract

Colorectal cancer Fractal analysis Fractal dimension and abundance were higher
in colon cancer than normal bowel: mean (SD)
1.71(0.07) vs. 1.61(0.07) for dimension and
7.82(0.62) vs. 6.89 (0.47) for abundance
(P≤0.001)

Goh et al., 2007 [8]

Colorectal cancer Texture analysis Fractal dimension is higher for metastatic nodes Cui et al., 2011 [39]

Brain

Glioma Texture analysis Coarse texture entropy >5.2 had a sensitivity and
specificity of 76 % and 82 %, respectively;
uniformity <0.025 had a sensitivity and specificity
of 64 % and 95 %, respectively, for high-grade
tumors

Skogen et al., 2011 [40]

Response assessment

Metastatic renal cell carcinoma Texture analysis Percentage change in coarse texture uniformity
of≤−2 % after 2 cycles of TKI correlated with
shorter time to progression

Goh et al., 2011 [41]

Prognosis assessment

Liver texture in patients
with colorectal cancer
but no known metastases

Texture analysis Coarse texture entropy correlated with hepatic
perfusion index (r0−0.503978, p00.007355)
and survival (r00.489642, p00.009533).
Hypothesized texture features may reflect vascular
changes associated with micrometastases. Entropy
<2.0 identified patients who died with 100 %
sensitivity, 65 % specificity

Ganeshan et al., 2007 [42]

Colorectal cancer metastases Texture analysis Uniformity at texture ratios of 1.5/2.5 and 2.0/2.5
were significant OS prognostic factors (p<0.005)

Miles et al., 2009 [43]

Liver texture in patients
with colorectal cancer

Texture analysis Fine texture entropy of ≤0.0807 between 26–30 s
after contrast injection highlighted node-positive
patients with 100 % sensitivity, 71 % specificity.
HPI did not vary significantly between node-negative
and -positive patients

Ganeshan et al., 2011 [32]

Esophageal cancer Texture analysis Unenhanced CT component of PET-CT Ganeshan et al., 2012 [33]

Greater heterogeneity in higher stage tumors.
Coarse uniformity was a significant OS prognostic
factor (OR04.56, 95 % CI 1.08–18.37, p00.039)

NSCLC Texture analysis Coarse texture uniformity <0.624 was a poor prognostic factor Ganeshan et al., 2011 [34]
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uniformity of surrounding ‘normal’ liver at texture ratios of
1.5/2.5 and 2.0/2.5 predicted for survival, potentially related
to differences in vascularization and shunting related to the
presence of metastases [43]. The same group also assessed
the texture of dynamic contrast-enhanced CT of the liver in
node-negative and -positive non-metastatic colorectal can-
cer. Uniformity and entropy were significantly different
between the node-positive and -negative patients and great-
est for fine texture entropy between 26 and 30 s following
injection of intravenous contrast in comparison with the
hepatic perfusion index, which was not significantly differ-
ent between the two groups [32]. In a study of 54 patients
with non-small-cell lung cancer (NSCLC) undergoing PET-
CT staging, a heterogeneous texture on the non-contrast-
enhanced CT component of the PET-CT was a predictor of
poorer survival; in particular, patients with coarse texture
uniformity <0.624 did not survive more than 2.5 years [44].
Similarly, in a study of 21 patients with primary esophageal
cancer undergoing PET-CT staging, advanced stage tumors
demonstrated greater heterogeneity at filter values 1.5–2.0.
Survival was also poorer for more heterogeneous tumors,
particularly for coarse texture uniformity <0.8477 (odds
ratio04.45, 95 % CI 1.08–18.37, p00.039) [33].

Texture analysis of magnetic resonance imaging

Texture analysis has also shown promise in MRI. The ma-
jority of literature over the past 10 years has been directed
toward lesion detection and lesion classification, for exam-
ple, breast, brain, liver, and prostate (Table 3) [19–23, 26,
45–48].

Diagnosis and characterization

As with CT, MRI studies have found that texture features
may differ between benign and malignant lesions and may
have potential in CAD. In the breast 2D co-occurrence

matrix features of dynamic contrast-enhanced MRI images
and signal enhancement ratio maps, 3D and 4D features may
distinguish between benign and malignant breast lesions:
4D techniques may achieve a performance similar to human
observers (AUC 0.99) [26, 46–48]. Holli et al. have inves-
tigated differences in texture between invasive lobular car-
cinoma (ILC) and invasive ductal carcinoma (IDC), two
common but distinct types of breast cancer, using different
texture methods. In this study, co-occurrence matrix features
were significantly different between ILC and IDC, allowing
differentiation between these two histological subtypes, and
were superior to the other texture methods applied including
histogram analysis, run-length matrix, autoregressive mod-
el, and wavelet transform [22].

In the brain, studies have found that texture features of
MRI including dynamic contrast-enhanced (DCE) sequen-
ces may distinguish between types of tumors [19, 23]. In the
first study by Eliat et al., the addition of MRI texture
analysis to dynamic contrast-enhanced MRI (DCE-MRI)
was able to discriminate glioblastoma multiforme (GBM)
from malignant glioneuronal tumors (MGNT) [19]. This
study analyzed the use of both first-order and second-order
statistics, which included GLCM and RLM methods. This
study found that the addition of second-order statistics such
as run-length non-uniformity, gray-level non-uniformity,
angular second moment, and entropy to the findings from
DCE-MRI had 100 % negative predictive value, 79 % pos-
itive predictive value, 100 % sensitivity, and 62 % specific-
ity in differentiating MGNT from GBM. Another group
developed a computer-assisted classification method com-
bining conventional MRI and perfusion MRI texture analy-
sis using Gabor transform and its implementation as a
diagnostic tool [23]. When the method was applied to 102
different brain tumors, including metastasis (n024), menin-
giomas (n04), grade II gliomas (n022), grade III gliomas
(n018), and glioblastomas (n034), the accuracy, sensitivity,
and specificity achieved by this method were 85 %, 87 %,
and 79 %, respectively, for discrimination of metastases

Fig. 4 Dynamic contrast-
enhanced CT (perfusion CT)
blood flow parametric map (a);
2D image (b); segmented and
thresholded image (c) for fractal
analysis
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from gliomas and 88 %, 85 %, and 96 % for discrimination
of high-grade (grades III and IV) from low-grade (grade II)
neoplasms.

In the liver, an exploratory study on unenhanced T1- and
T2-weighted MRI showed that it was feasible to use texture
analysis to classify benign cysts and hemangiomas, though
with up to 25 % misclassified [20]. This study used first-
and second-order statistics (GLCM and RLM) and also the
wavelet transform method to derive texture parameters that
were then selected based on their discriminative value in

differentiating cysts from haemangiomas and subsequently
used in the computer-assisted classification algorithm. Two
prostate studies have shown the potential of fractal features
in distinguishing between benign and malignant disease
with histological confirmation [21, 49]. For example, Lv et
al. investigated the use of the texture fractal dimension
(TFD) and histogram fractal dimension (HFD) based on
the box-counting method and histogram fractal analysis of
the intensity distribution, respectively. The mean and stan-
dard deviations of TFD and HFD for cancerous and non-

Fig. 5 Changes in texture
features of esophageal cancer
following neoadjuvant
chemotherapy: baseline (a) and
following chemotherapy (b).
An increase in homogeneity is
noted with treatment
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cancerous lesions were significantly different (TFD: 2.76 ±
0.11 vs. 2.81 ± 0.15, p00.035; HFD: 1.23 ± 0.05 vs. 1.42 ±
0.09, p<0.001). The authors also showed that an area under
the ROC curve of 0.96 could be achieved for the histogram
fractal dimension in a cohort of 55 patients who had diag-
noses confirmed by ultrasound-guided biopsy [49].

Therapy response assessment

Studies of response assessment have shown that assessment
of heterogeneity is feasible (Fig. 5), may augment response
assessment, and is a predictor of response [24, 27, 28].

Harrison et al. demonstrated that MRI texture appearances
change during treatment in 19 patients with non-Hodgkin
lymphoma who were imaged with T1 and T2W MRI at
three time points: at staging, and after the first and fourth
cycle of chemotherapy [27]. Alic et al. examined the role of
MRI texture in response prediction following isolated limb
perfusion in unresectable soft tissue sarcoma of the extrem-
ities. They showed that responding tumors demonstrated
high coherence in the pre-treatment MRI, a texture param-
eter that measures how spatially close the high intensity
voxels are to each other [24]. Similarly, O’Connor et al.
demonstrated in 10 patients with 26 liver metastases from

Fig. 6 Changes in texture features of metastatic renal cancer following two cycles of a tyrosine kinase inhibitor: baseline (left) and following
therapy (right). An increase in homogeneity is noted with treatment

Fig. 7 Changes in breast tumor texture following neoadjuvant chemotherapy on T2W-weighted MRI. Tumor shrinkage and an increase in
homogeneity are noted following completion of chemotherapy (right)

Insights Imaging (2012) 3:573–589 581



Table 3 Studies investigating the use of MRI texture analysis in diagnosis, treatment response assessment, and as a prognostic tool

Diagnosis and characterization Method Study findings Author, year

Diagnosis

Breast

Simulated microcalcification Texture analysis Successful automatic detection of localized
blurring was achieved (sensitivity089 %–94 %;
specificity099.7 %―100 %; PPV074 %–100 %;
NPV099.9 %–99.9 %)

James et al., 2001 [45]

Breast cancer Texture analysis A combination of textural analysis (second-
order statistics, e.g., contrast, sum entropy,
entropy), lesion size, time to maximum
enhancement, and patient age allowed for a
diagnostic accuracy of 0.92±0.05

Gibbs et al., 2003 [46]

Breast lesion Texture analysis The classification performance of volumetric
texture features (second-order statistics) is
significantly better than 2D analysis

Chen et al., 2007 [47]

Breast cancer Texture analysis The 4D texture analysis (using second-
order statistics) achieved a performance
comparable to human observers

Woods et al.,2007 [48]

Invasive lobular and
ductal breast cancer

Texture analysis Investigated the use of first-order statistics,
second-order stastistics obtained from
GLCM, RLM, autoregressive model, and
wavelet transform. All parameters distinguished
healthy from cancerous tissue although GLCM
performed better. 80 %–100 % of accuracy in
differentiating ductal from lobular cancers,
particularly complexity and entropy

Holli et al., 2010 [22]

Brain

Glioneuronal tumor Texture analysis The combination of DCE-MRI and MRI textural
analysis (second-order statistics—GLCM and
RLM) provide optimal differentiation between
glioneuronal tumors and gliomas in vivo

Eliat et al., 2012 [19]

Brain tumors—metastases,
meningiomas, gliomas
(grade II and III), glioblastomas

Texture analysis Metastases were successfully distinguished from
gliomas (accuracy085 %; sensitivity087 %;
specificity079 %) as well as high-grade from
low-grade neoplasms (accuracy088 %;
sensitivity085 %; specificity096 %) using Gabor
transform texture analysis

Zacharaki et al., 2009 [23]

Prostate

Prostate cancer Fractal analysis The combination of fractal and multifractal
features was more accurate than classical
texture features in detecting cancer and was
more robust against signal intensity variations

Lopes et al., 2011 [21]

Prostate cancer Fractal analysis Both fractal analyses offered promising
quantitative indices for prostate cancer
identification, with histogram fractal
dimension offering a more robust diagnosis
than texture fractal analysis (correlation
coefficient of c00.9905 vs. c00.9458,
respectively)

Lv et al., 2009 [49]

Liver

Liver cysts and hemangiomas Texture analysis Texture analysis (first-order, second-order
statistics and wavelet transform) was suc
cessfully used to classify focal liver lesions
on zero-fill interpolated 3.0-T MR images

Mayerhoefer et al., 2010 [20]

Response assessment

Breast Texture analysis Second-order statistics extracted from
parametric maps that reflect lesion
washout properties discriminate malignant
from benign tumors better than textural
features extracted from either first post-
contrast frame lesion area or from parametric

Karahaliou et al., 2010 [26]
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colorectal cancer treated with bevacizumab and FOLFOX-6
chemotherapy that fractal measures derived from pre-treatment
DCE-MRI were associated with tumor response [28].

Texture analysis of positron emission tomography (PET)

At present, only a few studies have investigated the potential
of PET texture analysis. These studies have focused on its
prediction of outcome and potential for radiotherapy planning.

Prediction of outcome

To date, three studies have been published. Eary et al.
showed that image heterogeneity as assessed by a new
method using a heterogeneity variable (HET), which was
defined as the percentage of variability in the voxel-level
FDG uptake compared to an ‘ideal’ ellipsoidal upake pat-
tern, was a valid prediction method in patients with sarcoma.
An increase of 6.5 % in heterogeneity was associated with a
65 % increase risk of death, the risk being higher in patients
with high-grade disease [50]. El Naqa et al. demonstrated
that various first- and second-order statistical textural fea-
tures are useful in predicting outcome in head and neck (n0
9) and cervical cancer (n014). The authors combined the
various first- and second-order statistics (energy, contrast,
local homogeneity, and entropy) with features indicating the
shape of the tumors in a linear regression model to predict
treatment response to chemoradiation. These methods
achieved an AUC of 0.76 and 1.0 for the cervix and head
and neck cohorts, respectively [30]. Tixier et al. have inves-
tigated its clinical application in 41 patients with esophageal
cancer treated with chemoradiation and shown that baseline
FDG PET texture is a sensitive predictive marker. They
found that local (i.e., entropy and homogeneity) and region-
al (i.e., size and intensity variabilities) texture parameters
performed better than standard SUV measurements in iden-
tification of responders from non-responders following

chemoradiation. The sensitivity, specificity, and AUC for
SUVmax were 53 %, 73 %, and 0.59 compared to 73 %,
88 %, and 0.89 for local homogeneity in identifying res-
ponders [31].

Potential for radiotherapy planning

Yu et al. have assessed whether first-order, second-order,
and higher-order statistics in FDG PET-CT co-registered
images can differentiate between normal and abnormal
nodes to assist radiotherapy target planning. Abnormal
nodes were found to be more heterogeneous than normal
tissues in PET images and, of interest, have higher unifor-
mity in CT images [51]. It could be that the accuracy of
texture analysis based on non-contrast enhanced CT scan is
lower than PET texture or that there was indeed a true
difference between CT and PET textures when abnormal
tissues are compared to the normal tissues. However, the
authors found that a combination of PET and CT textures,
particularly second-order and higher-order statistics, had
higher discriminative power. This group subsequently de-
veloped an automated radiotherapy volume delineation soft-
ware (“COMPASS”) based on their findings from the initial
study. They studied its use in ten patients with head and
neck cancer by comparing this to three PET segmentation
methods: threshold SUV value of 2.5, threshold of 50 %
maximal intensity and signal/background ratio, as well as
tumor volume delineation by three independent radiation
oncologists. This study found that automated texture-based
segmentation correlated better with tumor delineation by
oncologists compared to PET segmentation [52].

Technical challenges for clinical implementation
of texture analysis

Although studies so far have shown clinical promise, there
are still technical considerations to contemplate, particularly

Table 3 (continued)

Diagnosis and characterization Method Study findings Author, year

map reflecting lesion initial uptake. Angular
second moment and entropy were most dis
criminative

Lymphoma Texture analysis Texture analysis [first-order, second-order
statistics (GLCM and RLM), autoregressive
model and wavelet transform] was able to
classify NHL lesions undergoing chemo
therapy based on changes following treatment

Harrison et al.,2009 [27]

Liver metastases Fractal analysis Tumor heterogeneity as assessed by fractal
dimension predicted tumor shrinkage in
response to bevacizumab and cytotoxic
chemotherapy in colorectal liver metastases

O’Connor et al., 2011 [28]
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the effect of image acquisition, image quality, texture meth-
ods and software platforms on parameter values, the need
for harmonization of acquisitions, and a standardized anal-
ysis approach for clinical application [5, 12, 32, 53–56].
Each of the modalities brings different challenges to texture
analysis. With PET, images are of a lower spatial resolution
than CT or MRI. Although there is no specific limit to the
size of the lesion that is amenable to this analysis, small
tumors such as nodes, which are below the spatial resolution
of PET scans, may not be suitable for this technique. With
MRI, scanner and sequence acquisition parameters have a
greater non-linear influence on signal intensity and quanti-
fication of heterogeneity in comparison with CT or PET,
thus requiring stringent quality control and physics input.

To date, many studies have focused on a limited tumor
area, such as the largest cross-sectional area, rather than the
whole tumor volume. Intratumoral heterogeneity is likely to
be greater in the whole tumor as compared to a limited region;
hence, this could dilute the diagnostic and prognostic value of
texture analysis. With region-of-interest delineation around a
tumor, this has the potential to introduce inter- and intraob-
server variability. If a standardized automated ROI propaga-
tion is used, non-tumor areas may be included in the analysis
of the pixel values, which may confound the results obtained.

However, the potential impact of this methodical difference
on clinical findings is largely unexplored. At present, the repro-
ducibility of texture analysis has yet to be established widely,
although a few studies have begun to address issues related to
image acquisition and image quality, and their effect on texture
analysis [32, 53–56]. For example, Sanghera et al. have demon-
strated that the reproducibility of fractal analysis in two scans
performed 24 h apart by a single reader is good, with a mean
difference (95 % limits of agreement) of −0.024 (−0.212 to
0.372) and −0.355 (−0.869 to 1.579) for 2D fractal dimension
and fractal abundance, and −0.024 (−0.307 to 0.355) and −0.043
(−1.154 to 1.239) for 3D fractal dimension and fractal abun-
dance, respectively [9]. Good interobserver variability is also
observed with a mean difference of 0.030 (95 % limits of
agreement −0.143 to 0.204) and −0.073 (−0.823 to 0.676) for
2D and 3D fractal dimensions, and −0.073 (−0.823 to 0.676) and
−0.044 (−0.139 to 0.052) for 2D and 3D fractal abundances,
respectively. For therapeutic assessment where repeated imaging
is performed, it may be appropriate to use the same scanner and
acquisition parameters to ensure consistency. Similarly, if
contrast-enhanced images are used, contrast agent administration
should be consistent to minimize variability in gray level inten-
sity related to differences in contrast agent administration or dose.
Use of a ‘texture phantom’ would also allow calibration of
imaging systems within a multicenter setting. Further work in
this area is still needed.

The implementation of texture analysis into the routine clin-
ical workflow will remain a challenge. Although patients are not
required to undergo any additional imaging, as texture analysis is

a post-processing step that can be performed on existingDICOM
format images, at present, such analysis and software remain as
research tools, with few commercially available options.

Conclusions

Although texture analysis is not a new technique, there has been
resurgent interest in the assessment of tumor heterogeneity,
particularly for CT, MRI, and PET, in the last 10 years, albeit
in relatively small studies. Nonetheless, it is showing promise in
the diagnosis and characterization of tumors, response assess-
ment, and as a predictive biomarker, which should be explored
further in larger prospective studies. Texture analysis maxi-
mizes the information obtained from current standard images
and can be implemented into the clinical workflow. With fur-
ther efforts to refine its applications and direct standardization,
this technique has the potential to develop into a valuable
clinical tool in oncologic imaging in the future.
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Appendix

Statistical-based approaches applied to CT images

An approach that has been used in recent publications is the
application of a Laplacian of Gaussian (LoG) bandpass filter
to highlight and enhance different spatial scales between
fine and coarse texture (filter value01.0 to 2.5) [1].

The two-dimensional (2D) Gaussian distribution G is
given by:

G x; yð Þ ¼ e�
x2þy2

2σ2 ðE1Þ
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where x, y are the spatial coordinates of the image matrix
and σ is the standard deviation of the Gaussian distribution.

The 2D Gaussian distribution effectively blurs the image,
wiping out all structures at scales much smaller than the
sigma of the Gaussian. This distribution has the desirable
characteristics of being smooth and localized in both the
spatial and frequency domains, and is therefore less likely to
introduce any changes to the original image. The Gaussian
distribution highlights only texture features of a particular
scale. A fine scale (< 4 pixels) enhances parenchyma, while
a medium-to-coarse scale (6–12 pixels) enhances the under-
lying vasculature.

The reason for using the Laplacian (∇2) is that it is the
lowest-order orientation-independent (isotropic) differential
operator and inherently has less computational burden and
can be used to detect intensity changes in an image that
correspond to the zero crossings of the filter. ∇2G is the
Laplacian of Gaussian filter, a circularly symmetric,
Mexican-hat-shaped filter whose distribution in the 2D spa-
tial domain is given by

r2G x; yð Þ ¼ �1

pσ4
1� x2 þ y2

2σ2

� �
e�

x2þy2

2σ2

� �
: ðE2Þ

From the mathematical expression of this circularly sym-
metric filter at different filter values, the number of pixels
representing the width between the diametrically opposite
zero-crossing points in this filter can be calculated. The
width of the filter at different filter values is obtained by
evaluating the Laplacian of the Gaussian spatial distribution
along the x and y directions. The lower the filter value, the
smaller is the filter width in the spatial domain and the larger
is the pass-band region of the filter in the frequency domain,
highlighting fine details or features in the filtered image in
the spatial domain. Similarly in the spatial domain, a higher
filter value allows coarse features to be highlighted in the
filtered image.

Filtration can be done in the spatial or frequency domain.
In the spatial domain, the filter mask is convolved with the
image, which involves intensive computation. It is more
efficient to use the filter in the frequency domain, as con-
volution of the filter mask and the image in the spatial
domain is equivalent to multiplication of the Fourier trans-
forms of the filter mask and image in the frequency domain.
The inverse Fourier transform of the filtered spectrum gives
the resultant filtered image in the spatial domain. Also, the
accuracy of this filtering operation is improved when used in
the frequency domain, as the quantization errors arising
from the convolution of the filter, especially for small σ
values in the spatial domain, would distort the image.

Quantification of CT texture following filtration is typi-
cally performed for a specified region of interest (e.g., the
largest tumor cross-sectional area) or for the whole tumor.

Thresholds can be applied to the original CT image. In the
case of rectal or lung tumors, this may be to exclude sur-
rounding air by removing any pixels with attenuation values
below −50 HU from the analysis. The same ROI or VOI is
applied at all filter scales.

Typical parameters derived from the histogram analysis
include the kurtosis, skewness, and standard deviation of the
pixel distribution histogram, mean gray level intensity, en-
tropy, and uniformity. Kurtosis (or the magnitude of pixel
distribution), skewness (or the skewness of the pixel distri-
bution), and the standard deviation of the pixel distribution
describe the shape of the histogram representing the peak,
asymmetry, and gray-level variation within the lesion. En-
tropy is a measure of texture irregularity, while uniformity
reflects the distribution of gray levels within the tumor.

Higher entropy, lower uniformity, higher standard devia-
tion, higher kurtosis, and positive skewness are thought to
represent increased heterogeneity and portend poorer prog-
nosis [2–4].

sd ¼ 1

ðn� 1Þ
X

ðx;yÞ2R
½aðx; yÞ � a�2

0
@

1
A

1
2

ðE3Þ

k ¼ nðnþ 1Þ
ðn� 1Þðn� 2Þðn� 3Þ

P
ðx;yÞ2R

½aðx; yÞ � a�4

½sdðaÞ�4

� 3
ðn� 1Þ2

ðn� 2Þðn� 3Þ

ðE4Þ

s ¼ n

ðn� 1Þðn� 2Þ

P
ðx;yÞ2R

½aðx; yÞ � a�3

½sdðaÞ�3 ðE5Þ

e ¼ �
Xk
l¼1

pðlÞ½ �log2 pðlÞ½ � ðE6Þ

u ¼
Xk
l¼1

pðlÞ½ �2 ðE7Þ

Where:

a ¼ 1

n

X
ðx;yÞ2R

a x; yð Þ½ �

a is the mean value within R, R is the ROI within the
image a(x,y), n is the total number of pixels in R, I is the
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pixel value (between I 01 to k) in R, and p(I) is the proba-
bility of the occurrence of that pixel value.

Autocorrelation model

The autocorrelation coefficient denotes the interpixel corre-
lation within an image. This coefficient is modified to a
mean-removed version to generate similar autocorrelation
features with different brightness but similar texture called
the autocovariance coefficient [5]. The autocovariance co-
efficient between pixel (i,j) and pixel (i+Δm, j+Δn) in an
image of size M x N is given by:

g Δm;Δnð Þ ¼ A0 Δm;Δnð Þ
A0 0; 0ð Þ ðE8Þ

A0 Δm;Δnð Þ ¼ 1
M�Δmð Þ N�Δnð ÞPM�1�Δm

x¼0

PN�1�Δn

y¼0
f x; yð Þ � f
� �

f xþΔm; yþΔnð Þ � f
� ��� ��

ðE9Þ

where ˉf is the average value of f(x, y).

Model-based approaches applied to CT images

Fractal analysis

Fractal analysis provides a means of assessing structural
geometry. Fractal measures such as the fractal dimension
(a measure of how an object fills space), fractal abundance
(a measure of the volume of space filled), and lacunarity (a
measure of the structural heterogeneity within an object)
inform about different aspects of the spatial pattern of the
tumor vasculature, providing a measure of its spatial hetero-
geneity. Fractal dimension and fractal abundance may be
calculated using a 2D square and 3D cube, the box counting
method, with multiple grid offsets for all possible box start
locations, based on the following equation:

NL ¼ KL�D ðE10Þ
where L is the box size, NL is the number of boxes of size L
needed to cover the object being studied, and D is the fractal
dimension. By plotting a log-log plot of NL versus L, fractal
dimension (FD) can be obtained from the slope, and fractal
abundance (FA) or log K can be obtained from the y-
intercept of the straight portion of the curve [6]. The 2D
and 3D techniques have been validated using simple and
complex structures of known fractal dimension, e.g.,
Sierpinski gasket and carpet with multiple iterations, and
shown to be reproducible [7].

Lacunarity can be derived using a 2D and modified 3D
gliding box method defined by the equation:

Λ ¼
X

s2Q s; rð Þ
X

sQ s; rð Þ
h i2�

ðE11Þ

where Λ represents lacunarity, r represent box size, s repre-
sents the number of occupied sites within a box size, and Q
is the probability distribution (representing the frequency
distribution of the total number of occupied sites for a box
size r over the total number of boxes of size r) [8].

Transform-based approaches applied to CT images

The pixel pattern in a 2D image has a unique frequency pattern
in a specific spatial scale of the image [9, 10]. If the gray-level
values change quickly, it is deemed to have a high spatial
frequency. If the gray level values vary slowly such that there
is very little variation within an image, it is considered to have
a low spatial frequency. This is dependent on the scale used to
analyze the image. For example, if a large scale is used, then
there is less variation observed compared to the greater vari-
ation and details seen with a smaller scale.

Fourier transform

Fourier transform is useful in the analysis of global frequen-
cy content but is without time/space localization [11]. The
window Fourier transform of a 1D signal f (x) is given by:

Fwðu; xÞ ¼
Z1

1
f ðxÞwðx� xÞe�j2puxdx ðE12Þ

Gabor transform

Gabor transform introduces the time dependency element
into Fourier analysis by multiplying it with a Gaussian
function [i.e., window function w(x) becomes Gaussian]
[12]. The time-frequency resolution of the Gabor transform
is fixed throughout the time-frequency plane [12]. Gabor
output is also non-orthogonal; thus, the resultant texture
features may have significant correlation [13].

Wavelet transform

Multiresolution analysis such as wavelet transform uses
multiple channels tuned to different frequencies (i.e., the
window function varies). Wavelet transform was first intro-
duced by Mallat [14]. It decomposes an image by using
spatially oriented frequency filters but requires intensive
computation. Wavelets are considered as a family of
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functions derived from translations and dilations of a single
function known as the “mother wavelet” Ψ(t). Wavelets are
defined by:

ya;bðtÞ ¼
1ffiffiffiffiffiffi
aj jp y

t � b

a

� �
; a; b 2 R; a 6¼ 0 ðE13Þ

where a is the scaling parameter and measures degree of
compression, and b is the translation parameter that indi-
cates the time location of the wavelet. If │a│<1 indicates
the compressed version of the mother wavelet and is of
higher frequency, then │a│>1 corresponds to lower fre-
quencies [15].

Table 4. Definitions of statistical texture features

Order of
statistics

Texture features Definitions

First-order
statistics

Mean gray-level
intensity

Average pixel value, i.e., intensity/
brightness of a region

Standard deviation Variation frommean gray-level value

SD is small if image is homogenous

Uniformity Uniformity of gray-level distribution

Entropy Irregularity of gray-level distribution

Kurtosis Flatness of histogram

Skewness Asymmetry of histogram

Second-
order
statistics

Local entropy Measures randomness in image

Higher entropy indicates greater
randomness

Local homogeneity Measures closeness of distribution
of gray-level values in the matrix
(GLCM) to the GLCM diagonal

Angular second
moment (ASM)/
energy

Measures homogeneity in an
image. Higher value indicates
greater uniformity of gray-level
values in a matrix

Dissimilarity Measurement of how different each
element in the matrix is

Correlation Measures gray-tone linear
dependencies

Higher-
order
statistics

Coarseness Measures the edge density

Finer texture has higher edge density

Busyness Measures spatial rate of gray-level
change

Contrast Difference moment of the matrix,
measures local variations and
spread of matrix values

High contrast indicates greater
local variation, i.e., more
heterogeneous

Complexity Measures the amount of information
in an image (gray-level intensities,
number of sharp edges)
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