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Abstract: Jellyfish are commonly considered a nuisance for their negative effects on human activities
(e.g., fisheries, power plants and tourism) and human health. However, jellyfish provide several
benefits to humans and are commonly eaten in eastern countries. Additionally, recent studies have
suggested that jellyfish may become a source of high-value molecules. In this study, we tested
the effects of the methanolic extracts and enriched fractions, obtained by solid-phase extraction
fractionation, from the scyphomedusae Pelagia noctiluca, Rhizostoma pulmo, Cotylorhiza tuberculata
and the cubomedusa Caryddea marsupialis on different human cancer cell lines in order to evaluate a
potential antiproliferative activity. Our results indicated that fraction C from Caryddea marsupialis-(CM)
and C. tuberculata oral arms (CTOA) were the most active to reduce cell viability in a dose-dependent
manner. LC/MS based dereplication analyses highlighted that both bioactive fractions contained
mainly fatty acids and derivatives, with CM additionally containing small peptides (0.7–0.8 kDa),
which might contribute to its higher biological activity. The mechanism of action behind the most
active fraction was investigated using PCR arrays. Results showed that the fraction C of CM can
reduce the expression of genes involved in apoptosis inhibition in melanoma-treated cells, which
makes jellyfish a potential new source of antiproliferative drugs to be exploited in the future.

Keywords: scyphomedusae; cubomedusae; drug discovery; antiproliferative; apoptosis; melanoma

1. Introduction

The marine environment and the organisms living within it are being increasingly
exploited as a source of natural defense metabolites and bioactive compounds [1–3]. Within
marine organisms, jellyfish, particularly scyphomedusae, are raising increasing interest
as a source of compounds for biotechnological applications [4–6]. Generally considered a
nuisance, particularly during their sudden and massive appearances (blooms), because they
interfere with human activities at sea along the coasts (e.g., tourism, fisheries and industries)
by stinging swimmers, damaging fishing gears and caught fish as well as clogging power
plant water inflows [7], jellyfish have been an important part of the diet of eastern popu-
lations, particularly the Chinese [8]. Despite the lack of specific studies, scyphomedusae
appear to be a healthy food for their low carbohydrate and lipid content and, conversely,
their high protein content [4]. In addition to the biochemical composition, recent studies
have highlighted the antioxidant activity of several scyphomedusae, including Cotylorhiza
tuberculata, Rhizostoma pulmo, R. luteum, Catostylus tagi and Rhopilema esculentum [9–13],
which makes them a healthy food [14] and a source of antioxidant compounds [13].
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In addition to the exploitation for antioxidant compounds, jellyfish possess collagen,
which is the polymer most abundant in this group. Collagen extracted from jellyfish has
shown a high biocompatibility with human collagen [15,16], which prompted biomedi-
cal applications, including a substrate for microglia culture [15] and scaffolds for tissue
growth and regeneration [17,18]). Although the venom extracted from several jellyfish
causes painful stings to humans, it has shown effects to be considered a promising tool for
pharmacological products [5]. For example, the venom extracted from Nemopilema nomurai
was tested on heart and muscle myoblasts in mice and blood cells from different organisms,
including humans [19] and a model animal [20], as well as human hepatocellular carcinoma
(HepG2) cells [21]. However, the information necessary to develop the application of
compounds extracted from jellyfish for biotechnology, particularly biomedicals, is still
very limited.

The scyphomedusae Pelagia noctiluca (Forsskål, 1775), Rhizostoma pulmo (Macri, 1778)
and Cotylorhiza tuberculata (Macri, 1778) are endemic and often blooming in the Mediter-
ranean Sea [22–26]. P. noctiluca is well known not only for its blooms, but also for stinging
swimmers in coastal areas along the whole Mediterranean since ancient times [22–25].
The venom extracted from the scyphomedusa has shown antiproliferative as well as cy-
tolytic and cytotoxic activities [27,28], and induces oxidative stress [29]. Additionally,
analgesic [30] as well as anti-inflammatory activities have been detected in the crude
venom extracted from P. noctiluca.

R. pulmo and C. tuberculata occasionally bloom in the Mediterranean Sea [22,24–26], but
they are being studied for their antioxidant activity and their biochemical composition, for
which they have been suggested to become a novel food for Mediterranean populations [14].
Because these scyphomedusae induce mild stings (R. pulmo) or are completely harmless
to humans (C. tuberculata), their venom has been less studied than the crude venom of
other scyphomedusae [31]. Nevertheless, in vitro bioassays have indicated that the tissue
of R. pulmo have cytolytic and hemolytic activities [32]. A metalloproteinase, named
rhizoproteinase, was isolated from the tentacles of this species and showed anticoagulant
activity [33], while Cariello and co-workers isolated rhizolysin, a high-molecular-weight
protein with hemolytic activity [34]. The intermediate phase (IP) of the hydro alcoholic
extract of C. tuberculata has shown antiproliferative activity on MCF-7 breast cancer cell
viability [35]. In particular, IP showed a concentration dependent activity, with no effects
on non-malignant human epidermal keratinocytes (HEKa).

The cubomedusa Carybdaea marsupialis is found typically in the Mediterranean Sea [36].
Recorded in the Adriatic Sea for the first time in 1985 [37] and in Tunisia in 2015 [38], it
appears in aggregations of solitary individuals [39]. The apparent increase in the indi-
viduals belonging to this species has been attributed to a greater availability of substrate
for polyps [22]. Like most cubomedusae, C. marsupialis induces painful stings to humans,
which become lethal only in rare cases. A pore-forming toxin was extracted from C. marsu-
pialis collected in the Adriatic Sea [40], Sanchez-Rodrigues and collaborators isolated one
neurotoxin and three cytolysins from specimens identified as C. marsupialis in the Caribbean
Sea and tested their effect in vivo on sea crabs [41]. The presence of venom-derived neuro-
toxins that act on membrane proteins of the vertebrate nervous system was corroborated
by bioassays on oocytes expressing membrane proteins from rat brain cells [42].

In this study, we tested the effect of total extracts and fractions from the scyphome-
dusae P. noctiluca, R. pulmo, C. tuberculata and the cubomedusa C. marsupialis on different
human tumor cell lines (i.e., human hepatocellular liver carcinoma, melanoma and alve-
olar basal epithelial adenocarcinoma) in order to evaluate their possible antiproliferative
activities. Our results indicated that raw extracts and the fraction enriched in glycolipids
and phospholipids of C. tuberculata (particularly the oral arms) and C. marsupialis were the
most active and their mechanism of action was studied using cell-death PCR array.
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2. Results
2.1. Raw Extracts Screening

In order to evaluate the antiproliferative activity of the collected jellyfish, raw methano-
lic extracts of C. tuberculata umbrella (CTU), C. tuberculata oral arms (CTOA), C. marsupialis
(CM), R. pulmo umbrella (RPU), R. pulmo oral arms (RPOA) and P. noctiluca (PN) were
tested on different human tumor cell lines: hepatocellular liver carcinoma (HepG2), human
melanoma cells (A2058), adenocarcinomic human alveolar basal epithelial cells (A549)
and human normal lung fibroblasts cell lines (MRC5). Total extract from CM was active
on both A2058 and A549 cell lines (Figure 1a,b). In particular, CM was active on A2058
when tested at 1, 10 and 100 µg·mL−1 (p < 0.05, 0.05 and 0.01, respectively), and on A549
at 10 and 100 µg·mL−1 (Figure 1a,b). CTOA was active only on A2058 at 100 µg·mL−1

(p < 0.01; Figure 1a). Cell proliferation of HepG2 cells and normal cells (MRC5) was not
affected by jellyfish total extracts (Figure 1c,d). CTU, RPU, RPOA and PN raw extract did
not significantly affect cell proliferation of tested cell lines (Figure 1a–d).

Figure 1. Antiproliferative assay. Raw methanolic extracts were tested at increasing concentration
(10 and 100 ng·mL−1, 1, 10 and 100 µg·mL−1) on A2058 (a), A549 (b), HepG2 (c) and MRC5 (d) cell
lines. Cell proliferation was normalized using a control sample, containing DMSO only. Results are
expressed as a percentage survival after 72 h exposure (n = 3; * for p < 0.05; ** for p < 0.01).

2.2. Bioactivity Testing of CTOA and CM Fractions

Raw extracts of the most active jellyfish (CTOA and CM) were fractioned using a
Chromabond SPE column (see methods) and fractions (A-E) were then tested in order to
identify the most active ones at 24, 48 and 72 h (Figures 2–4). After 72 h of treatment, fraction
C of both CTOA and CM showed the highest activity, both at 10 µg·mL−1 and 100 µg·mL−1

against A2058 cells (p < 0.05 and 0.001 for CTOA 10 µg·mL−1 and 100 µg·mL−1, and p < 0.01
and 0.001 for CM 10 µg·mL−1 and 100 µg·mL−1). Fractions B, D and E of both CTOA
and CM were active at 100 µg·mL−1 on A2058 cells (p < 0.05 for CTOA fraction B and
p < 0.001 for CTOA fraction D and E, while p < 0.01 for CM fractions B, D and E; Figure 4a,b).
Conversely, a significant antiproliferative activity was not found against the other cancer
cell lines (Figure 4c–j). In addition, after 24 h of treatment (Figure 2), fractions from both
CTOA and CM did not show any antiproliferative activity. On the contrary, after 48 h
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of treatment, fraction D and E at 100 µg·mL−1 from CTOA and fractions C, D, and E at
100 µg·mL−1 from CM exerted antiproliferative activity on A2058 cell line (Figure 3), and
cell proliferation after 48 h of treatment was higher than the one after 72 h of treatment.

Figure 2. Antiproliferative assay. Fractions obtained from raw extracts of CTOA and CM were
tested at increasing concentration (1, 10 and 100 µg·mL−1) on A2058 (a,b), A549 (c,d), HepG2 (e,f),
HaCaT (g,h) and MRC5 (i,j) cell lines. Cell proliferation was normalized using a control sample,
containing only DMSO. Results are expressed as percent of cell proliferation after 24 h exposure.
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Figure 3. Antiproliferative assay. Fractions obtained from raw extracts of CTOA and CM were
tested at increasing concentration (1, 10 and 100 µg·mL−1) on A2058 (a,b), A549 (c,d), HepG2 (e,f),
HaCaT (g,h) and MRC5 (i,j) cell lines. Cell proliferation was normalized using a control sample,
containing only DMSO. Results are expressed as percent of cell proliferation after 48 h exposure
(n = 3; * for p < 0.05; ** for p < 0.01; ***p < 0.001).
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Figure 4. Antiproliferative assay. Fractions obtained from raw extracts of CTOA and CM were
tested at increasing concentration (1, 10 and 100 µg·mL−1) on A2058 (a,b), A549 (c,d), HepG2 (e,f),
HaCaT (g,h) and MRC5 (i,j) cell lines. Cell proliferation was normalized using a control sample,
containing only DMSO. Results are expressed as percent of cell proliferation after 72 h exposure
(n = 3; * for p < 0.05; ** for p < 0.01; ***p < 0.001).
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In addition, the half-maximal inhibitory concentration (IC50) of fraction C was evalu-
ated for both CTOA and CM on A2058 cells (Figure 5). In particular, the corresponding
C fractions were tested at increasing concentrations, from 0.1 to 100 µg·mL−1. Fraction C
obtained from CTOA had an IC50 = 8.10 µg·mL−1, while fraction C of CM was the most
active, with an IC50 = 0.34 µg·mL−1 (Figure 5).

Figure 5. Antiproliferative curve of fraction C of both CM and CTOA. Fraction C was tested at
increasing concentrations, from 0.1 to 100 µg·mL−1, in A2058 cells. Results are expressed as a
percentage of cell proliferation after 72 h exposure (n = 3).

2.3. Mechanism of Action of Fraction C of CTOA and CM

In order to elucidate the cell death metabolic pathway induced by fraction C of the
most active jellyfish, expression levels of selected genes involved in various cell death
pathways were evaluated using a PCR array in A2058 cells treated in the presence of
enriched fraction C of both CTOA and CM (respectively at 20 µg·mL−1 and 1 µg·mL−1).
Gene transcription was considered to be affected by compounds if expression values were
greater than a two-fold difference with respect to the control (DMSO alone; Student’s t-test
p value < 0.05). Both differentially up-regulated and down-regulated genes are reported
in Table 1.

Gene expression analyses indicated that apoptotic peptidase activating factor 1 (APAF1)
was up-regulated in both CTOA- and CM-treated cells. APAF1 plays an important role
in apoptosis, since it is essential for apoptosome formation. The in vivo loss of APAF-1
expression is generally associated with tumor progression [43] and its up-regulation is
associated with the antitumor activity of taxane [44]. S100 calcium binding protein A7A
(S100A7), also known as psoriasin, has been found to be up-regulated in CM-treated cells.
S110A7 has been found to be up-regulated in psoriatic lesions [45] and when secreted it
can be a chemoattractant which regulates the migration of neutrophils or T helper cells [46].
Beclin 1 (BECN1), an autophagy-related gene [47], is over-expressed in CM-treated cells.
The DENN/MADD domain containing 4A (DENND4) was down-regulated in both CTOA-
and CM-treated cells. DENND4 is a regulator of Rab-GTPase (a class of protein involved
in membrane trafficking [48]) [49]. The X-linked inhibitor of apoptosis (XIAP), nucleolar
protein 3 (apoptosis repressor with CARD domain, NOL3) and Forkhead box I1 (FOXI1)
were down-regulated in CM-treated cells. XIAP, strongly inhibited by CM treatment
(−149.92 ± 93.7 fold), is an apoptosis inhibitor; it suppresses apoptosis by binding cas-
pase and inhibiting caspase activation [50]. XIAP modulation is becoming an important
target for cancer therapy, in fact, it may confer therapeutic resistance and may modulate
signaling factors involved in other processes, such as necroptosis, autophagy and immuno-
suppression [51]. NOL3 is an apoptosis suppressor and is related to chemoresistance and
radiotolerance in cancer cell [52]. FOXI1 is a transcription factor related to cell growth and
differentiation and it has been associated with metastasis in breast cancer [53]. Altogether,
gene expression analyses suggested an apoptotic signal by APAF1 increase in both CTOA-
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and CM-treated cells, and also decrease in the apoptosis repressors XIAP and NOL3 in
CM-treated cells.

Table 1. Transcriptional modulation of genes involved in human cell death signaling pathways in
treated A2058 cells. Gene transcription is not considered affected by compound treatment if fold
regulation is in the range ± 2.

UniGEne RefSeq Symbol Description Fold SD

Genes up-regulated by CTOA fraction C

Hs.552567 NM_001160 APAF1 Apoptotic peptidase activating factor 1 2.77 0.245

Genes down-regulated by CTOA fraction C

Hs.592068 NM_020655 JPH3 Junctophilin 3 −2.54 0.792
Hs.241570 NM_000594 TNF Tumor necrosis factor −2.22 0.227
Hs.654567 NM_005848 DENND4A DENN/MADD domain containing 4A −2.16 0.019

Genes up-regulated by CM fraction C

Hs.442337 NM_176823 S100A7A S100 calcium binding protein A7A 4.28 0.917
Hs.552567 NM_001160 APAF1 Apoptotic peptidase activating factor 1 4.21 0.079
Hs.716464 NM_003766 BECN1 Beclin 1 2.65 0.056

Hs.578973 NM_015247 CYLD Cylindromatosis
(turban tumor syndrome) 2.20 0.428

Hs.181301 NM_004079 CTSS Cathepsin S 2.04 0.141

Genes down-regulated by CM fraction C

Hs.356076 NM_001167 XIAP X-linked inhibitor of apoptosis −149.92 9.751

Hs.513667 NM_003946 NOL3 Nucleolar protein 3 (apoptosis repressor
with CARD domain) −19.25 4.862

Hs.87236 NM_012188 FOXI1 Forkhead box I1 −6.87 1.369
Hs.654567 NM_005848 DENND4A DENN/MADD domain containing 4A −6.14 0.416
Hs.592068 NM_020655 JPH3 Junctophilin 3 −2.79 0.292
Hs.696238 NM_001166 BIRC2 Baculoviral IAP repeat containing 2 −2.26 0.553
Hs.592244 NM_000074 CD40LG CD40 ligand −2.12 0.137

2.4. HPLC-UV-HRMS Dereplication of the Fractions

The bioactive fractions from the raw extracts CM and CTOA were dereplicated by
HPLC-UV-HRESIMS according to the procedures reported in the Materials and Methods
section. LC-UV chromatograms of fractions C from CM and CTOA are reported in the
figures below together with the molecular formula and the putative identity of the most
representative components detected by HRESIMS (Figure 6a,b).

Four different unknown compounds were detected in fraction C of the CM extract.
Component P1 consisted of a mixture of two compounds (P1A and P1B) which displayed
the HRMS adducts [M + H]+ and [M + H + NH4]2+ (Figure 7a). Component P2 corre-
sponded to another mixture of two compounds (P2A and P2B), which also displayed HRMS
adducts [M + H]+ and [M + H + NH4]2+ (Figure 7b,c). Considering the observed adducts,
compounds P1A, P1B, P2A and P2B were assigned the molecular formulae C39H61N7O7,
C41H65N7O8, C43H69N7O9 and C45H73N7O10, respectively. The best coincidences with
these formulae in the Dictionary of Natural Products database (DNP) corresponded to
cyclic peptides, but only P1A and P2A had hits in the database. Box jellyfishes are known
to be outstanding producers of toxic proteins and peptides which are present in their
venoms [54,55], and small cyclic peptides have also been isolated from jellyfish-derived
fungi [56]. C39H61N7O7 retrieved as a hit the peptide pseudacyclin A in the DNP, while
C43H69N7O9 retrieved the peptide taxlllaid E [57,58]. Compounds present in fraction C
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are most likely to be peptides, but further jellyfish sampling and studies are necessary to
confirm their identity.

Figure 6. LC-UV chromatogram of fraction C from CM (a) and CTOA (b).

Other compounds present within the fractions of both species were the well-known
polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and dodecosahexaenoic acid
(DHA). Both compounds were reported to be present in jellyfish extracts according to
the literature [58–60]. EPA is already known to possess antiproliferative properties. In
particular, EPA reduces the cell viability of lung carcinoma cells A549 by 50% after 72 h
of treatment at a concentration of 6.05 µM [61]. DHA has also been reported to possess
antiproliferative properties. It reduced the viability of breast (MDA-MB-231 and MCF-7),
pancreatic (MiaPaca-2) and colorectal (CaCo-2, SW-620) cancer cell lines at concentrations
between 10 and 100 µM [62]. Both compounds can therefore be contributing to the biological
activity observed when testing the fractions.

Finally, CTOA contained two components with molecular formulae C18H31NO2 and
C22H37NO2. These compounds are most likely amide derivatives of polyunsaturated
fatty acids. They are reported as natural self-defense agents in plants with several known
biological activities [63], but a few of them have been reported in marine natural sources
alike [64,65]. This would be the first time this class of compounds is reported in jellyfish.
However, further isolation and characterization procedures should be performed in order
to confirm their identity and their potential contribution to the bioactivity observed.
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Figure 7. HRMS spectrum expansion of component P1 (a). [M + H]+ and [M + H + NH4]2+ adducts
of the compounds P1A and P1B are highlighted. P1A m/z values for [M + H]+ and [M + H + NH4]2+

are 740.4704 and 379.2520, respectively. P1B m/z values for [M + H]+ and [M + H + NH4]2+ are
784.4966 and 401.2655, respectively. HRMS spectrum expansions of component P2 (b,c). [M + H]+

and [M + H + NH4]2+ adducts of the compounds P2A and P2B are highlighted. P2A m/z values for
[M + H]+ and [M + H + NH4]2+ are 828.5160 and 423.2756, respectively. P2B m/z values for [M + H]+

and [M + H + NH4]2+ are 872.5423 and 445.2887, respectively.

3. Discussion

This study shows that C. tuberculata oral arms and whole C. marsupialis extracts have
antiproliferative properties against human cell lines and, in particular, melanoma A2058
and lung A549 cells. Results showed that, after fractionation, fraction C was specific against
melanoma cells. It has been previously reported that bioactivity is not identical between
total extracts and fractions, because of less salt concentration in fractions [66], as well as
synergistic effects of components in the total extracts or loss of unstable compounds in
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fractions. Fraction C of both species was active against melanoma human cells at 10 and
100 µg/mL in both species. Fraction C was enriched in glycolipids and phospholipids,
according to the solid phase extraction fractionation procedure by Cutignano et al. [66].
This class of compounds has been previously shown to exert various biological activities,
such as anticancer [67] and immunomodulatory [68,69]. These new findings open exciting
potential scenarios on the use of jellyfish extracts for cancer treatment or prevention, as
possible innovative drugs or food additives.

The biological activity against cancer cells by C. tuberculata was unexpected, con-
sidering that this scyphomedusa is harmless to humans [31] and there are no toxic or
antiproliferative compounds known from this species to date [5]. Conversely, C. marsupialis
is known to induce painful stings [31] and produces compounds with negative effects on
human cells, such as hemolysin, a compound with hemolytic activity, and four cytolysins
(i.e., CmHl1, CmHl5, CmH17 and CmNt) [40,41]. However, these biological activities found
in compounds extracted from C. marsupialis have found little application until now.

In line with its harmlessness, C. tuberculata appears to be a promising source of
compounds which benefit human health, such as collagen and antioxidant peptides [9].
This Mediterranean scyphomedusa contains the highest amount of collagen of all other
scyphomedusae where its content was determined, together with the other Mediterranean
rhizostome species, R. pulmo, and more than the quantity contained in other scyphomedusae
consumed as food in the eastern seas [4]. Additionally, C. tuberculata hosts the dinoflagellate
endosymbionts Philozoon medusarum [70], which produces several compounds through pho-
tosynthesis which support the metabolism of the scyphomedusa, although these pathways
are not yet well defined [71].

In addition to the compounds mentioned above, fraction C of both species, which
was the most active, was enriched in fatty acids and fatty acid amide derivatives [66].
Considering the high content in fatty acids (omega 3 and 6), antioxidant, phenolic com-
pounds and proteins, jellyfish have been proposed as a new biomass potentially useful as
human food worldwide [9,14]. Overall, our findings suggest that both C. marsupialis and
C. tuberculata may have important applications in the biomedical field, in addition to those
described above.

Our results are in line with recent reviews [4,5], which highlighted that jellyfish are an
unexploited source of high-value compounds, which are already used or have promising
applications in several biotechnological fields, including nutraceutical, cosmeceutical and
biomedical sectors. The advantage of using jellyfish as a source of high-value compounds
is two-fold. Firstly, jellyfish are abundant and often give rise to blooms which interfere with
fisheries and power plant activities along the coasts [7]. Secondly, they are cheap to obtain
as a by-catch of the above-mentioned activities and using them for their compounds may
actually become a way to recycle their biomass within the context of a circular economy
and a sustainable use of resources [72–74]. In particular, the extraction of high-value
compounds may be an effective way to exploit the resource in western countries, where the
consumption of jellyfish as food is extremely limited due to the different dietary tradition
compared to eastern countries.

4. Materials and Methods
4.1. Sample Collection and Processing

Two scyphomedusae (P. noctiluca and R. pulmo) and the cubomedusa C. marsupialis were
collected in the Gulf of Naples between 2017 and 2019, while the scyphomedusa C. tuberculata
was caught in Palinuro during August 2019 (Table 2). All scyphomedusae were collected
using a dipnet from the boat, while the cubomedusa was collected directly by SCUBA divers.
All specimens were transported to the SZN in plastic buckets filled with seawater from the
sampling site. In laboratory, medusae were dissected and frozen at −30 ◦C. Samples were
then freeze-dried to remove the water and concentrate the organic matter.
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Table 2. The species names, taxonomy, collection site and date of the specimens used in this study.

Taxon Species Collection Site Collection Date

Cubomedusae Carybdea marsupialis Gulf of Naples 23/10/2018
Scyphomedusae Pelagia noctiluca Gulf of Naples 15/05/2019

Rhizostoma pulmo Gulf of Naples 27/10/2017
Cotylorhiza tuberculata Palinuro 26/08/2019

4.2. Extract Preparation

Lyophilized jellyfish were resuspended in methanol (proportion 1:5, w/v). Samples
were vortexed to ensure that methanol completely soaked the freeze-dried jellyfish that
were then placed on ice for 30 min, then the obtained suspension was sonicated with 2 short
bursts of 30 s each, followed by intervals of 30 s for cooling. Samples were then centrifuged
at 3000 rpm for 20 min, and the supernatant was transferred into a rotary evaporator
system (Rotavapor). Once a consistent reduction of total volume was reached, samples
were evaporated under a nitrogen stream.

4.3. Fractionation of the Raw Extract

Fractionation of each extract (an aliquot with a maximum weight of 20 mg) was per-
formed by solid phase extraction (SPE) using Chromabond® HR-X cartridges (6 mL/500 mg)
as reported by Cutignano et al. [66]. Briefly, the samples were loaded into the cartridges and
then eluted using different mixtures of solvents to get five different fractions: 100% H2O
(2 mL, discarded); 100% H2O (6 mL, fraction A); CH3OH/H2O (50:50, 9 mL, fraction B);
CH3CN/H2O (70:30, 9 mL, fraction C); 100% CH3CN (9 mL, fraction D); CH2Cl2/CH3OH
(90:10, 9 mL, fraction E). Each fraction was evaporated under reduced pressure, weighted,
and preserved at −20 ◦C.

4.4. Cell Lines

Human hepatocellular liver carcinoma (HepG2; ATCC® HB-8065™) were cultured in
EMEM medium, human melanoma cells (A2058; ATCC®CRL-11147TM) were cultured in
DMEM, human keratynocytes (HaCaT, CLS n. 300493) were cultured in DMEM medium,
adenocarcinomic human alveolar basal epithelial cells (A549; ATCC®CL-185TM) were
cultured in F-12K medium and human normal lung fibroblasts (MRC-5; ATCC® CCL-171™)
were cultured in EMEM medium. The media were supplemented with 10% fetal bovine
serum, 50 U·mL−1 penicillin and 50 µg·mL−1 streptomycin. Human cell lines A2058,
A549, MRC-5 and HepG2 were bought at ATCC (https://www.lgcstandards-atcc.org/
accessed on 1 June 2019). The HACAT cells were bought at the CEINGE facility cell bank
(https://www.ceinge.unina.it/en/cell-cultures accessed on 1 June 2019).

4.5. In Vitro Antiproliferative Assays

Human tumor cell lines (HepG2, A2058 and A549) and the normal cell lines (MRC5
and HaCaT) were seeded in 96-well microtiter plates at a density of 1 × 104 cells/well
and incubated at 37 ◦C to allow cell adhesion to the plates. After 16 h, the medium was
replaced with fresh medium containing increasing concentrations of extracts or fractions
(100, 10, 1, 0.1 and 0.01 µg·mL−1) for 24, 48 or 72 h. Extracts and fractions were dissolved
in dimethyl sulfoxide (DMSO) with the maximum concentration for DMSO used of 1%
(v/v). Each concentration was tested at least in triplicates. After 72 h, 3-(4,5-dimethyl-2-
thizolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT; A2231,0001, AppliChem Panreac
Tischkalender, Darmstadt, GmbH) was added. Briefly, the medium was replaced with
a medium containing MTT at 0.5 mg·mL−1 and plates were incubated for 3 h at 37 ◦C.
After incubation, cells were treated with isopropyl alcohol for 30 min at room temperature
to dissolve MTT. Absorbance was measured at OD = 570 nm using a microplate reader
(Multiskan™ FC Microplate Photometer, Thermo Fisher Scientific, Waltham, MA, USA).

https://www.lgcstandards-atcc.org/
https://www.ceinge.unina.it/en/cell-cultures
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Cell proliferation was expressed as a percentage of cell proliferation in the presence of the
tested samples, with respect to untreated control cultures (with only DMSO).

4.6. RNA Extraction and Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

A2058 cells were seeded in 6-well plates (400,000 per well) and left 16 h for attachment.
The seeded cells were then treated in the presence of fraction C of both CM and CTOA
samples at 1 µg·mL−1 for 48 h at 37 ◦C. Cells were washed by adding phosphate buffered
saline (PBS 1X). Cells were lysed by adding 1 mL of Trisure Reagent (Meridian bioscience,
Memphis, TN, USA). RNA was isolated as previously described [75]. RNA concentration,
quality, and purity were assessed using an ND-1000 UV-Vis spectrophotometer (NanoDrop
Technologies, Thermo Fisher Scientific, Waltham, MA, USA), monitoring the absorbance
at 260 nm, and the 260/280 nm and 260/230 nm ratios (both ratios were about 2.0). RNA
quality was evaluated by gel electrophoresis that showed intact RNA. About 500 ng of RNA
underwent a reverse transcription reaction using the RT2 first strand kit (cat. 330401, Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The RT-qPCR analysis was
performed in duplicate using the RT2 Profiler PCR Array kit (cat. PAHS-212ZE-4, Qiagen,
Hilden, Germany) to analyze the expression of 84 genes involved in cell death signaling
pathways. Plates were run on a ViiA7 (Applied Biosystems, Foster City, CA, USA, 384-well
blocks). The PCR program consisted of a denaturation step at 95 ◦C for 20 s followed
by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. The cycle threshold (Ct)-values were
analyzed with PCR array data analysis online software (GeneGlobe Data Analysis Center
at https://geneglobe.qiagen.com/us/analyze, accessed on 10 September 2021, Qiagen,
Hilden, Germany). Real-time data were expressed as the fold of expression, describing the
changes in gene expression between cells treated in the presence fraction C of CM and cells
treated in the presence of DMSO alone (control). The PCR array data analysis software
uses Student’s t-test for statistical analysis. Only expression values greater than a two-fold
difference with respect to the controls were considered significant.

4.7. Dereplication

Fractions were analyzed by HPLC-UV-HRESIMS on an Agilent 1200 RR coupled
to a Bruker maXis QToF spectrometer with electrospray ionization, as reported by [76].
Data were analyzed following the guidelines developed by Fundación MEDINA [77] and
compared with the data available on the Fundación MEDINA internal database and the
Dictionary of Natural Products and Reaxys databases. The identity of the components was
putatively assigned by comparison of their HRMS spectra, UV maxima, retention time,
natural source and biological activity with the data available in DNP (Dictionary of natural
products) and Reaxys (“Others; Isolated from natural source” filter).

4.8. Statistics

Arithmetic means ± the standard deviations (SD) were calculated and compared by a
two-tailed Student t-test. Differences at p < 0.05 were regarded as significant.
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