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Resting-state functional connectivity hypernetworks, in which multiple nodes can be
connected, are an effective technique for diagnosing brain disease and performing
classification research. Conventional functional hypernetworks can characterize the
complex interactions within the human brain in a static form. However, an increasing
body of evidence demonstrates that even in a resting state, neural activity in the
brain still exhibits transient and subtle dynamics. These dynamic changes are essential
for understanding the basic characteristics underlying brain organization and may
correlate significantly with the pathological mechanisms of brain diseases. Therefore,
considering the dynamic changes of functional connections in the resting state, we
proposed methodology to construct resting state high-order functional hyper-networks
(rs-HOFHNs) for patients with depression and normal subjects. Meanwhile, we also
introduce a novel property (the shortest path) to extract local features with traditional
local properties (cluster coefficients). A subgraph feature-based method was introduced
to characterize information relating to global topology. Two features, local features
and subgraph features that showed significant differences after feature selection were
subjected to multi-kernel learning for feature fusion and classification. Compared
with conventional hyper network models, the high-order hyper network obtained the
best classification performance, 92.18%, which indicated that better classification
performance can be achieved if we needed to consider multivariate interactions and
the time-varying characteristics of neural interaction simultaneously when constructing
a network.

Keywords: high-order functional network, multi-feature extraction, multi-kernel learning, fMRI, classification,
depression, hypernetwork

INTRODUCTION

Over recent years, the use of neuroimaging technology to investigate the interaction of brain
regions has gained increasing levels of attention. For example, the Blood Oxygen Level-Dependent
(BOLD) signal is now routinely used as a neurophysiological indicator for resting-state functional
magnetic resonance imaging (rs-fMRI) to detect endogenous or spontaneous activity in the brain
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neurons (Burrows et al., 2021). Based on BOLD signals, a
functional connectivity network can be constructed and then
used to investigate the pathological mechanisms underlying brain
diseases. This methodology has been successfully applied in the
diagnosis of schizophrenia (Steardo et al., 2020), attention deficit
syndrome (Riaz et al., 2020), depression (Porta-Casteràs et al.,
2021), Alzheimer’s disease (Shao et al., 2020).

Most of the existing studies involving functional connectivity
networks adopted pairwise correlation-based methods to
characterize the interaction between two brain regions (Bullmore
and Sporns, 2009; Jie et al., 2014). However, previous studies
found that brain regions may directly interact with multiple
other regions of the brain in neurological processes (Shuai
et al., 2010). Moreover, recent studies have shown that there
are obvious higher-order interactions in the real activity of
neurons, including neuron isotope tracing, local field potentials,
and cortical activity (Glickfeld and Olsen, 2017; Montangie
and Montani, 2017; Baravalle and Montani, 2020). Therefore,
based on neurological findings, pairwise correlation analysis
may be inaccurate with regards to revealing the active cognitive
activities of the brain. This type of interaction among multiple
brain regions, that is, high-level information, may be critical for
studying the underlying pathological basis.

Considering these problems, researchers have suggested that
hyper-networks may be able to express interactive information
from multiple brain areas (Jie et al., 2016). Hyper-networks are
based on hypergraph theory, in which an edge can connect
an arbitrary number of nodes; in other words, a hyper-edge
can represent a specific relationship between multiple objects
(Battiston et al., 2020). In the field of neuroimaging, the nodes
in a functional hyper-network represent specific brain regions
while the hyper-edges represent informational interaction among
brain regions. In the past few years, hypergraphs have been widely
employed in a range of medical imaging fields, including image
segmentation (Dong et al., 2015) and classification (Gao et al.,
2015; Liu et al., 2016). In a previous study, Jie et al. (2016) used
the Least absolute shrinkage and selection operator (LASSO)
method to create a hyper-network model and applied this to the
diagnosis of brain diseases. In another study, Yang et al. (Li et al.,
2017) adopted the star expansion method to construct structural
hyper-networks and functional hyper-networks, respectively, to
then perform classification analysis. Taking into account the
group effecting problem within brain networks, Guo et al.
(2018a) proposed the elastic net and group LASSO method to
improve the establishment of hyper-network models to facilitate
brain disease classification research. Considering the information
featured in different time resolution fMRI, Yang et al. (Li Y.
et al., 2019) proposed a functionally weighted LASSO method
to build a multi-modal functional hyper-network; results showed
that this model achieved better classification performance. In
another study, Li et al. (2020) further considered the group
structure problem associated with brain regions, and proposed
the sparse group LASSO method to construct a brain functional
hyper-network which was then used to study the classification
of brain diseases. Subsequently, Wang et al. (2018) created a
hyper-network to characterize brain connectivity information
based on the LASSO method and combined this with network

voxel information to investigate the relationship between brain
network features and genetic variation. In another study, Gu
et al. (2017) reported a hypergraph representation method using
BOLD rs-fMRI data which divided the hyperedge into three
different categories (bridges, stars, and clusters) to represent
the binary, focus, and spatial distribution of architecture,
respectively. Xiao et al. (2020) constructed a weighted hyper-
network based on the sparse representation method and the
hypergraph learning method, and used this to classify personal
learning ability.

These functional brain hyper-network models usually capture
interactions between multiple brain regions in a static form. In
other words, in the resting state brain function network, the
functional connections remain unchanged over time. However,
increasing evidence suggests that even in the resting state, the
neural activity in the brain still exhibits transient and subtle
dynamics (Kudela et al., 2017; Zhao et al., 2020). Moreover,
these dynamic changes are essential for understanding the
basic characteristics relating to brain organization and may
be significantly correlated with the pathological mechanisms
underlying brain diseases; consequently, these changes may
provide useful information for disease classification (Kudela
et al., 2017; Zhao et al., 2020). Therefore, considering the
dynamic changes of functional connections in the resting state,
we proposed the construction of a resting state high-order
functional hyper-network (rs-HOFHN) to simultaneously reflect
the temporal dynamics of working mechanism with the human
brain and the multiple interaction of space.

The extension of methods to study time-varying connectivity
in the brain has emerged along multiple lines, including the
detection of important transition points, for example, change-
point analysis (Cribben et al., 2012), time-frequency approaches
(Chang and Glover, 2010), and windowing approaches (Calhoun
et al., 2014; Vidaurre et al., 2017; Yu et al., 2018). Of these, the
sliding time window is a popular approach for validating dynamic
functional connectivity in fMRI data across a short period of time
(Calhoun et al., 2014; Vidaurre et al., 2017; Yu et al., 2018). Thus,
we used the sliding time window method to reflect time-variable
connectivity in the brain.

In previous studies of brain functional hypernetworks,
researchers usually used a single type of quantifiable property, for
example, cluster coefficients (Jie et al., 2016; Li et al., 2017; Guo
et al., 2018a; Wang et al., 2018; Li Y. et al., 2019). Although only a
single property is used to obtain better classification performance,
this method ignores the role of other properties in the
hypernetwork. This makes the expression of the hypernetwork
topology information one-sided and flat; in turn, this affects the
effectiveness of the classification model (Xiao, 2013). Thus, we
introduced a new property, shortest path length (Zhang and Liu,
2010), into our neuroimaging research and combined this with
the traditional clustering coefficient to evaluate local topology
information in the high-order functional hypernetwork from
multiple angles. In addition, studies have shown that if only
local feature properties were used to characterize local topology
information in the hypernetwork, some important topology
information would still be lost to a certain extent, such as global
topology information in the brain network (Wang et al., 2015).
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Considering this problem, we introduced hyperedges as subgraph
features to characterize global topological information of the
high-order brain function hypernetwork.

Specifically, we used the sliding time window method (Yu
et al., 2018) to obtain a relevant time series. Based on the relevant
time series, the sparse group LASSO method (Li et al., 2020) was
used to construct a high-order brain hyper-network. We then
introduced local topological properties and subgraph features to
reflect the complete topology of the high-order brain functional
hyper-network, thus providing more accurate and relevant
imaging markers. Specifically, two different types of clustering
coefficients, and the shortest path, was then introduced to extract
node information to represent connectivity information of the
brain function hyper network and reflect the separation and
integration characteristics of local brain activities. Next, local
difference features were selected using non-parametric tests. The
hyperedges were used as subgraph features to represent the global
topology information in the brain network (Wang et al., 2015);
then, we used the frequently scoring feature selection (FSFS)
method to select discriminant subgraphs. Finally, multi-kernel
learning was introduced to fuse the two types of features and a
construct classification method.

The main aims of this study were to (1) construct a
high-order functional hyper-network by applying the sliding
time window and sparse group LASSO method; (2) extract
local features by using multiple types of local properties that
characterize the network local topology of the high-order
hyper-network and extract key features by non-parametric
analysis; (3) extract subgraph features by using hyperedges
that characterize the global topology information provided
by the high-order hyper-network and select discriminative
features using the FSFS algorithm, and (4) use multi-kernel
learning to fuse the two types of features and perform
classification. The classification results showed that compared
with the conventional hyper-network model, the high-order
hyper network achieved better classification performance. In
addition, we analyzed the network topology of the high-order
functional hypernetwork and the biological significance of the
different brain areas obtained by the high-order hypernetwork.
Moreover, we analyzed the influence of key model and classifier
parameters on classification performance.

MATERIALS AND METHODS

Method Framework
There were four parts to this study: data collection and
preprocessing, construction of a high-order resting state
hypernetwork for brain function, feature extraction and selection,
and classification. Figure 1 shows a flowchart describing the
entire process; specific aspects of this study are described below.

1. Data acquisition and preprocessing.
2. Construction of a high-order resting state hypernetwork

for brain function.

2.1. Group independent component analysis (GICA).
The main steps of GICA included data dimension

reduction, independent component estimation, data
reconstruction, and noise elimination.

2.2. Construction of a low-order functional brain network.
Based on the average time series, time windows were
divided using the time sliding window method. Based
on each time window, the Pearson correlation method
was used to obtain the connection matrix of the low-
order functional brain network.

2.3. Construction of a high-order resting state hypernetwork
for brain function. We stacked the connection matrix of
all low-order functional brain networks and then used
the sparse group LASSO method to construct a brain
functional hypernetwork.

3. Feature extraction and selection.

3.1. We calculated the local topological properties of
the brain functional hypernetwork as local property
features. Then, we used the on-parametric permutation
test to select features with significant differences.

3.2. We extracted hyperedges as subgraph features. Then,
the frequently FSFS method was applied to select
discriminant subgraphs.

4. Construction of a classification model.

4.1. The corresponding classifier was constructed by
classification features that combined local property
features and subgraph features.

4.2. The cross-validation method was adopted to validate the
classifier and obtain the final classification result.

Data Acquisition and Preprocessing
Following the recommendations of the Shanxi Medical Ethics
Committee (reference no. 2012013), all subjects needed to
provide their consent to participate. All participants provided
written informed consent in accordance with the Declaration
of Helsinki, including 38 subjects with first-time, drug-free,
major depression disorder (MDD) as the depression group and
28 age and gender-matched healthy volunteers as the normal
control (NC) group. All subjects were righthanded. Participants
in the depression group were first-time and drug-free patients
identified by the criteria provided by the American Manual of
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) (First and Gibbon, 1997). The severity of
depression was determined by the 24 Hamilton rating scale for
depression (HAMD) (Williams, 1988) and the clinical global
impression of severity (CGI-S) (Guy, 1991). Using a 3T magnetic
resonance scanner (Siemens Trio 3-Tesla scanner, Siemens,
Erlangen, Germany), resting-state functional magnetic resonance
scans were performed on 28 normal and 38 patients with
depression. During the scan, subjects were requested to relax and
their eyes closed, but not to fall asleep. Subjects wore spongy
ear plugs and was placed carefully in the coil and provided cozy
support. Detailed information relating to the subjects is shown in
Table 1.

Data acquisition was completed by the First Hospital of
Shanxi Medical University and all scans were performed
by radiologists who were familiar with the operation of
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FIGURE 1 | Flowchart showing the experimental process, including (A) data acquisition and preprocessing, (B) construction of low-order brain functional brain
network, (C) construction of high-order brain functional hypernetwork, (D) local property feature extraction and selection, (E) vector kernel, (F) subgraph feature
extraction and selection, (G) graph kernel, (H) classification.

the MRI scanner. All patients underwent complete physical
and neurological examinations, standard laboratory tests, and
extensive neuropsychological assessments. During the scanning
period, subjects were asked to close their eyes, relax, not
to think about anything specific, but to remain awake and
not to fall asleep. Scanning parameters were set as follows:
33 axial slices; repetition time (TR) = 2000 ms; echo time

TABLE 1 | Demographics and clinical characteristics of the study subjects.

NC (n = 28) MDD (n = 38) P-value

Age (years) 17–51
(26.6 ± 9.35)

17–49
(28.4 ± 8.99)

0.41a

Gender (male/female) 13/15 15/23 0.55b

Handedness (R/L) 28/0 38/0 −

HAMD NA 15–42
(22.8 ± 13.19)

−

Data are presented as the range (mean ± SD). HAMD, Hamilton Depression
Rating Scale; MDD, major depressive disorder. NA, not applicable; NC, normal
control. aP-value was calculated with the two-sample two-tailed t-test; bP-value
was computed by the two-tailed Pearson’s χ 2 test.

(TE) = 30 ms; slice thickness/skip = 4/0 mm; field of view
(FOV) = 192 mm × 192 mm; matrix size = 64 mm × 64 mm;
flip angle = 90◦; volumes = 248.

Data preprocessing was performed in SPM8 software1. First,
the dataset was corrected for slice time and head motion.
From the final total of 66 subjects, data were not included
from any subject with a head movement greater than 3 mm
or with rotation greater than 3◦. Then, we performed co-
registration for spatial correction. Next, images underwent 12-
dimensional optimal affine transformation into the standardized
Montreal Neurological Institute (MNI) space, using 3 mm voxels.
Smoothing was then performed to eliminate the differences
between brain structures in different subjects and to improve
the signal-to-noise ratio. Linear dimensionality reduction and
bandpass filtering (0.01–0.10 Hz) were finally performed to
eliminate the effects of line frequency drift and high frequency
physiological noise. In addition, we used head, white matter, and
cerebrospinal fluid signals as covariates for regression analysis to
remove nuisance information from images. However, there was
still disagreement in this field on whether global brain signals

1http://www.fil.ion.ucl.ac.uk/spm
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should be regressed, thus we did not regress global brain signals
(Li et al., 2019).

Group Independent Component Analysis
In the current study, GICA was used to analyze fMRI data.
GICA was performed using the GIFT2 toolbox. Specifically, the
minimum description length (MDL) criterion was adopted to
estimate the optimal number of decomposition components
(Koechlin and Summerfield, 2007) in the normal group and
in the depression group. Based on this, the final number
of independent components was set to 54. Next, each fMRI
dataset was decomposed using the Infomax algorithm and 54
independent spatial components (ICs) were obtained. Please
refer to Supplementary Text 1 and Supplementary Table 1
for a detailed explanation of the rationality for selecting 54
ICs. The core idea underlying the use of this algorithm was
to minimize the mutual information among the components of
the output by maximizing the mutual information between the
input and the output (Du and Fan, 2013). In order to ensure
the stability and reliability of the independent components, we
ran the Infomax algorithm 20 times on ICASSO3 by randomly
initializing the decomposition matrix; after these repetitions, the
same convergence threshold (Nenert et al., 2014) was obtained.
Finally, the GICA3 algorithm was used to reconstruct the
data so that the spatial distribution and time series of the
independent components of the subjects (Erhardt et al., 2011)
could be obtained.

The ICs extracted by the GICA included not only the
brain network components-of-interest in this paper but also
other unrelated components and components with more noise.
Therefore, it was necessary to use a previous template matching
method to screen out these independent components and to
further confirm the components-of-interest using a manual
inspection method (Jafri et al., 2008). The screening criteria used
for the exclusion of intrinsic connection network components
included larger activation areas where the multiple regression
coefficients matched the prior template; the distribution of the
main activation regions in the gray matter, and the overlap of
these regions with known components such as blood vessels and
head movements in low frequency space; and the domination of
the power spectrum of the time series in activation regions by low
frequency power (Allen et al., 2011). Finally, 32 unrelated or noisy
components were removed, and 22 brain network components
were retained; these intrinsic connectivity network components
were identified as being part of the auditory, sensorimotor, visual,
default mode, attention, or frontal lobe networks.

Construction of Resting State
High-Order Functional Hypernetworks
Considering the dynamic changes of functional connections
in the resting state, we proposed a high-order brain function
hypernetwork model to simultaneously reflect the time-varying
characteristics of the human brain’s working mechanism and
the interactivity of multiple brain sections in space. Specifically,

2http://mialab.mrn.org/software/gift
3http://www.cis.hut.fi/projects/ica/icasso

we first used the sliding time window method to construct a
low-order functional brain network and then linked functional
connections in multiple low-order functional brain networks into
a relevant time series to reflect the time-variable characteristics of
the functional connections. Based on the relevant time series, we
used the sparse group LASSO method to construct a high-order
functional hyper network. The specific steps are given below.

Construction of a Low-Order Resting State
Functional Brain Network
Based on a fixed time window length and step size, the remaining
22 independent component time series data for each subject was
divided into several time windows. The specific calculation for
the number of sliding time windows is shown in Equation (1).

W =
⌊
(T − l)/s+ 1

⌋
(1)

In equation (1), T refers to the complete time series size of
the fMRI data for each subject; l refers to the length of the
sliding time window; s represents the step size of each sliding
window, and W represents the number of time windows. Taking
the K-th subject as an example, the time series is represented
by ts ∈ RT×N and N represents the number of independent
components. Using equation (1), ts ∈ RT×N can be divided into
W overlapping sliding time windows, where each specific time
window is represented by ts(w) ∈ Rl×N(1 ≤ w ≤W), in other
words, a rs-fMRI time series in a relatively short period of time.

Based on the time series for each sliding time windows
ts(w) ∈ Rl×N(1 ≤ w ≤W), we employed Pearson’s correlation
method to obtain a functional connection network under each
sliding time window; in other words, a low order resting state
functional connection network. The specific calculation is shown
in Equation (2).

ri,j =
cov(i, j)

σiσj
(2)

In equation (2), cov(i, j) represents the covariance of
the time series between the independent component i and
the independent component j; σi represents the standard
deviation of the time series of the independent component
i; and ri,j represents the correlation coefficient between
the two components.

According to equation (2), we obtained W correlation
matrices for each subject. In other words, we acquired
W low-order resting state functional networks in a short
period of time for each subject in which the nodes were
independent components and the connection strength was
ri,j. The W time window networks represented the time-
varying characteristics of the brain functional connections
over a short period of time. Considering the time-varying
characteristics, the corresponding ri,j in the W low-order
functional connection networks could be linked into a relevant
time series TS=

[
ri,j(1), ri,j(2), ..., ri,j(W)

]T
∈ RW to reflect

dynamic changes in functional connections. Note that the
relevant time series TS=

[
ri,j(1), ri,j(2), ..., ri,j(W)

]T
∈ RW

has a different meaning from the time series for
independent components ts ∈ RT×N . The relevant time
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series TS=
[
ri,j(1), ri,j(2), ..., ri,j(W)

]T
∈ RW represents the

dynamic change in functional connections which mainly
represents the time-variable characteristics of the functional
connection. However, the latter ts ∈ RT×N represents the change
of the specific independent component BOLD signal during
the rs-fMRI scan.

Under this condition, after considering the rich
time-variable characteristics, the corresponding relevant
time series of data for each subject was represented
byCTS=

[
TS1, TS2, ..., TS N(N−1)

2

]
∈ RW×N(N−1)

2 . Of these,
TS1 represents the relevant time series under the first functional
connection; W represents the number of divided time windows;
and N(N−1)

2 represents the number of functional connections
in the low-order functional connection network, where N
represents the number of independent components. In our
study, N(N−1)

2 was 231, because N was 22.

Construction of a Resting State High-Order
Functional Hypernetwork Based on the Sparse Group
Least Absolute Shrinkage and Selection Operator
Method
After identifying the changes in functional connectivity, we next
constructed a brain functional hypernetwork. Here, we used the
sparse group LASSO method to create a high-order functional
hypernetwork for the resting brain (See Supplementary Text 2
for the reason that the sparse group lasso method was used
to construct hypernetworks). The sparse group LASSO method
is a bi-level and preset group selection method that can select
variables at the group level, as well as individual variables within
the group. In other words, groupwise and within-group variables
can be freely selected, thereby filtering out some false connections
while retaining some useful connections. In this manner, this
method is a more effective means of characterizing the multiple
and complex interactions in the human brain.

The sparse group LASSO method selects variables at the
preset group level (Friedman et al., 2010a); therefore, before
using this method to create a hypernetwork, the brain areas
need to be grouped so that the brain areas with strong
correlations are divided into one group. Then, the sparse group
LASSO method was adopted to construct a brain function
hypernetwork. Here, we used the k-medoids algorithm (Park
and Jun, 2009) to carry out clustering. Specifically, according to
the relevant time series data, the pairwise similarities between
the functional connections were obtained; then, we performed
clustering between the functional connections. When clustering,
all functional connections were divided into k groups, where each
group represented a class of objects; the relationship between
objects and groups had to satisfy the following conditions: (1)
each group implied at least one object, and (2) each object must
belong to a group. To ensure the robustness of clustering, the
principle of k-means++ (Benjamini and Hochberg, 1995) was
used when selecting the initial clustering center in the clustering
process. The specific process is as follows: (1) first, we set a cluster
number k value and randomly selected a k point as the centroid;
(2) we measured the distance between the remaining points and
the selected k points, and then divided each remaining point

into the nearest centroid cluster; (3) next, we reset the centroid
and the new centroid was used to select the remaining points in
which we used a random selection rule with a probability that was
proportional to the distance of the data point from the nearest
cluster center point; and (4) clustering was repeated 10 times,
and the group with the best clustering effect during the period
was selected as the final clustering result. After clustering, the
sparse group LASSO method was introduced to construct the
high-order function hyper network. The specific calculation is
shown in Formula (3).

min
αm
||TSm − CTSmαm||2 + λ1 ||αm||1 + λ2

k∑
i=1

∣∣∣∣αmGi

∣∣∣∣
2 (3)

TSm represents the relevant time series of the m-th functional
connection. CTSm = [TS1, ..., TSm−1, 0, TSm+1, ..., TSM]

represents the data matrix of the m-th functional connection (all
relevant time series except for the m-th functional connection,
that is, the relevant time series corresponding to the m-th
functional connection was set to 0), where M = N(N−1)

2 . αm
represents the weight vector, which quantifies the degree of
influence from other functional connections on the m-th
functional connection. This is divided into k non-overlapping
tree groups αmG1 , αmG2 , ..., αmGk through clustering, where
Gi(i = 1, 2, ..., k) represented a node with a tree structure. The
functional connections corresponding to the non-zero element
in αm represented the functional connections that interact with
the specific functional connection TSm. Conversely, the zero
element indicates that the corresponding functional connection
was independent of the m-th functional connection, and no
interaction existed.λ1 ,λ2 represented regularization parameters:
λ1 was used to adjust the sparsity in the group, that is, to control
the number of non-zero coefficients in the non-zero group. If λ1
was different, then the sparsity within the group was different; in
other words, the number of non-zero coefficients in the group
were different. λ2 was used to adjust the group-level sparsity
(Yuan and Lin, 2006; Friedman et al., 2010b) and control the
number of groups with at least one non-zero coefficient. If
λ2 was different, then the group-level sparsity was different;
in other words, the selected group variables were different.
In the experiment, we solved the optimization problem by
applying the sparse group LASSO method in the SLEP package
(Liu et al., 2013).

Specifically, in each subject, αm was measured using formula
(3) based on the relevant time series and considering multi-level
neural activity information for a selected function connection;
we did this by fixing the λ2 value and varying the λ1
value from 0.1 to 0.9 with a step size is 0.1. The functional
connection corresponding to non-zero elements in αm and
a selected function connection consists of a hyperedge. All
hyperedges formed a high-order hypernetwork. The process used
to construct a specific high-order brain function hypernetwork is
shown in Figure 2. In this experiment, we set λ2 to 0.4 because
this achieved the highest level of accuracy compared with other
λ 2 values.
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FIGURE 2 | Flowchart showing the construction of a high-order brain functional hyper-network based on the sparse group LASSO method, including (A)
construction of low-order brain functional networks, (B) schematic diagram of the sparse group LASSO method, (C) sub-networks generated by differentλ1, λ2), (D)
high-order brain functional hyper-network.
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Feature Extraction and Selection
In current study, we introduced a new property, shortest
path length (Zhang and Liu, 2010), into our neuroimaging
research and combined this with the traditional clustering
coefficient to evaluate local topology information in the high-
order functional hypernetwork from multiple angles. In addition,
considering that the local topological properties could not fully
characterize the topological information of the hypernetwork,
we introduced hyperedges as subgraph features to characterize
global topological information of the high-order brain function
hypernetwork. The specific definition for local topological
properties and global properties is described below.

Local Property Feature Extraction and Selection
We introduced multiple different types of topological attributes
to the high-order hypernetwork from different angles, including
the clustering coefficient and the shortest path distance. The
clustering coefficient included three hypernetwork clustering
coefficients based on a single node (HCC) and a hypernetwork
clustering coefficient based on a pair of nodes (HCCPN). The
specific definition is described below.

The first type of clustering coefficient based on a single node
represents the number of adjacent nodes that have connections
not included by node v and is represented by HCC1. The
advantage of this definition is that any interaction found in this
set represents the real connection between neighboring nodes
and that there will be no data artifacts caused by interaction
with node v (Gallagher and Goldberg, 2013). However, this
definition may focus too much on neighbors with secondary
shared connections that have nothing to do with node v. The
calculation for this is shown in Equation (4):

HCC1(v) =
2
∑

u,t∈N(v) I(u, t,¬v)
|N(v)| (|N(v)− 1|)

(4)

The u, v, t represent nodes. N(v) = {u ∈ V : ∃e ∈ ζ, u, v ∈ e}
represent the neighbors of node v, where ζ represents the set
of hyperedges; e represents a hyperedge. If∃e ∈ ζ , when u, t ∈ e
andv /∈ e,I(u, t,¬v) = 1. Otherwise,I(u, t,¬ v) = 0.

The second type of clustering coefficient based on a single
node represents the ratio of adjacent nodes containing node v
that are also adjacent to each other and represented by HCC2.
The advantage of this definition is that it is more likely to find
the true connection between node v and the neighboring nodes.
However, inevitably, the interactions discovered in this way may
include data artifacts due to the shared interaction with node v
(Gallagher and Goldberg, 2013). The calculation for this is shown
in Equation (5).

HCC2(v) =
2
∑

u,t∈N(v) I
′

(u, t, v)
|N(v)| (|N(v)− 1|)

(5)

The u, v, t, N(v) have the same meaning as the
parameters in HCC1. If ∃ e ∈ ζ , whenv, u, t ∈ e,I

′

(u, t, v)=1.
Otherwise,I

′

(u, t, v) =0.
The third type of clustering coefficient based on a single

node is the overlap ratio of adjacent hyperedges of node v and
is represented by HCC3 (Gallagher and Goldberg, 2013). This

definition represents the ratio of shared edges between node v and
its neighbor nodes. The calculation for this is shown in Equation
(6).

HCC3(v) =
2
∑

e∈S(v)(|e| − 1)− |N(v)|
|N(v)| (|S(v)− 1|)

(6)

The v, e, N(v) also have the same meaning as the parameters
in HCC1. S(v) = {e ∈ ζ : v ∈ e} represents hyperedges containing
node v.

The first type of clustering coefficient based on pairs of
nodes represents a compromise between meeting the maximum
and minimum criteria and is represented by HCCPN1. Of
these, the maximum criterion considers that there may be
obvious overlap between neighbors, defined by |S(u)

⋂
S(v)|

max{|S(u),S(v)|} . The
minimum criterion considers the fact that a small neighborhood
may intersect with a large neighborhood, defined by |S(u)

⋂
S(v)|

min{|S(u),S(v)|}
(Gallagher and Goldberg, 2013). The calculation for this is shown
in Equation (7).

HCCPN1
( u, v) =

∣∣S(u)
⋂

S(v)
∣∣

√
|S(u)| |S(v)|

(7)

v and u represent nodes and S(v) has the same meaning as the
parameters in HCC3.

After calculating the clustering coefficient based on pairs of
nodes, the specific clustering coefficient of the node was obtained
by averaging the clustering coefficients of the node and all its
neighbor nodes (Latapy et al., 2008). The calculation for this is
shown in Equation (8).

HCCPN(v) =

∑
u∈N(v) HCCPN1(u, v)

|N(v)|
(8)

HCCPN1(u,v) represents the clustering coefficient based
on pairs of nodes. N(v) has the same meaning as the
parameters in HCC1.

The shortest path length represents the shortest distance from
the selected node to all other nodes (Zhang and Liu, 2010). In the
hypernetwork, the path was defined according to the hyperedges
from the source node to each destination node; the length of the
path depended on the number of hyperedges along the path. If
the hypergraphs are weighted hypergraphs, then, the weights of
the hyperedges also need to be considered. If the hypergraphs are
binary undirected hypergraphs, then the shortest path is the mean
value of the minimum number of hyperedges passing through
the path from the source node to each destination node. This
indicator is often used in social and protein networks (Zhang and
Liu, 2010). The calculation is shown in Equation (9).

SP(v) =

∑
v∈V,v 6=u d(u, v)

V − 1
(9)

SP(v) represents the shortest path of node v in the hypergraph
H while d(u, v) represents the shortest path between nodes u and
v. V represents the number of nodes in the hypernetwork.

These five local topological properties comprehensively
reflected the local topological information of the high-order
hypernetwork. Then, based on each topological attribute, we
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adopted multiple linear regression analysis to estimate the
influence of confounding factors (demographic information)
on the local properties of the hypernetwork. Specifically, for
each participant, each local topological attribute was averaged
and identified as an independent variable (average HCC1,
average HCC2, average HCC3, average HCCPN, and average SP),
and demographic information was identified as the dependent
variable. Then multiple linear regression was performed. See
Supplementary Text 3 for the results. The results show that
there is no significant correlation between all local topological
attributes and confounding variables, that is, they are not affected
by confounding factors.

Features extracted from a high-order hypernetwork may
contain some irrelevant or redundant features. Therefore, to
select key features for classification, the most discriminative
features were selected based on statistical differences. For the
MDD and NC group, we used the Kolmogorov–Smirnov non-
parametric permutation test (KS non-parametric permutation
test) (Fasano and Franceschini, 1987) for 1155 properties
extracted from local properties. This data was then corrected
by the Benjamini–Hochberg false-discovery rate (FDR) method
(q = 0.05) (Benjamini and Hochberg, 1995). Following the KS
non-parametric permutation test, the local attributes showing
significant differences between groups were used as classification
features (vector kernel). These were then fused by multi-kernel
learning to construct the classification model. Note that the
concatenation method was applied to combine the difference
features of multiple local attributes.

Subgraph Feature Extraction and Selection
Previous studies have shown that subgraph features can express
global attributes in brain networks and have been effectively used
for the diagnosis of brain disease (Kong et al., 2013; Guo et al.,
2018b). Therefore, we introduced subgraph features to describe
the global information of the high-order brain hypernetwork.
In the hyper-network, the hyperedges could be regarded as
subgraphs. Therefore, we directly extracted hyperedges from the
high-order brain functional hypernetwork as subgraph features.

The number of subgraphs extracted by hyperedges was
very large. If all subgraphs participated in the classification,
then the classification performance would be reduced. This
is because not all frequent subgraphs have discriminative
ability; in fact, only a few subgraphs show discriminative
ability (Guo et al., 2017). Thus, it was necessary to select
discriminative subgraphs as classification features. Here, we
adopted the frequent scoring feature selection (FSFS) method
to select discriminant subgraphs. Specifically, the discriminative
scores (i.e., the frequency difference) of subgraph features were,
respectively, calculated and sorted into two groups. Then, the
features with larger frequency differences between the two groups
of subjects were extracted as discriminative subgraphs.

The specific concepts and symbols used in the FSFS method
are explained in the following formulae.

D : D = {Dn, Dp}. (10)

In Formula (10), Dn represents a negative sample (patients
with depression) while Dp represents a positive sample (normal

control).
ς : ς = {ςn, ςp}. (11)

In Formula (11), ςn = {gn1, gn2, ..., gnk} represents the feature
set of all subgraphs in the negative sample; this represents the
set of all hyperedges in patients with depression. In contrast,
ςp = {gp1, gp2, ..., gpk} represents the feature set of all subgraphs
in the positive sample; this represents the set of all hyperedges in
normal subjects.

�∗ = �∗1
⋃

�∗2 . (12)

In Formula (12),�∗1 ⊆ ςp ;�∗2 ⊆ ςn ; �∗ ⊆ ς represents the
optimal set of subgraph features, as determined by Formula (13).

�∗ = argmax
�1⊆ςp,�2⊆ςn

J(�) s.t|�1| ≤ maxt1, |�2| ≤ maxt2 (13)

In Formula (13), |·| represents the number of subgraph feature
sets while maxt1, maxt2 represent the maximum number
of subgraph features selected in the two groups of subjects,
respectively. J(�) represents the validity criterion for evaluating
the feature subset of the subgraph, and was calculated by Formula
(14) and Formula (15).

J(�) =
∑
i≤t1

S(gpi)+
∑
j≤t2

S(gnj) (14)

S(gs) =
∣∣fq(gs|Dp)− fq(gs|Dn))

∣∣ (15)

S(gs) represents the discriminative score of the subgraph
patterngs , expressed by the frequency difference between a
positive sample and a negative sample. The greater the frequency
difference, the stronger the discriminative ability of the subgraph
feature between the two groups of subjects. An S(gs) = 1 implies
that the subgraph pattern gs only exists in only one group
of subjects. That is, the subgraph pattern only appears in the
normal control group or only in the depression group. The
discriminant scores of subgraphs in the two groups of subjects
were, respectively, calculated using Formula (15) and sorted
using Formula (16).

S(g1
p) ≥ S(g2

p)... ≥ S(gm
p ), S(g1

n) ≥ S(g2
n)... ≥ S(gk

n) (16)

By applying Formula (16), the optimal subgraph feature set
was obtained as shown in Formula (17).

�∗ = {gi
p, gj

n|i ≤ t1, j ≤ t2} (17)

In Formula (17), gi
p represents the i-th discriminant subgraph

in a positive sample and gj
n represents the j-th discriminant

subgraph in a negative sample. t1 represents the number of
discriminant subgraphs in a positive sample while t2 represents
the number of discriminant subgraphs in a negative sample.

According to the FSFS method, the discriminant subgraphs
from the two groups of subjects were selected. Because the
subgraphs could not be directly used as classification features
to participate in the construction of the SVM classification
model; first, they needed to be quantified. Thus, based on
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the discrimination subgraphs, we adopted the graph kernel
method (Shervashidze et al., 2011) to quantify data into a
graph kernel matrix.

Research shows that the graph kernel model is a commonly
used strategy for isomorphic subgraph testing and serves as a
link between graph data and many machine learning methods.
In other words, the graph can be converted from the original
space to the vector space; then, the similarity can be calculated
(test graph isomorphism). Over recent years, researchers have
introduced a variety of graph kernel measurement methods,
such as subtree-based kernels (Shervashidze et al., 2011), path-
based methods (Alvarez et al., 2011) and walk-based methods
(Gärtner et al., 2003). In neuroimaging, the Weisfeiler-Lehman
subtree kernel was proven to effectively capture topological
information from graphs and achieved better performance
than other graph kernel methods (Shervashidze et al., 2011).
Therefore, we introduced the Weisfeiler-Lehman subtree kernel
method to quantify discriminant subgraphs (Shervashidze et al.,
2011). Here, an iterative method was used to relabel the
original node label. In each subsequent iteration, the label
for each node was replaced based on the label obtained in
the last iteration and the label of its neighboring nodes. This
continued until the labels of all nodes were the same, or
the number of iterations was a predefined maximum value.
For the specific construction process of the Weisfeiler-Lehman
subtree kernel, see Supplementary Text 4. In current study,
based on a discriminative subgraphgi

p , we combined each
subject’s high-order hypernetwork separately to perform the
Weisfeiler-Lehman test of isomorphism. The obtained value was
used as the graph kernel feature of the subgraphgi

p. Similarly,
the graph kernel features of all discriminative subgraphs were
calculated. Finally, all graph kernel features were formed into
graph kernel matrix to participate in the construction of the
classification model.

Classification
Based on the two types of features, we introduced multi-kernel
learning to merge the vector kernel and the graph kernel into
a mixed kernel, thus providing complementary information to
improve the construction of the classification model. Specifically,
the kernel-based feature combination was used to estimate the
different weights of each group of features for feature fusion. This
allowed multiple kernels functions to be merged into a hybrid
kernel to participate in the construction of the classification
model. The specific function of the hybrid kernel is shown by
Equation (18).

kf (x, z) =
L∑

l=1

µlkl
f (x, z) (18)

In Equation (18), kl
f (x, z) represents the kernel function of the

l-th group of features (the l-th group of topological attributes)
between subject x and subject z. µ = {µ1, µ2..., µL} represents
the combined parameters of the kernel matrix and ‖µ‖2 = 1,
where L represents the number of kernel matrices (in the
experiment, L = 2). kf (x, z) represents a mixed kernel.

In multi-kernel learning, the most critical step is to determine
the combination parameter µ. This directly affects the data fusion
method and ultimately affects the classification performance.
Here, we used the alignment maximization algorithm to
determine the weight of the parameter µ (l = 1, . . . , L) (Cortes
et al., 2010). This algorithm mainly seeks to maximize the
alignment between the basic kernel kf and the target kernel ky
to determine µ. The optimization function is shown in Formula
(19).

max
µ∈L

< kf , ky >F∣∣∣∣kf
∣∣∣∣

F
(19)

In Formula (19), ky = yyT , y is a label. <.,.>F represents
the Frobenius inner product, ‖.‖F represents the Frobenius
norm. To solve Formula (19), let b express the vector
( < k1

f , yyT >F, ..., < kL
f
, yyT >F ) and F represent the matrix

characterized by Fmn =< km
f , kn

f >F (m,n = 1. . .L). Formula (19)
is transformed into a quadratic programming problem, expressed
as Equation (20).

µ =
F−1b∣∣∣∣F−1b

∣∣∣∣ (20)

After obtaining the value of µ, multiple kernels were fused to
a hybrid kernel, so that we could construct a classification model
using the traditional SVM classifier based on the libsvm package4.

We adopted ‘leave one out cross validation’ (LOOCV) to
evaluate classification performance. If there were N samples,
each sample was, respectively, regarded as the test set, and
the remaining N-1 samples were regarded as the training set.
Then, in the training set, K-fold Cross Validation was used
for parameter optimization (c, γ) and the parameter group (c,
γ) with the highest classification accuracy in the training set
was selected to construct the classification model (Mishra and
Deepthi, 2020). Here, we set the range of (c, γ) to (2−7, 27). In this
way, a total of N different classification models was established.
Next, the test set was used to predict the model. Note that
before the classification model was constructed, the classification
features needed to be standardized. In addition, considering the
influence of the random selection of initial random seed points
of the clustering algorithm during the construction of the high-
order function hyper network, we repeated 50 experiments. The
average value of the 50 experiments was considered as the final
classification result.

RESULTS

The Intrinsic Connectivity Network
In this paper, 22 independent components were selected from
the GICA. Figure 3 shows the spatial maps of these 22
independent components. According to the spatial maps of each
independent component, the inherently connected network to
which they belong was determined, as shown in Figure 3. In

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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FIGURE 3 | Spatial maps of the 22 components identified as intrinsic connection network (ICNs). VISUAL, visual network; DEFAULT MODE, default mode network;
ATTENTIONAL, attentional network; AUDITORY, auditory network; SENSORIMOTOR, sensorimotor network; FRONTAL, frontal network. IC, independent
component.

addition, we supplemented the coordinates of peak activations
corresponding to each of these components, as shown in
Supplementary Table 2 below.

These 22 ICs were similar to those identified in previous work
(Beckmann et al., 2005; Calhoun et al., 2008; Smith et al., 2009;
Allen et al., 2011). Here, we described these 22 ICs in detail and
provided citations to more comprehensive references. Resting-
state networks are grouped by their anatomical and functional
properties. IC 15 forms a rather prototypical representation
of the large parts of the auditory system (AUD), mainly
including bilateral activation of the superior temporal gyrus.

Seifritz et al. (2002) indicated the temporal lobe was associated
with the auditory system. Specht and Reul (2003) found
a functional segregation of the temporal lobes into several
subsystems responsible for auditory processing was visible.

The Sensorimotor networks (SM) were captured by five
components (ICs 4, 8,11,22, and 36) situated in the vicinity
of the central sulcus, mainly including activation of the left
precentral gyrus, right postcentral gyrus, bilateral activation of
the paracentral lobule, supramarginal gyrus and supplementary
motor area. Parkinson et al. (2012) examined the fMRI correlates
of speech feedback processing during an active speaking task
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with and without pitch perturbation in the auditory feedback.
Results revealed a complex sensory–motor network involved
in speech feedback processing including precentral gyrus,
postcentral gyrus, supplementary motor area, etc. Hänggi et al.
(2017) highlighted the neurological underpinnings of Xenomelia
by assessing structural and functional connectivity by means
of whole-brain connectome and network analyses of regions
involved in Xenomelia. They illustrated subnetworks showing
structural and functional hyperconnectivity in xenomelia
compared with controls. These subnetworks were lateralized to
the right hemisphere and mainly comprised by nodes belonging
to the sensorimotor system, including the paracentral lobule,
supplementary motor area, postcentral gyrus, etc. Agcaoglu
et al. (2015) evaluated resting state network lateralization in
an age and gender-balanced in functional magnetic resonance
imaging (fMRI) dataset. The result showed that age was
strongly related to lateralization in multiple regions including
sensorimotor network regions precentral gyrus, postcentral
gyrus and supramarginal gyrus.

The visual system (VIS) is also represented by six components
(ICs 10, 19, 32, 34, and 38) in good agreement with the anatomical
and functional delineations of occipital cortex. The main active
regions were the lingual gyrus, cuneiform lobe, suboccipital
gyrus, talus gyrus and middle temporal gyrus. Agcaoglu et al.
(2015) showed the visual network was the most dominantly
right lateralized functional network, including lingual gyrus, talus
gyrus, cerebellum, suboccipital gyrus and inferior temporal gyrus.
Ten Donkelaar and Cruysberg (2020) showed that lesions of the
cuneus and posterior parietal lobe cause visuospatial disorders
such as impaired motion perception, spatial disorientation and
defects in attention. In addition, many researches have proved
that the visual cortex evolved a region in the middle-temporal
cortex that is highly specialized to process visual motion (Zeki,
1974; Zeki and Whitteridge, 1980; Baker et al., 1981).

The default mode network (DMN) was captured by three
independent components (ICs 16, 18, and 31); the main active
regions were located in the precuneus lobe, lingual gyrus and
temporal lobe, etc. Cunningham et al. (2017) demonstrated
that a detailed mapping of connectivity between the precuneus
and thalamus and their connectivity with the DMN would
provide a comprehensive baseline for future brain imaging
studies, especially those involving consciousness. Dalwani et al.
(2014) investigated whether DMN was altered in adolescents
with conduct disorder and substance use disorders, relative
to controls. The result showed that compared to controls,
patients indicated reduced activity in superior, medial and middle
frontal gyrus, retrosplenial cortex and lingual gyrus, and bilateral
middle temporal gyrus—DMN regions thought to support self-
referential evaluation, memory, foresight, and perspective taking.

The attention network (ATTN) was captured by six
independent components (ICs 24, 25, 30, 35, 39, and 40);
the main active regions were located in the frontal lobe, parietal
lobe, precuneus lobe, temporal lobe and angular gyrus. Allen et al.
(2011) classified several ICs known to be involved in directing
and monitoring behavior as attentional networks. These included
lateralized frontal-parietal networks (IC 30 and 39) similar to the
ventral attention network. Some studies showed that precuneus

lobe (IC 24) was implicated in directing attention (Cavanna
and Trimble, 2006; Margulies et al., 2009). Agcaoglu et al.
(2015) indicated that age was strongly related to lateralization in
multiple regions with inferior parietal lobule, superior parietal
lobule and middle temporal gyrus in attention network.

Finally, frontal networks (FRONT; ICs 33 and 43) known to
mediate executive as well as memory and language functions
was observed, whose active regions were located in the medial
prefrontal cortex and parietal lobe (Koechlin et al., 2003;
Koechlin and Summerfield, 2007). Therefore, it can be seen that
the regions activated by independent components are consistent
with previous findings.

Abnormal Components Based on Local
Properties
Once the resting-state high-order function hypernetwork had
been constructed, the local topological attributes were used
to quantify the network to obtain local attribute features.
The KS non-parametric test was then used to obtain local
features with significant differences (with appropriate FDR
correction). These significant features represented functional
connections between components. The statistical significance
results for specific differential functional connection are shown
in Table 2; there were 21 abnormal functional connections.
The independent components involved in the 21 differential
functional connections are also shown in Figure 4A, including
20 components. Furthermore, we counted the number of
occurrences for each independent component in the abnormal
functional connection, as shown in Figure 4B. The results
showed that the top four abnormal independent components
with the highest frequencies were IC8, IC10, IC18, and
IC25 (a total of three times). This showed that among all
independent components, these independent components were
the most discriminative. The corresponding inherent connection
networks were the sensory motor, visual, default mode and
attention networks.

Discriminative Components Based on
Subgraph Features
Based on the resting state high-order brain function
hypernetwork model, except for using quantifiable indicators
to calculate local attribute features and we also extracted
hyperedges as subgraph features to characterize global
topological information. And we adopted FSFS methods to
select discriminate subgraphs. Here, to ensure a balanced
number of subgraph features, we, respectively, selected the top
36 frequent subgraphs with the highest frequency difference
in the two groups of subjects as the discriminative subgraph
features to perform classification, which was shown in Figure 5
(see the Supplementary Text 5 for a relative discussion of the
number of discriminative subgraph features). To easily analyze
the difference between the subgraph features for the two groups,
we combined all discriminant subgraphs obtained for each
group of subjects, as shown in Figure 6A. The results showed
that the discriminative components obtained by the two sets
of discriminative subgraphs were mostly the same. However,
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TABLE 2 | Discriminative functional connectivity based on local attributes.

Functional connection Local topological properties (P-value)

IC A IC B HCC1 HCC2 HCC3 SP HCCPN

4 32 0.007 0.022 0.028 0.003 0.756

4 33 0.002 0.033 0.004 0.005 0.891

8 10 0.022 0.003 0.026 0.691 0.497

8 11 0.002 0.007 0.002 0.415 0.485

8 33 0.000 0.004 0.000 0.004 0.850

10 22 0.094 0.008 0.002 0.074 0.781

10 30 0.049 0.004 0.014 0.163 0.485

11 31 0.001 0.011 0.004 0.277 0.415

15 35 0.001 0.033 0.026 0.963 0.011

15 43 0.094 0.691 0.188 0.891 0.001

16 18 0.012 0.303 0.372 0.285 0.229

16 43 0.828 0.038 0.137 0.114 0.625

18 19 0.461 0.625 0.839 0.730 0.010

18 25 0.040 0.017 0.022 0.074 0.963

19 22 0.021 0.007 0.003 0.000 0.382

24 25 0.963 0.665 0.691 0.426 0.003

24 35 0.142 0.473 0.871 0.891 0.022

25 38 0.294 0.438 0.094 0.817 0.000

31 36 0.001 0.003 0.038 0.147 0.106

32 34 0.016 0.322 0.007 0.005 0.891

34 36 0.268 0.003 0.043 0.449 0.510

ICA and ICB represent two independent components in functional connection; HCC1 represents the first type of hypernetwork clustering coefficient based on a single
node; HCC2 represents the second type of hypernetwork clustering coefficient based on a single node; HCC3 represents the third type of hypernetwork clustering
coefficient based on a single node; SP represents the shortest path; HCCPN represents the hypernetwork clustering coefficient based on pairs of nodes. The bold values
represents P < 0.05.

FIGURE 4 | Abnormal independent components of the local attribute features. AUD, auditory network; SM, sensorimotor network; VIS, visual network; DMN, default
mode network; ATTN, attentional network; FRONT, frontal network. IC, independent component. (A) The independent components involved in the 21 differential
functional connections. Edges of different colors indicate different functional connections. Nodes of different colors indicate the frequency of the component in all
abnormal functional connections. (B) The number of occurrences for each independent component in the abnormal functional connection.

there are significant differences in these common components,
namely IC8, IC15, IC18, IC40, IC10, IC4, IC11, IC25, IC43, IC16,
IC19, IC35, IC38, IC32, IC30, IC34, IC22, IC33, and IC24. On

this basis, we counted the number of times each independent
component appeared in all discriminative subgraphs to select
the most discriminative components on MDD, as shown in
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FIGURE 5 | Discriminant subgraphs in the two groups of subjects. (A) The top 36 discriminative subgraphs in the MDD group, (B) the top 36 discriminative
subgraphs in the NC group.

Figure 6B. The results showed that the top four discriminative
components were IC8, IC15, IC18, and IC40. Of these, IC8 had
the largest number of occurrences in discriminative components
(56 times); this was followed by IC15 (51 times), IC18 (37 times),
and IC40 (34 times). This showed that for subgraph features,
these independent components were the most discriminative.
The corresponding inherent connection networks were the
sensory motor, auditory, default mode and attention networks.

Classification Results
We evaluated the classification performance of the RS-HOFHN
model by classification accuracy, sensitivity, specificity, balanced
accuracy (BAC), and area under curve (ROC). First, we separately
calculated the classification accuracy of a single feature (local
attribute feature and subgraph feature) and the classification
accuracy of the fusion feature under the proposed method.
Next, using the same data set, we compared the classification

performance of the rs-HOFHN model with a traditional simple
binary functional network (TBFN), a resting state high-order
functional network (rs-HOFN), and a resting state functional
hypernetwork (rs-FHN) model. For the TBFN model, Pearson
correlation was first used to construct a functional brain network.
Then, local attribute features were obtained by calculating
the degree, betweenness centrality, and node efficiency; local
difference features were then selected using KS non-parametric
tests. Next, the gSpan algorithm (Yan and Han, 2002) was
introduced to calculate frequent subgraphs. The FSFS algorithm
was then applied to obtain the discriminant subgraphs. Finally,
we merged the two sets of features for SVM classification. For
the rs-HOFN model, the sliding window method was first used to
construct the high-order function connection network. Feature
extraction, selection, and classification processes in the rs-HOFN
model were the same as for the TBFN. We used the sparse group
LASSO method to construct the brain function hypernetwork
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FIGURE 6 | Discriminative components of the discriminate subgraph features. AUD, auditory network; SM, sensorimotor network; VIS, visual network; DMN, default
mode network; ATTN, attentional network; FRONT, frontal network. IC, independent component. (A) All discriminative subgraphs were combined in each group. Left
figure represents all discriminative components of the discriminate subgraph features in MDD group. Right figure represents all discriminative components of the
discriminate subgraph features in NC group. (B) A statistical chart showing the frequencies of the independent components in two groups of subjects. Red
represents MDD group; Blue represents NC group.

for the rs-FHN model. Then, the five local attributes selected in
this experiment were introduced to acquire local features and
KS non-parametric tests were employed to select local difference
features. Next, hyperedges were set as subgraph features, and
the FSFS algorithm was also used to obtain the discriminant
subgraphs. Finally, the two types of features were merged to
construct the SVM classifier. The classification results are shown
in Table 3. The results show that the classification accuracy of
the rs-HOFHN model was the highest; the fusion feature reached
92.18%, which was superior to the classification performance
of the TBFN, rs-HOFN and HFN models. In addition, except
that the sensitivity of fusion features was slightly lower than
that of local properties, the rest of the classification results show
that the fusion features were better than single features in each
network model. Furthermore, we compared the classification

performance obtained by the rs-HOFHN model with the rest
of the hypernetwork models in the existing researches (the
hypernetwork model constructed by the star expansion method,
the LASSO method, the elastic net method, and the group
LASSO method), as shown in Table 3. The results show
that the rs-HOFHN model proposed in this paper achieved
the best classification performance, outperforming the existing
hypernetwork models.

DISCUSSION

Network construction is critical for the classification of brain
networks based on hypergraphs. Hypernetwork construction
methods have been proposed previous publications; however,
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TABLE 3 | Comparison of classification results for different methods.

Method Research Accuracy (%) Sensitivity (%) Specificity (%) BAC (%)

TBFN Local properties 74.24 78.95 67.86 73.41

Subgraph feature 72.72 76.32 67.86 72.09

Fusion feature 78.79 81.57 75.00 78.29

rs-HOFN Local properties 84.84 89.47 78.57 84.02

Subgraph feature 81.82 86.84 75.00 80.92

Fusion feature 89.39 92.11 85.71 88.91

rs-FHN Local properties 86.42 89.00 82.92 85.96

Subgraph feature 80.30 82.42 77.00 79.71

Fusion feature 89.18 90.95 86.77 88.86

rs-HOFHN Local properties 89.55 93.95 83.57 88.76

Subgraph feature 84.69 87.05 81.48 84.27

Fusion feature 92.18 93.63 90.20 91.92

Star expansion Yang et al. (Li et al., 2017) 74.10 76.50 70.00 73.20

LASSO Yang et al. (Li et al., 2019) 75.40 64.30 84.90 74.60

Elastic net Guo et al. (2018a) 86.36 92.10 81.57 86.83

Group LASSO Li et al. (2020) 81.74 84.74 77.68 81.21

TBFN represents traditional simple binary functional network model; rs-HOFN represents resting state high-order functional network; rs-FHN represents resting state
functional hypernetwork; rs-HOFHN represents resting state high-order functional hypernetwork; star expansion represents resting state functional hypernetwork based
on star expansion method; LASSO represents resting state functional hypernetwork constructed by LASSO method; Elastic net represents resting state functional
hypernetwork constructed by Elastic net method; Group LASSO represents resting state functional hypernetwork constructed by group LASSO method. Fusion feature
represents local properties combined with subgraph feature. BAC represents balanced accuracy.

most of the existing functional hypernetwork models were
characterized by the interaction of multi-regions in a static form
(Jie et al., 2016; Li et al., 2017; Zu et al., 2018; Li Y. et al.,
2019). However, research has shown that even in the resting state,
brain neural activity still reveals transient and subtle dynamic
changes. Understanding these dynamic changes is vital if we are
to understand the basic characteristics of the brain functional
network; these changes may also be significantly correlated
with pathological mechanisms in brain diseases (Kudela et al.,
2017; Zhao et al., 2020). Therefore, considering this problem,
we extended the static brain function hypernetwork model and
proposed the construction of a high-order resting state brain
function hypernetwork. Here, the window method was first
used to reflect the dynamic changes of functional connections
in the resting state. Then, the sparse group LASSO method
was introduced to construct a high-order brain function hyper
network. Using this strategy, we can simultaneously reflect the
temporal dynamics of the human brain’s working mechanism
and the multivariate interactivity of space. In addition, we also
introduced local topological attributes and global information to
jointly characterize the high-order brain function hypernetwork,
so as to reflect complete topological information relating to the
high-order brain function hypernetwork and enhance the ability
to detect differences between groups.

For local topological attributes, we used the non-parametric
KS test to identify local difference features (corrected by the
FDR method), including 21 significantly different functional
connections. We also counted the number of occurrences of each
independent component in the abnormal functional connection.
The results showed that the top four abnormal independent
components with the highest frequencies were IC8, IC10, IC18,
and IC25. Of these, the corresponding inherent connection

networks were the sensory motor network, the visual network,
the default mode network and the attention network. For global
characteristics, to ensure balance in the number of features
between the two groups of subjects, we, respectively, selected the
36 discriminant subgraphs in each group of subjects with the
highest frequency difference. Similar to the local features, the
number of occurrences of each independent component in the
discriminant subgraph were also counted. The results showed
that the top four discriminative independent components with
the most occurrences were IC8, IC15, IC18, and IC40. Two
types of features had fewer overlapping components based on
the most discriminative independent components, only IC8 and
IC18. This indicated that two types of features complement
each other and provide biomarkers related to disease pathology
in a more comprehensive manner. Moreover, we found that
the discriminative components derived from the two sets of
characteristics were located in all of the inherent connection
networks, thus indicating that the pathological mechanism of
depression relates to damage to the brain’s inherent connection
network and is caused by different degrees of abnormalities in
different areas of the brain. Previous studies reported similar
findings in that patients with depression possessed abnormal
connection patterns in different inherent brain connection
networks. For example, Lin et al. (Wen et al., 2019) performed
static functional connectivity and model recognition analysis to
detect the connection mode of whole brain functional networks
based on depression and normal people, which showed that there
found abnormal intra-network and inter-network connections.
Therefore, from the perspective of the inherent connection
network, the results of the present research are consistent
with previous studies. Next, we discussed the discriminative
components from the perspective of brain regions. IC18 and IC8
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were found to be most discriminative independent components
in the two groups of features. Therefore, we focused on the
regions covered by these two components. IC8 included mainly
left precentral gyrus. IC18 included mainly left lingual gyrus
and left superior frontal gyrus, medial. These differential regions
have been confirmed by existing studies to be significantly
associated with pathological studies of depressive, and were
imaging biomarkers that could not be ignored in the diagnosis
of depression. Jin et al. (2011) used graph theory to assess the
topological features of brain functional networks in depressed
adolescents. They found that brain regions such as the left medial
superior frontal gyrus were severely disrupted in depressed
adolescents. Lord et al. (2012) studied changes in the community
structure of resting-state functional connectivity in unipolar
depression. They found changes in brain regions such as the left
lingual gyrus. Geng et al. (2019) investigated the neural basis of
MDD with somatic symptoms based on the measure of regional
homogeneity (ReHo). The result showed that the somatic
depression exhibited lower ReHo in the right middle frontal gyrus
and left precentral gyrus. Therefore, the discriminative brain
regions obtained by the present research were consistent with
previous studies.

We applied a high-order functional hypernetwork, a high-
order functional network, a functional hypernetwork and a
traditional simple binary network models to 38 patients with
MDD and 28 NC subjects for classification. The results showed
that the high-order brain functional hypernetwork achieved the
highest classification accuracy (Table 3). The underlying reason
for this is that this particular network model not only considered
the complex interactions among multiple components but also
consider the dynamic changes of functional connections. The
high-order functional network considered the dynamic changes
of functional connections, but ignored the complex interactions
among multiple components; that is, it only captured pairwise-
related information between functional connections. In this
way, the constructed network could be too strict, thus leading
to the loss of some interactive information between multiple
components. Consequently, this network would be unable to
accurately characterize the interactions within the human brain
(Bullmore and Sporns, 2009; Jie et al., 2014). Conversely, the
brain functional hyper-network only considered the interaction
between multiple components in the brain but ignored the
abundant temporal information contained in the functional
connections. This also meant that the constructed network
was unable to provide more information relating to brain
organization (Leonardi et al., 2013). This result showed that
the functionally complex interactions of the brain would not be
effectively simulated when considering the interactions between
multiple brain regions from space or the time-varying nature of
neural interactions from time. Only by considering the multiple
interaction effects of the brain in space and the time-varying
effects in time, can the complex interaction information of the
brain be accurately simulated. In addition, we also compared
the classification performance of the high-order hypernetwork
model with the hypernetwork models in previous researches.
The results show that the rs-HOFHN model proposed in this
paper achieves the best classification performance. This also

verified the conclusion we got above. That is, considering only
the interactions of multiple components of the brain without
considering the abundant temporal information contained in the
functional connections, it could not more accurately simulate the
complex interactions of the brain.

Finally, the importance of the features was evaluated by the
ReliefF algorithm. This is a feature-weighing algorithm that
assigns different weights according to the correlation between
each feature and category. The greater the weight of the feature,
the stronger the classification ability of the feature and vice versa
(Kononenko, 1996). In this study, the ReliefF algorithm was used
to calculate the feature classification weights obtained in different
network models (Figure 7A). The results showed that the feature
weight value calculated by the high-order function hypernetwork
was higher than that calculated by the function hypernetwork and
the high-order function network. This result also implied that
without or simply consideration of the time-varying or pluralistic
nature of the brain’s working mechanism cannot simulate the
multi-level and complex interactions of the human brain under
different time-space scales. Only by considering interaction
information from multiple brain regions and the time-varying
characteristics of the human brain can it accurately simulate
the complex working mechanism of the human brain and
accurately identify biological markers for psychiatric diseases.
Furthermore, the rs-HOFHN model was taken as an example to
verify the validity of the fusion feature, where the classification
weights were evaluated for local features, subgraph features, and
fusion features. We found that the ReliefF weights of the fusion
features were significantly higher than the ReliefF weights of the
local features and subgraph features (Figure 7B). The potential
reason for this is that the fusion features effectively integrated
local and global topological information; in other words, while
reflecting the information of a single component, the features also
represented global topology information in the network model.
This result suggested that the simultaneous use of local and global
topological information can completely characterize topology
information from the high-order hyper-network, so as to achieve
a better classification and identify more effective biomarkers.

THE INFLUENCE OF PARAMETERS

Many parameters were considered in this study. We found
that the final classification performance was different when
the parameter selection was different. These parameters mainly
referred to sliding time window size l, sliding time window
step size s, cluster k, function hypernetwork construction
model regularization parameters (λ1, λ2) and the combination
parameter µ in the multi-core learning method. In the next
section, we discuss each of these parameters individually.

Sliding Time Window Size l
According to Formula (1), we found that the size l of the
sliding time window affected the number of time window and
the construction of low-order functional networks, which caused
the number of time points in the relevant time series and
the value of the functional connectivity at a certain moment
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FIGURE 7 | ReliefF weights in different networks and different types of features. (A) ReliefF weights for different networks. The Y-axis represents the ReliefF weight
and the X-axis indicates different networks. TBFN denotes the ReliefF weight of the corresponding local properties and subgraph features obtained from the
traditional simple binary functional network. rs-HOFN denotes the ReliefF weight of the corresponding local properties and subgraph features obtained from the
high-order functional network. rs-FHN denotes the ReliefF weight of the corresponding local brain regions and the subgraph features obtained from the functional
hypernetwork. rs-HOFHN denotes the ReliefF weight of the corresponding local brain regions and subgraph features obtained from the high-order functional
hypernetwork. (B) The ReliefF weight acquired by different feature extraction methods in the high-order functional hypernetwork. Local property indicates the ReliefF
weight obtained by local property features. Subgraph indicates the ReliefF weight obtained by subgraph features. Fusion-feature indicates the ReliefF weight
obtained by local property features and subgraph features. ∗∗ Represents the P-values obtained by non-parametric permutation tests that were <0.05, while ∗

represents P-values obtained by the non-parametric permutation test being <0.01.

FIGURE 8 | Classification accuracy of different sliding time window sizes.

were different. Accordingly, the construction of the high-order
functional hypernetwork was affected ultimately. Therefore,
we discussed the effect of sliding time window size on the
final classification performance. In this experiment, the sliding

time window size l was set to 40, 50, 60, 70, 80, and 90,
respectively. Based on the size of each sliding time window
and other parameters being fixed, a high-order brain function
hypernetwork was constructed. Then two types of features were
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extracted and selected. Finally, multi-kernel learning was adopted
and the SVM classification was performed. Figure 8 shows
that when the sliding time window is 60, the classification
performance is the highest. Under the other size windows, the
results are lower than the classification results with a sliding time
window size of 60. The underlying reason for this is that when
l was small, similar time series might be divided into different
windows, which would lead to too many features were selected.
As a result, more redundant features were included, resulting in
lower classification results. On the contrary, when l was large, the
time window would be correspondingly reduced, which would
result in insignificant time-varying characteristics. As a result, the
reliability of the network model was affected, leading to lower the
classification accuracy.

Sliding Time Window Step Size s
According to Formula (1), we found that size l of the sliding
time window affected the construction of the high-order brain
function hypernetwork. In addition, we also found that the
step size s of the sliding time window could also influence the
construction of the high-order function hyper network model.
In this experiment, the time window step size was set to 1, 2,
3, 4, and 5, respectively. Based on each step size for the sliding
time window and other parameters being fixed, a high-order
brain function hypernetwork was constructed. Then, two types
of features were extracted and selected. Finally, multi-kernel
learning was adopted and SVM classification was performed.
Figure 9 shows that when the step size was 1, that is, the
current time window and the next time window were separated
by one time point, the classification result was the highest.
Moreover, as s became larger, the classification result became
lower. The underlying reason for this is that as s became larger,
the number of time windows divided decreased; this meant that
the time-varying characteristics of the high-order brain function
hypernetwork were not fully reflected. As a result, the reliability of
the high-order brain function hypernetwork model was affected,
thus leading to a lower classification accuracy.

The Number of Clusters k
The sparse group LASSO method is a preset group selection
method. Different groups (different clusters of k) would affect
the construction of the resting brain function hypernetwork, thus
resulting in a different classification performance. Therefore, we
changed the cluster number k value from 40 to 200 with a step
size of 10 to select the appropriate cluster k and then constructed
the high-order functional hypernetwork. Specifically, for each k
value, we fixed other parameters and constructed the resting state
high-order function hypernetwork based on the sparse group
LASSO method. Then, two types of features were extracted and
selected. Finally, multi-kernel learning was adopted and SVM
classification was performed. In addition, because the random
selection of the first initial seed point would cause differences in
the network topology, it was necessary to eliminate the influence
of initial seed points in the clustering algorithm. Thus, under the
condition of each cluster k value, 50 experiments were carried
out. Then, we selected the average value of the 50 experiments

as the final classification result. Figure 10 indicates that the
classification accuracy was the highest when k = 150 (92.18%).

Regularization Parameters λ1 and λ2
Previous studies have shown that parameter λ affects the topology
of the network. The regularization parameter λ is known to
determine the sparsity and scale of the network. If the λ value
is too small, then the created network model would be too
rough and involved too much noise; if the λ value was too
large, then the network model would be sparser (Lv et al., 2015).
Different parameter λ settings are also known to have a certain
impact on the reliability of the network topology, especially
modularity (Li and Wang, 2015). In addition, λ can affect
classification performance and is known to be very sensitive. In
other words, if the regularization parameter λ was different, the
classification performance would be significantly different (Qiao
et al., 2016). Therefore, obtaining the optimal regularization
parameter λ value is indispensable for the creation of the network
model and the improvement of classification performance. Over
recent years, researchers have tried to optimize the reliability
of network topology and classification performance by selecting
parameter λ (Braun et al., 2012; Li and Wang, 2015; Qiao
et al., 2016). However, recent studies have confirmed that it is
difficult to obtain high reliability values for network topology
when selecting a single λ. Only when the parameter λ value was
set to 0.01 can network topology achieve high reliability (very
close to 0, meaning that almost all nodes were connected at a
hyperedge and that the network was a fully connected network)
(Li and Wang, 2015).

Considering this problem, a multi-level regularization
parameter setting method was proposed (Jie et al., 2016). In
contrast to the single λ setting, a multi-level regularization
parameter setting method could set a suite of regularization
parameters, thus avoiding the selection of a single λ setting
method and thus providing more network topology information.
Therefore, in the present study, we used the multi-level
parameter setting method to comprehensively characterize the
topology of a high-order functional hypernetwork. Considering
the time consumption required by the enumeration method,
we set the range of regularization parameters (λ1, λ2) as (0, 1)
and adopted a series of ascending combinations to construct
a high-order function hypernetwork. In other words, when
fixing the regularization parameter λ2, the regularization
parameter λ1 was changed within the corresponding range to
generate the corresponding hyperedge. Specifically, λ2 was set
to 0.1, 0.2, ..., 0.9 separately, and λ1 was applied to a series of
ascending combinations, namely {0.1} , {0.1, 0.2} , {0.1, 0.2, 0.3}
,. . ., {0.1, 0.2, ..., 0.9} , to create hypernetwork models with
different high-order resting states. Then, two types of features
were extracted and selected. Finally, multi-kernel learning was
adopted and SVM classification was performed. The results
are shown in Figure 11; the classification accuracy was highest
(92.18%) when λ2 = 0.4 and λ1 was used. It should be noted
that when λ1 was set to{0.1} , regardless of the value of λ2, the
classification result was no higher than 60%. The underlying
reason for this is that if λ1 was a single value, there would be
some nodes that exist and only exist in a hyperedge; this would
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FIGURE 9 | Classification accuracy of different moving steps.

FIGURE 10 | Classification accuracy of different k values based on the high-order functional hypernetwork.

result in the HCC3 and HCCPN values being unsolvable, so that
the corresponding attribute features would be missing and could
not be used to construct the classification model.

The Effectiveness of Each Introduced
Local Property
We conducted ablation experiments from two levels of
classification performance and feature classification weight

to verify the effectiveness of each local feature introduced
in this paper. Specifically, we removed each local attribute
feature separately, and connected the remaining local attribute
features as final local property feature. Then we used the KS
nonparametric test method to perform feature selection, where
the feature with p < 0.05 was selected as the difference feature
for classification. The result is shown in Supplementary Table 3.
The results show that if any one of the five local attributes
was removed, the classification results were lower than those
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FIGURE 11 | Classification accuracy of different network construction parameters (λ1, λ2) in the sparse group LASSO method.

FIGURE 12 | Corresponding combination parameters under different discriminative features.

obtained by the five local attributes. Therefore, from the level of
classification performance, all local properties introduced in this
study were effective.

In addition, to further illustrate the effectiveness of the local
fproperties introduced in this paper, we adopted the ReliefF
algorithm to measure the effectiveness of the selected features.
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We removed each local attribute separately, and calculated the
classification weights of the difference features obtained from
the remaining topological attributes. Then we compared these
classification weights with the classification weights obtained
from the five local attribute difference features. The results
show that after removing HCC1, the classification weight of the
remaining topological attribute was 632.61. Similarly, HCC2 was
591.94; HCC3 was 531.29; SP was 550.43; HCCPN was 722.35
(The classification weights of these five groups of local attributes
were all statistically significant). The results illustrated that after
any local property feature was removed, the result obtained
was lower than the classification weight (781.57) obtained by
the difference features of five local attribute. Therefore, from
the feature classification weight level, the introduced local
properties were effective.

In summary, from the perspective of classification and feature
validity, it was concluded that the five topological attributes
of HCC1, HCC2, HCC3, SP, and HCCPN contained effective
classification information to improve the diagnosis of depression.

Combination Parameter µ in
Multi-Kernel Learning
The most important step in multi-kernel learning is the
determination of the combined parameter µ, which directly
affects the way that data fusion can influence the classification
performance. In the current study, an alignment maximization
algorithm was used to determine the weight of the parameterµl.
Figure 12 shows the average value of the kernel parameters
corresponding to two sets of topological attributes during the
leave-one-out cross-validation process (Local properties: 0.911;
Subgraph: 0.31). Under this value, the classification result of the
proposed method reached 92.18%. Note that the sum of the
squares of these two weights was not equal to 1, whose underlying
reason was that we calculated the average value of the kernel
parameters during the leave-one-out cross-validation process. In
some cases, the weight of a parameter maybe a negative value,
which made the sum of the squares of these two weights not being
exactly equal to 1.

Repetitive Verification
To further verify the effectiveness of the proposed method, we
used the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data set5 to perform the current study. Normal subjects
and patients with Alzheimer’s disease (AD) were selected
from the database, including 30 normal subjects and 29
Alzheimer’s patients. A preprocessing process, that was similar
to the process used for the MDD data set was utilized; this
consisted of time layer correction, head motion correction,
spatial normalization, linear dimensionality reduction, band pass
filtering and smoothing. Then, the GICA method was used
to divide the independent components and extract the spatial
distribution and time series of each independent component.
In the AD data set, 23 independent components were obtained.
Based on the average time series data relating to independent
components, a rs-HOFN model was constructed based on the

5http://adni.loni.usc.edu/

time sliding window method, a rs-FHN model was constructed
based on the sparse group LASSO method, and a rs-HOFHN
model was constructed based on the time sliding and sparse
group LASSO method. Next, local attributes (rs-HOFN: node
degree, betweenness centrality and node efficiency; rs-FHN and
rs-HOFHN: HCC, HCCPN and SP) and global information
(HOFH: frequent subgraph features was extracted using the
gSpan algorithm; rs-FHN and rs-HOFHN: hyperedges were
regarded as subgraph features) were extracted. Furthermore, the
non-parametric KS test and FSFS methods were applied to select
local difference features and discriminant subgraphs. Finally,
multi-kernel learning was used to fuse features and the SVM
classifier was used to perform classification. The classification
results are shown in Supplementary Table 4. These results
showed that the rs-HOFHN model obtained better classification
performance, thus indicating that a resting state high-order
functional hypernetwork can more accurately describe the
functional connections of the human brain, characterize the
complex working mechanisms of the human brain, and identify
more accurate pathological markers.

CONCLUSION

Previous research showed that a functional hypernetwork could
capture interactions among multiple regions in a static form but
ignored the dynamic changes of the functional connections over
a short period of time. Therefore, considering the time variability
of neural activity, we constructed a high-order function hyper
network to meet the time variability of human brain interactions
in time and the multiple interaction capabilities in space. In
addition, local topological attributes and global characteristics
were introduced simultaneously to fully characterize the high-
order brain function hypernetwork model. Then, the two sets of
features were mixed into a mixed kernel through multi-kernel
learning for classification and diagnosis.

In this study, we identified the most discriminative functional
connections and discriminant subgraphs in MDD. We found that
our findings were consistent with those published previously.
We evaluated the classification performance of a high-order
hyper network, a traditional hypernetwork, a high-order
network and a traditional binary network. We found that the
high-order hyper network achieved the best classification
performance, thus implying that a better classification
performance could be achieved if the multivariate interactions
and time-varying characteristics of neural interactions were
considered simultaneously. In addition, two sets of features and
multiple features were evaluated separately. We found that the
classification accuracy and relief weighting of multi-features
were better than single features (i.e., local attribute features and
subgraph features), thus suggesting that better classification
could be achieved, and more effective biomarkers could be
identified when both local features and global information were
used to jointly characterize high-order functional networks.

However, this study has some limitations that need to
be considered. The method used to construct the functional
hypernetwork in this research involved non-overlapping
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groups. However, recent study have shown that the overlap
between groups may affect the construction of function brain
hypernetwork models, thereby affecting the effectiveness of the
classification model (Shen et al., 2019). Therefore, the overlap
between groups (such as the overlapping group LASSO method)
can be considered to further improve the construction of the
hypernetwork in future research. In addition, we needed to
perform clustering before constructing the high-order functional
hypernetwork. Although different k values were selected, and
multiple experiments based on a specific k value were performed,
it is not possible to eliminate the effect of initial random seed
points on the constructed brain function hypernetwork and
classification results. Therefore, further research is needed to
select a more optimal parameter setting method to generate
a more stable hyperedge and further improve the topology of
the function hypernetwork. Finally, in our experiment, it is
mainly assumed that the hyperedge was decomposable in nature.
That is, we decomposed the hyperedge into multiple nodes
and tend to associate these nodes because they have common
membership in the same hyperedge. In future research, we can try
to introduce the line graph (Bandyopadhyay et al., 2020) theory
of the hypergraph that regard the hyperedge as a node to consider
its hyperedge information, thus performing the classification and
diagnose of brain diseases.
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