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e �eld of neuroprotection generated consistent preclinical �ndings of mechanisms of cell death but these failed to be translated
into clinics. e approaches that combine the modulation of the inhibitory environment together with the promotion of intrinsic
axonal outgrowth needs further work before combined therapeutic strategies will be transferable to clinic trials. It is likely that
only when some answers have been found to these issues will our therapeutic efforts meet our expectations. Stroke is a clinically
heterogeneous disease and combinatorial treatments require much greater work in pharmacological and toxicological testing.
Advances in genetics and results of the Whole Human Genome Project (HGP) provided new unknown information in relation
to stroke. Genetic factors are not the only determinants of responses to some diseases. It was recognized early on that “epigenetic”
factors were major players in the aetiology and progression of many diseases like stroke. e major players are microRNAs that
represent the best-characterized subclass of noncoding RNAs. Epigenetic mechanisms convert environmental conditions and
physiological stresses into long-term changes in gene expression and translation. Epigenetics in stroke are in their infancy but
offer great promise for better understanding of stroke pathology and the potential viability of new strategies for its treatment.

1. Where Are We?

e classical molecular targets for stroke include those in-
volved in oedema/in�ammation control, axonal regenera-
tion/plasticity, neurogenesis/angiogenesis, and events that
support recovery. For decades, old targets for stroke were
based on observations of molecular and cellular changes aer
stroke. Numerous in�ammatory markers, growth-associated
proteins, cell cycle proteins, NMDA receptors, molecules
involved in synaptic plasticity, dendritic branching, neu-
ral sprouting or extracellular matrix remodelling were key
targets. e �eld of neuroprotection generated consistent
preclinical �ndings of mechanisms of cell death but these
failed to be translated into clinical therapies. Many clinical
trials were carried out using doses that were already known
to be ineffective in preclinical trials, or employing time
delays outside the established therapeutic window. Some
trials were based on preclinical data showing relatively weak
effects or those that were only established in one limited

model. Similar problems may occur in the �eld of neural
repair without careful work on the key points associated with
clinical translation [1]. e effective delivery of neural repair
strategies is another major issue in recovery aer stroke.
Several growth factors and cytokines have been shown to
mediate neurogenesis and angiogenesis [2]. However these
are pleiotrophic molecules with likely multiorgan effects
when delivered systemically. e �ne tuning of approaches
that combine the modulation of the inhibitory environment
together with the promotion of intrinsic axonal outgrowth
needs further experimental work before combined therapeu-
tic strategies will be transferable to clinic trials. It is likely
that only when some answers have been found to these
issues will our therapeutic efforts meet our expectations [3].
Selective delivery systems, or more selective small molecules,
will need to be developed to minimize side-effects in a neural
repair therapeutic. Nanomedicine is probably opening new
opportunities in this �eld as it may provide opportunities
to deliver larger quantities of drugs with the additional
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possibility to target therapeutics to speci�c brain regions
(superparamagnetic particles) and deliver to speci�c cell
types following antibody-mediated endocytosis [4].

Stroke is a clinically heterogeneous disease, with infarcts
commonly occurring in different tissue compartments (white
matter and gray matter) and brain regions (basal ganglia,
cortex, thalamus, brainstem), and occurs most oen in aged
individuals. Combinatorial treatments require much greater
work in pharmacological and toxicological testing. Further,
treatments that promote anatomical rewiring will need to
be administered in combination with behavioural activity to
help “stamp in” patterns of brain rewiring that are adaptive
and to avoid the formation of maladaptive patterns of wiring.
A promising experimental treatment will need, at the very
least, to be tested in several different rodent stroke models
and aged animals. Despite these issues, it is becoming clear
that the partial recovery that is commonly seen aer stroke
is associated with a reorganization of brain circuitry, and
those methods that can safely and effectively enhance this
reorganization could potentially have great clinical value [5].
It is important to remember that all stroke patients exhibit
some degree of functional recovery. is process occurs
in a matter of days, continues most dramatically for the
�rst month in upper and lower extremity motor function
[6] and for up to a year in language and other cognitive
modalities [7, 8]. is recovery is only partial, leading to
the tremendous long-term personal and �nancial burdens of
this disease [9, 10]. What mediates natural neural repair in
stroke and what are the pharmacological targets to promote
improved recovery?Many of these processes of structural and
physiological change aer stroke have been correlated with
recovery but the causal mechanisms of neural repair in stroke
have not been de�ned. Axonal sprouting from the cortex
contralateral to an infarct into the cervical spinal cord and
brainstem ipsilateral to the infarct correlates with recovery of
forelimb use [11, 12]. Neurogenesis aer stroke is associated
with functional recovery, in that blocking mitotic activity
aer stroke reduces cognitive recovery [13]. e degree of
angiogenesis aer stroke in humans is correlated with the
level of recovery [14]. Stem cell, growth factor, and cytokine
therapies that promote functional recovery correlate with
increases in angiogenesis and neurogenesis near the infarct
[15, 16].

In recent years, the �eld of neural repair in stroke has
identi�ed cellular systems of reorganization and possible
new molecular mechanisms. However, conceptual barriers
now limit the generation of clinically useful agents. First,
it is not clear what the causal mechanisms of neural repair
are in stroke. Second, adequate delivery systems for neural
repair drugs failed and need to be determined for can-
didate molecules. ird, ad hoc applications of existing
pharmacological agents that enhance attention, mood, or
arousal to stroke were unsuccessful. New approaches that
speci�cally harness the molecular systems of learning and
memory provide a new avenue for stroke repair drugs.
Fourth, combinatorial treatments for neural repair need to
be considered for clinical therapies. Finally, neural repair
therapies have as a goal altering brain connections, that is,
rewiring cognitive maps and active neural networks. ese

actions may also trigger a unique set of “neural repair side
effects” that need to be considered in planning clinical trials
[17]. Future research will be needed to address the above
limitations in this �eld and problems in translation from the
basic science to poststroke clinics.

2. Heading towards the XXII Century

e Whole Human Genome Project (HGP) early in the XXI
century ushered in a wave of optimism and anticipation
that new therapies and even cures for many diseases would
soon be forthcoming [18]. Aside from impressive progress in
reducing the costs of genotyping [19], the promise offered by
the HGP has been largely unrealized, particularly in relation
to stroke [20]. More than 100 Genome-Wide Association
studies [21] made possible with the new information pro-
vided by the HGP have yielded many interesting �ndings
about the genetics of stroke-related brain injury, but all have
generally fallen far short of identifying a genetic basis for
vulnerability to cerebral ischemia [22]. With the notable
exception of monogenic diseases, genome-wide association
studies (GWAS) have generally not been an efficient strategy
to elucidate the genetic mechanisms of disease, particularly
in complex pathologies such as ischemic cerebral injury [23].
ese studies have taught us that most disease pathologies,
including those associated with cerebral ischemia, are poly-
genic and involve highly variable contributions from the
genes involved. Such �ndings raise the important question�
why are the genetic components of complex diseases so
variable? Polygenomic pathology as well as individual gene
variability contributes to stroke as described in many GWAS.
Long before the HGP was completed, it was recognized that
genetic factors were not the only, or perhaps even not the
most important, determinants of responses to some diseases.
It was recognized early on that “epigenetic” factors were
major players in the aetiology and progression of many dis-
eases [24]. Following completion of the HGP, understanding
of epigenetic mechanisms has expanded rapidly, and it is now
recognized that epigenetic regulation involves three main
categories of mechanisms [25, 26], that is, DNA methyla-
tion that attenuates gene expression; enzymes that add and
remove acetyl groups to lysine residues in histone proteins
and thereby facilitate or inhibit their dissociation for DNA
with subsequent increases or decreases in gene expression,
respectively; and the pathways that regulate the synthesis and
action of micro-RNAs (miRNAs) that regulate mRNA trans-
lation. MicroRNAs represent the best-characterized subclass
of ncRNAs. Together, these epigenetic mechanisms convert
environmental conditions and physiological stresses into
long-term changes in gene expression and translation. In
contrast to DNA methylation and histone modi�cation, the
main function of miRNAs is associated mainly with message
translation rather than with gene transcription. e miRNA
molecules directly bindmRNA and either retard or accelerate
its degradation. In addition, miRNA binding to mRNA
can block message translation [27]. e sequences coding
for miRNAs oen arise from intronic DNA and regulate
the gene products coded by adjacent exons. More than
1,000 unique sequences of miRNA have been identi�ed, and
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together these regulate approximately 30% of all mammalian
genes [27]. A single miRNA can help regulate multiple
different gene products, and a single gene product can be
regulated by multiple different miRNAs. As such, miRNAs
play key roles in many cellular functions and are particularly
important in cardiovascular biology [28–33]. Expression and
action of miRNAs change with development and in response
to nutritional stress [34]. e actions of speci�c miRNA
molecules can be inhibited by reverse-sense antagomirs,
and these have proven useful in many studies of miRNA
function [35, 36].

3. The RNAMachine

RNAs are an integral component of chromosomes and
contribute to their structural organization [37, 38]. It is
now becoming apparent that chromatin architecture and
epigenetic memory are regulated by RNA-directed pro-
cesses where, although the exact mechanisms are yet to be
understood, involve the recruitment of histone modifying
complexes and DNA methyltransferases to speci�c loci [39].
Whereas long nonprotein coding RNAs (ncRNAs) have been
classically implicated in the regulation of dosage compen-
sation and genomic imprinting in animals [40], they seem
to play a much broader role in the epigenetic control of
developmental trajectories [39]. For example, ncRNAs may
repress gene expression and be associated with complex
epigenetic phenomena [41, 42]. Small ncRNAs have been
consistently linked with heterochromatin formation via the
process of RNA interference (RNAi). Higher-level nuclear
organization and chromosome dynamics are also regulated
by ncRNAs in a variety of systems. ese �ndings reveal
RNA-based mechanistic links between these processes in
mitosis. e RNAi pathway along with directed histone
modi�cations also regulates the organization of the nucle-
olus [43, 44]. In mammals, transcription of long ncRNAs
contributes to various processes including T cell receptor
recombination [42], maintenance of telomeres [45, 46],
X-chromosome pairing required for dosage compensation
[47], and inactive X-chromosome perinucleolar localization
[48]. e functional organization of chromatin can also
be regulated by ncRNAs derived from repetitive elements.
Given the abundance of transcribed repetitive sequences,
this may represent a genome-wide strategy for the control
of chromatin domains that may be conserved throughout
eukaryotes. Moreover, such observations and others sug-
gest that a large portion of the genome may in fact be
functionally active and that transposon-derived sequences
may not be reliable indices of the rate of neutral evolution
[49].

4. AWorld of Noncoding RNAs

e examples above provide proof-of-principle that RNA
can regulate gene expression at many levels and by using a
wide array of mechanisms. e ENCODE project showed
that at least 93% of analyzed human genome nucleotides
are transcribed in different cells, with similar �ndings in
mice and other eukaryotes, which indicate that there may be

a vast reservoir of biologically meaningful RNAs that could
greatly exceed the ∼1.2% encoding proteins. A fraction of
RNAs with short open reading frames (ORFs) potentially
encodes peptides but on the other side of the ledger many
currently annotatedORFs are not conserved andmay be false,
which could reduce the number of protein-coding genes in
the human genome. ere has been debate about whether
these ncRNAs are (in the main) functional or simply noise.
In some cases, it may be the transcript or merely the act of
transcription, or both, that are relevant. Nevertheless, many
observations indicate that substantial numbers of ncRNAs are
intrinsically functional. ese include the fact that many loci
produce spliced (and alternatively spliced) transcripts that
are developmentally regulated. A large fraction of ncRNAs
are expressed in speci�c regions of the brain, exhibiting
precise cellular locations. Some mark new domains within
the cell, which means that ncRNAs are also set to have a
major impact in cell biology. Comparative analyses indicate
that ncRNA promoters are, on average, more conserved than
those of protein-coding genes and that ncRNA sequences,
secondary structures, and splice site motifs have been subject
to purifying selection. Moreover, many ncRNAs are evolving
quickly, and some have undergone recent positive selection,
as exempli�ed by HAR1 RNA expressed in the human
brain, which contains the sequence conserved in mammals
that most rapidly diverged aer the human-chimpanzee
separation. Although the need for large-scale approaches to
explore the function of ncRNAs is evident, a glance at the
genome browser will show noncoding expressed sequence
tags associated with most genes of interest that may have
regulatory functions. ncRNAs are already being identi�ed
as markers for cancer and associated with other complex
diseases such as coronary disease, diabetes, and Alzheimer’s.
e elucidation of their functionmay signi�cantly contribute
to the understanding and treatment of such conditions.
It may also transform our understanding of the genetic
programming of multicellular organisms, particularly as it
appears that regulation dominates the information content of
complex systems [49].

5. RNA-Based Epigenetic Mechanisms
Implicated in Stroke

e predisposition to and the development of cerebrovas-
cular diseases involves the dynamic interplay between envi-
ronmental and intrinsic vascular, systemic, and CNS risk
factors. Increasing evidence suggests that disruption of these
homeostatic and plasticity events involves an array of deregu-
lated epigenetic processes [50]. Appreciation of the potential
involvement of epigenetic mechanisms in the incidences and
outcomes of stroke has begun to motivate studies of these
mechanisms in relation to cerebral ischemia and stroke. DNA
methylation has been suggested to contribute to delayed
ischemic brain injury in mice and has been correlated with
stroke risk in humans. Histone modi�cations have been
implicated in ��S-induced cerebral in�ammation and oxida-
tive neuronal injury and may be neuroprotective following
ischemia in rodent brains [17].
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6. ncRNAs and RNA Regulatory Networks

e most recently recognized category of epigenetic mech-
anisms includes the pathways involved in the transcription,
processing, and action of a class of short (≈20–25 nucleotides)
RNA molecules identi�ed as micro-RNAs (miRNAs) [51].
MicroRNAs are �rst transcribed as longer primary miRNA
transcripts that can have multiple functional miRNAs
embedded within a single transcript.ese primary miRNAs
are processed to form mature molecules of approximately
22 nucleotides that regulate the expression of large numbers
of target genes through sequence-speci�c interactions with
messenger RNA (mRNA) molecules. MicroRNAs bind to
the 3 regulatory regions and to particular coding regions of
their cognate mRNAs, leading to sequestration for storage
or degradation and to translational repression. Cerebral
ischemia in animal models is associated with highly selective
and temporally regulated pro�les of miRNAs in the postis-
chemic brain [52]. Differential expression of miRNAs in
the postischemic brain correlates with differential expression
of their target mRNAs, including many implicated in tran-
scriptional regulation, ionic �ux, in�ammation, and other
stress responses. ese results suggest that miRNA networks
regulate a spectrum of processes in the postischemic brain.
MicroRNA-140 is one of the miRNAs that was rapidly
up regulated in the brain 3 hours aer middle cerebral
artery occlusion and sustained for 72 hours. One of the
validated target mRNAs for miRNA-140 encodes stromal
cell-derived factor 1, which plays an important role in the
CNS by mediating neural progenitor cell proliferation and
migration and tissue repair aer cerebral ischemia [53]. is
observation suggests that miRNA-140 may be responsible,
in part, for mitigating the regenerative response in the
postischemic brain. Furthermore, some miRNAs that are
highly differentially expressed in brain tissue can similarly
be detected in peripheral blood [54], suggesting not only
that these may serve as novel clinical biomarkers but also
that these miRNAs may be involved in mediating systemic
responses to cerebral ischemia.

Multipotent mesenchymal stromal cells (MSCs) have
potential therapeutic bene�t for the treatment of neurological
diseases and injury. MSCs interact with and alter brain
parenchymal cells by direct cell-cell communication and/or
by indirect secretion of factors and thereby promote func-
tional recovery. In another study, using Multipotent mes-
enchymal stromal cells (MSCs) treatment of rats subjected
to middle cerebral artery occlusion (MCAo) signi�cantly
increased microRNA 133b (miR-133b) level in the ipsilateral
hemisphere. In vitro, cultured neurons treated with exosome-
enriched fractions from MSCs exposed to MCAo brain
extracts signi�cantly increased the neurite branch number
and total neurite length.is study provides the �rst demon-
stration that MSCs communicate with brain parenchymal
cells and may regulate neurite outgrowth by transfer of miR-
133b to neural cells via exosomes [55].

Further, microRNAs (miRNAs) regulate formation of
myelinating oligodendrocytes. Overexpression of miR-219
and miR-338 as oligodendrocyte-speci�c miRNAs is suf-
�cient to promote oligodendrocyte differentiation. ese

�ndings illustrate that miRNAs are important regulators of
oligodendrocyte differentiation, providing new targets for
myelin repair [56].

Long ncRNAs represent another important and emerging
subclass of ncRNAs that may also play a role in stroke. Long
ncRNAs have roles in local and long-range chromatin remod-
elling, transcriptional regulation, and alternative splicing and
other forms of post transcriptional RNA processing [57].
ey are implicated in the development of axonal and den-
dritic connections and synaptic modulation associated with
neural network plasticity. Long ncRNAs may also participate
in the generation of the long-term potentiation that underlies
learning andmemory [58]. An lncRNA can bind to the cyclin
D1 gene, a critical mediator of ischemic neuronal cell death
[59]. ANRIL (NCBI EntrezGene 100048912) is an lncRNA
with an unknown function that is associated with the devel-
opment of atherosclerosis, diabetes, and aneurysms, possibly
through effects on vascular smooth-muscle proliferation and
migration.GOMAFU (NCBI Entrez Gene 440823) is another
lncRNA that is expressed in the nucleus of developing neural
cells. Although the function of GOMAFU is unknown, a
case-control association study identi�ed a single nucleotide
polymorphism associated with the GOMAFU locus as a sus-
ceptibility factor for cardiovascular disease [60]. In addition
to miRNAs and lncRNAs, other ncRNA transcripts, such as
those resembling the virus-like 30 family of interspersed,
repeated, mobile genetic elements (i.e., retrotransposons),
are also increased in mouse brain aer cerebral ischemia.
ese virus-like 30 ncRNAs are induced by ischemia and
paradoxically bound to polyribosomes, although they are not
translated. e distribution of these virus 30-like ncRNAs
in ribosomal fractions is distinct from the distribution of
mRNAs that are translated or translationally repressed and
suggests a novel structural or catalytic role for these ncRNAs.
Together, these observations imply that the expression and
function of several newly identi�ed subclasses of ncRNAs
may be associated with the pathogenesis of stroke [61].
Figure 1 represents biogenesis of microRNAs.

7. RNA Editing and DNA Recoding in Stroke

is process is intimately linked with ncRNA expression
and is another epigenetic process, RNA editing, a mecha-
nism for altering nucleotides in RNA molecules that allows
the generation of signi�cant diversity of transcripts in a
highly environmental-responsive manner. In transient global
cerebral ischemia models, the death of hippocampal CA1
pyramidal neurons is mediated by selective downregulation
of an RNA-editing enzyme leading to defective editing of
the ionotropic glutamatergic -amino-3-hydroxy-5-methyl-
4-isoxazole-propionic acid GluR2 receptor subunit, which
in�uences the vulnerability of hippocampalCA1 pyramidal
neurons to ischemia-associated cell death [62]. By alteration
of RNA nucleotides, not only does editing have the capacity
to change amino acids and modulate splice-site choice in
protein-coding transcripts, but it also has roles in ncRNA-
related processes such as miRNA localization, target diver-
si�cation, and function [63]. MicroRNA regulatory network
dynamics mediated by RNA editing may be implicated in
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stroke. For example, miRNA-151 is found in neurons and
up-regulated aer middle cerebral artery occlusion, and the
immature form of miRNA-151 (primary miRNA-151) is
subject to RNA editing that in�uences processing of the
primary miRNA into mature miRNA within the CNS [64].
Intriguingly, miRNA-151 is thought to target various cell
cycle regulators as well as protein tyrosine kinase 2 (focal
adhesion kinase), a nonreceptor tyrosine kinase involved
in integrin and growth factor signalling pathways that is
differentially regulated aer middle cerebral artery occlusion
and implicated in modulating neurite outgrowth, neuronal
plasticity, and restoration of neural network integrity within
the ischemic penumbra [65]. ese observations imply that
multiple layers of interleaved epigenetic controls that include
RNA editing andmiRNA regulatory networks are involved in
stroke. Another, miR120 is positively correlated with better
prognosis in stroke patients and antagonists to miR497,
infused prior to stroke, reduce infarct volume. However, to
date, no neuroprotective miRNAmimics or antagomirs have
been identi�ed that are effective when delivered poststroke.

To identify neuroprotectivemiRNAs, Selvamani et al. studied
a known neuroprotectant, Insulin-like Growth Factor (IGF-)
1, for speci�c miRNA target sites, with the goal of inhibiting
these miRNA to elevate local levels of IGF-1 poststroke. IGF-
1 is a critical endogenous neuroprotectant and low normal
levels of peptide hormone are associated with increased
morbidity andmortality in ischemic heart disease and stroke.
Exogenous IGF-1 reduces ischemic injury in many species,
stimulates stroke induced neurogenesis and promotes neu-
ronal survival, neuronal myelination, and angiogenesis. Two
conserved IGF pathway regulatory microRNAs, Let7f and
miR1, can be inhibited to mimic and even extend the
neuroprotection afforded by IGF-1. Collectively these data
support a novel miRNA-based therapeutic strategy for neu-
roprotection following stroke in experimental model [66].

In addition, the apolipoprotein-B-(ApoB-) editing cat-
alytic subunit (APOBEC) family of RNA editing and DNA
recoding enzymes may also play a role in stroke. ese
enzymes are cytidine deaminases that edit (deoxy)-cytidine
to (deoxy)-uridine and act on RNA and DNA molecules
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[67]. One of the substrates for these enzymes is APOB
(NCBI Entrez Gene 338) mRNA, which encodes an impor-
tant apolipoprotein found in chylomicrons and low-density
lipoproteins. Mutations of the APOB gene and its regulatory
region cause dyslipidemias (eg hypobetalipoproteinemia and
hypercholesterolemia), and genetic variants of APOBEC1
and APOBEC2 are associated with high levels of serum low-
density lipoproteins and increased atherosclerosis [68]. e
APOBECs may affect stroke risk through effects on APOB
mRNAediting; however, APOBECsmay play additional roles
within the brain. APOBEC-mediated DNA recoding protects
the stability of the genome and also enhances its diversity and
plasticity [64]. Although these functions have largely been
characterized within the immune system, it is intriguing that
the APOBEC3 enzyme subfamily has signi�cantly expanded
in primates and that certain members (i.e., APOBEC3G)
are expressed in postmitotic neurons [69]. Furthermore,
accumulating evidence suggests that RNA editing and DNA
recoding may be functionally linked through speci�c classes
of reverse transcriptases within the CNS that can medi-
ate RNA-directed DNA modi�cations [70]. Also, like the
immune system, the CNS exhibits exquisite degrees of func-
tional plasticity by modulating cell identity and connectivity.
Because of these observations, we have previously suggested
that DNA recoding in the brain might represent a novel
mechanism for transmitting productive RNA editing events
back into the postmitotic neuronal genome [61].

is suggests a possible evolutionary mechanism to
account for the multigenerational inheritance of complex
cognitive and behavioural traits and risk pro�les for stroke
in response to both productive and adverse environmental
events. Apart from the molecular mechanisms responsible
for epigenetic regulation, a broad variety of evidence has
implicated epigenetic regulation in long-term environmental
in�uences on gene regulation. One of the best-known such
examples is the epidemiological work of Pearce, who identi-
�ed a cohort of Dutch individuals with a uniquely elevated
risk of coronary artery disease [17]. e common feature
among this cohort was maternal food restriction during the
Dutch famine inWorldWar II.ese early studies established
that foetal nutritional stress could produce life-long changes
in the vulnerability to cardiovascular disease, and subsequent
work has further established the epigenetic basis of such “vas-
cular programming”. Similarly, other studies have implicated
epigenetic mechanisms in long-term responses to hypoxia
[71–74] and ischemia [75–78]. Of particular relevance to
stroke are �ndings that miRNA is involved in ischemic
preconditioning [79] and may even play a role in ischemic
post conditioning. Together, these results emphasize that
environmental in�uences can produce long-term changes in
physiological patterns of gene expression through epigenetic
mechanisms.

8. Epigenetics and Transient Ischemia

Transient global cerebral ischemia (TGCI) following sys-
temic hypoperfusion is associated with selective and delayed
death of hippocampal CA1 pyramidal neurons through the
mediation of a series of parallel epigenetic processes. Within

vulnerable neurons, there is selective downregulation of
ADAR2 and defective Q/R site editing of the ionotropic
glutamatergic AMPA, GluR2 receptor subunit, resulting in
the expression of the death-promoting calcium permeable
GluR2 isoform and associated impairment in GluR2 mRNA
and protein expression, receptor assembly, membrane traf-
�cking, and synaptic targeting. Heterogeneity in ADAR2-
mediated GluR2 Q/R site editing enhances the vulnerability
of hippocampal CA1 pyramidal neurons to global ischemia-
associated neurodegeneration. In parallel, TGCI induces the
selective expression of RESTwithin these vulnerable neurons
with associated suppression of GluR2 and the CA1- selective
m-opioid receptor 1 (MOR1) in inhibitory interneurons
through a series of histone modi�cations, including MOR1
promoter H3/4 deacetylation, H3K9 dimethylation and asso-
ciated recruitment of the G9a histonemethyltransferase.is
has been postulated to represent a failed attempt of inhibitory
interneurons to dampen the excitotoxicity of CA1 pyramidal
neurons by disinhibiting GABA release. Ischemia-induced
alterations in the histone code may be the result of early
dephosphorylation and inactivation of components of the
neuronal ERK1 and CREB1 signal transduction pathways
that simultaneously reduce expression of the antiapoptotic,
bcl2 gene and activate expression of the proapoptotic,
caspase-3 effector pathway [80–83].

ere is also evidence that the more common type of
focal stroke syndrome due to occlusion of themiddle cerebral
artery is associated with aberrant DNA methylation and
histone H3 deacetylation, and that systemic administration
of a potent HDAC inhibitor reduces the volume of the
ischemic infarction whereas concurrent application of an
HDAC inhibitor with a DNA demethylating agent confers
neuroprotection against mild but not severe ischemic injury
[84]. Increasing evidence suggests that intricate epigenetic
processes may also operate to modulate premorbid vascular
pathology and responses to agents that attenuate ischemic
risk factors. For example, a novel deubiquinating enzyme,
ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), mutated
in a rare inherited form of Parkinson’s disease, is normally
present in vascular endothelial cells of atherosclerotic lesions
of human carotid arteries and attenuates pathological vascu-
lar remodeling by inhibiting tumor necrosis factor a-induced
NF-kappaB activation [85]. Interestingly, the normal balance
of transcriptional activity and associated histone acetyla-
tion and methylation that is disrupted in cerebral ischemia
depends, in part, on maintenance of the balance of histone
H2A andH2Bmono-ubiquitylation that is mediated through
the actions of UCHL1 [86]. Moreover, statins have recently
been shown to act through inhibition of HDAC activ-
ity and associated enhancement of histone H3 acetylation
[87].

Transient focal ischemia in adult rat brain regulates the
expression of microRNAs predicted to target proteins known
to mediate in�ammation, transcription, neuroprotection,
receptor function, and ionic homeostasis in the brain. e
mRNA levels for proteins important tomicroRNA biogenesis
pathways, including Drosha, Dicer, the cofactor Pasha, and
the precursor microRNA transporter Exportin 5, were not
altered aer transient ischemia. However, transient ischemia
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repressed miR-145 expression, which resulted in increased
translation of its mRNA target, superoxide dismutase-2, in
post-ischemic adult rat brain. It is interesting to note that in
silico studies revealed eight microRNAs induced by transient
ischemia with complementarity to 877 gene promoters, sug-
gesting that microRNAs also regulate gene expression [88].
ere is also speci�c induction of miR-497 in mouse brain
aer transient ischemia, and in mouse N2A neuroblastoma
(N2A) cells aer oxygen-glucose deprivation [86]. Levels
of miR-497 correlated with oxygen-glucose deprivation-
induced effects on N2A cells: decreased miR-497 suppressed
cell death, whereas increased miR-497 increased neuronal
loss. As miR-497 directly binds to the 30-UTR of Bcl-2/-
w, the knockdown of cerebral miR-497 in mice enhanced
Bcl-2/-w protein levels in the ischemic region, attenuated
brain infarction, and improved neurological outcome aer
focal ischemia. ese studies show that miR-497 promotes
ischemic neuronal death by repressing expression of Bcl-2
and Bcl-w, supporting the role of apoptosis in the pathogen-
esis of ischemic brain injury [89, 90].

9. Molecular Studies of MicroRNAs in
Human Stroke

Whole genome expression microarrays can be used to study
gene expression in blood, which comes in part from leuko-
cytes, immature platelets, and red blood cells. Since these cells
are important in the pathogenesis of stroke, RNA provides
an index of these cellular responses to stroke. Human studies
show gene expression changes following ischemic stroke.
ese gene pro�les predicted the cause of stroke in 58% of
cryptogenic patients. New techniques to measure all coding
and noncoding RNAs along with alternatively spliced tran-
scripts will markedly advance molecular studies of human
stroke [91].

Platelets are crucial for the maintenance of haemostasis
and contribute to thrombosis and vessel occlusion that
underlies stroke and acute coronary syndromes. Although
platelets are anucleate, they do contain mRNAs and are
capable of protein synthesis [89]. Human platelets have been
shown to contain microRNAs and Dicer in Ago2 protein
complexes, as well as mRNA for the P2Y purinoceptor 12
that is involved in platelet aggregation, suggesting a role for
microRNAs in this system [92].

Mutations in mitochondrial DNA are responsible for a
spectrum of mitochondrial encephalomyopathies, including
mitochondrial encephalopathywith lactic acidosis and stroke
like episodes. Although the DNA sequences that harbor
these mutations generally do not code for proteins, many
of them encode transfer (tRNAs) and ribosomal RNAs
(rRNAs). e array of clinical symptoms seen in mito-
chondrial disorders highlights the functional importance
of nonprotein-coding RNAs (ncRNAs) such as tRNAs and
rRNAs that are transcribed from nonprotein-coding DNA
sequences. In fact, the pathogenesis of a spectrum of neu-
rodevelopmental, neurodegenerative, and neuropsychiatric
diseases is increasingly being associated with mutations of
ncRNAs [61].

10. MicroRNAs as Novel Biomarkers in
Brain Ischemia

ebrain is a conspicuous consumer of energy resources, and
a major consequence of cerebral ischemia is the disruption
of energy metabolism and exhaustion of adenosine triphos-
phate. Because RNA can rapidly be activated, modi�ed,
transported, and degraded, it serves as a highly �exible, high
�delity, information encoding, and functional molecule. e
ability of RNAmolecules to dynamically store, transform, and
transmit both “digital” and “analogue” information is a key
feature of RNA-based systems [61].

Studies support the potential for microRNAs as novel
biomarkers for vascular injury and diseases. Expression
pro�ling of microRNAs in ischemic rat brains revealed
signi�cant changes in several micro-RNAs, and some of
the microRNAs highly expressed in ischemic brain were
detected in blood samples [93]. Peripheral blood examined
in ischemic stroke patients revealed differential expression
of microRNAs implicated in endothelial cell and vascular
function, erythropoiesis, angiogenesis, neural function, and
hypoxia, and altered microRNAs were detectable even sev-
eral months aer the onset of stroke [94]. Rat models of
ischemia, brain haemorrhage, and kainate-induced seizures
also revealed regulated expression of microRNAs in hip-
pocampus and blood in each treatment group,many of which
changed >1.5-fold in both tissues [95].

Evidence also suggests that microRNAs serve as effec-
tors in neointimal lesion formation, and in angiogenesis in
normal and injured brain. e miR-17–92 cluster is highly
expressed in human endothelial cells and miR-92a, a compo-
nent of this cluster, targets several mRNAs for proangiogenic
proteins. Overexpression of miR-92a in endothelial cells
blocked angiogenesis, and systemic administration of an
miR-92a antagomir led to enhanced blood vessel growth and
functional recovery of damaged tissue in mouse models of
limb ischemia and myocardial infarction [93]. In a similar
vein, pro�ling of microRNAs in vascular walls aer balloon
injury revealed that miR-21 is overexpressed in injured vas-
cular tissue, and that miR-21 depletion inhibited formation
of neointimal lesions. Depletion of miR-21 decreased cell
proliferation and increased cell apoptosis, and targets of
miR-21 include the phosphatase and tensin homolog protein
(PTEN) and Bcl-2 [96].

11. The Era of EpigenomicMedicine

For treatment of stroke, RNA-based therapies and addi-
tional epigenetic strategies are extremely promising. Indeed,
approaches for gene silencing that use short regulatory
ncRNAs, including miRNAs and related short interfering
RNAs (RNA interference) have already been used to identify
new molecular targets for treating stroke, such as Bcl-
2 and 19-kDa interacting protein 3 [97] and carboxyter-
minalmodulator protein [98]; however, RNA interference-
based gene silencing for treating stroke has yet to advance
beyond preliminary studies. erapeutic approaches using
other customized oligonucleotides are also being developed
formodulation of endogenous RNA transcripts. For example,
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novel antisense oligonucleotides have now been constructed
with the capacity to repair and reprogram aberrant disease-
associated RNAs. e mechanism of action of these agents
includes alteration of pre mRNA processing (e.g., alternative
splicing) and promotion of trans-splicing, which results in
the creation of a composite mRNA from 2 separate pre-
mRNAs [99]. Although RNA-based approaches such as these
are still in their infancy, they offer the potential for dynamic
and highly selective reprogramming of gene expression and
function. Because of their unique properties, functional
RNA molecules may be ideal candidates for a number of
future therapeutic strategies. For example, through sequence-
speci�c digital interactions with DNA, RNA-based therapeu-
tic molecules may serve as guideposts for a certain genomic
sequence. rough analog interactions with proteins, RNAs
may also act as molecular beacons for recruitment of DNA
methylation and histone-modifying enzyme complexes to a
given genomic locus. us, multifunctional RNA molecules
with binding domains for DNA and for these enzyme com-
plexes may be used for targeting epigenetic modi�cations
to a single gene locus or to multiple gene loci that harbour
a shared genomic sequence. Furthermore, because RNA
molecules can interact with DNA, RNAs, proteins, and small
molecules, RNA-based therapeutics may also provide the
�exibility and speci�city necessary to selectively manipulate
intricate pro�les of gene transcription, posttranscriptional
RNA processing, and translation by targeting epigenetic
effectors such as nucleosome- and chromatin-remodeling
complexes, multiple ncRNAs (e.g., miRNAs and lncRNAs),
and RNA editing and DNA recoding enzymes. Although
these approaches have yet to be validated, the evolution of
CNS drug delivery methods and rapid advances in RNA-
based therapeutics, including the advent of RNA aptamers
(RNA molecules engineered to bind with high affinity to
speci�c molecular targets such as small molecules, pro-
teins, and nucleic acids), suggest that such strategies are
now possible [100]. Future therapies may also be designed
to target factors that serve as key modulators of CNS-
speci�c epigenetic events and thereby promote neural cell-
and tissue selective epigenetic reprogramming. For example,
these strategies may use novel agents that activate or inhibit
special AT-rich sequence-binding protein 2 (SATB2), the
repressor element-1 silencing transcription factor/neuron
restrictive silencing factor (REST/NRSF), and the corepres-
sor for element-1-silencing transcription factor (CoREST).
As an environmentally sensitive regulator of neuronal cell
fate decisions during development [101], SATB2 modulates
neuronal gene expression by promoting coordinate regula-
tion of multiple genes on different chromosomes involved
in functionally integrated gene networks. ese molecular
processes involve dynamic reorganization of the nuclear
architecture to allow a seamless link between transcriptional
and posttranscriptional processing events and associated
RNA quality control mechanisms. SATB2 is also associated
with a regulatory lncRNA that is coexpressed with SATB2
[102]. ese observations suggest that therapeutic agents
targeting SATB2or its associated lncRNA could lead to
dynamic reprogramming of neuronal gene expression and
even neural cell identityand patterns of neural connectivity

that is essential for neural regeneration. REST and CoREST
are critical epigenetic factors that mediate predominantly
site-speci�c gene repression, gene activation, and long-term
gene silencing for a large spectrum of genes involved in
neural development, homeostasis, and plasticity, including
but not limited to those that encode growth factors, axon
guidance cues, ion channels, neurotransmitter receptors,
synaptic vesicle proteins, components of the cytoskeleton,
and elements of the extracellular matrix [103].

In addition, REST and CoREST modulate the expres-
sion of several classes of ncRNAs, including miRNAs and
lncRNAs.esemolecules act as dynamicmodular platforms
for the recruitment of a broad array of epigenetic factors to
neural gene loci in which they orchestrate site-speci�c and
genome-wide chromatin remodelling. One of the molecular
mechanisms that underlie cell death aer transient global
ischemia is REST dependent repression of the GluR2 subunit
and 𝜇𝜇 opioid receptor 1 [104, 105]. REST also regulates the
expression of a signi�cant number of the miRNAs that are
differentially expressed aer cerebral ischemia [52]. ese
observations suggest that therapeutic targeting of REST and
CoREST may have signi�cant effects on highly integrated
epigenetic regulatory mechanisms that could promote repro-
gramming of neural cells to enhance neural regeneration
in stroke by recapitulating developmental events responsible
for establishing and remodelling neural cell identity and
neural network connectivity. Additional treatment strategies
may also be developed to �ne-tune epigenetic mechanisms
that mediate RNA modi�cations and trafficking within cells.
Among the more salient molecular targets may be regulatory
ncRNAs (e.g.,miRNAs and lncRNAs), RNAbinding proteins,
and cytoskeletal proteins (e.g., dyneins and kinesins) that
have prominent roles in a diverse array of processes that are
under epigenetic regulation, including alternative splicing;
editing; nuclear export; stabilization; temporal, spatial, and
activity-dependent localization; and translation of RNAs. For
example, rationally designed small molecules that bind to
miRNAs and modulate their activity are now under early
stage development, and these agents may speci�cally be
designed to target miRNAs that are deregulated in stroke
[106]. Furthermore, novel therapies may act by selectively
in�uencing the composition of complexes that carrymRNAs,
ncRNAs, proteins, and other functionally related factors.
ese structures, referred to as RNA operons,play key roles
in axodendritic transport and mediate local mRNA transla-
tion and synaptic plasticity [107]. Higher-order regulatory
mechanisms coordinate the dynamics of interrelated RNA
operons by modulating their individual components, the
kinetics of anterograde and retrograde axodendritic transport
and activity-dependent deployment and function of neuronal
RNAs. ese mechanisms are termed RNA regulons. In
postischemic neurons, vulnerability to cell death is associated
with pathological alterations in RNA operon and regulon
dynamics and stress responses that lead to translational [108].
ese observations imply that manipulating RNA posttran-
scriptional processingmay be useful in postischemic neurons
to promote cellular reprogramming and to selectively activate
responses that favorneuronal survival and the maintenance
of neural network integrity. Furthermore, RNA operons and
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regulons are implicated in bidirectional axodendritic trans-
port responsible for relaying RNA editing events from the
synapse to the nucleus for DNA recoding within postmitotic
neurons. Because these processes are implicated in multi-
generational inheritance, therapeutic interventions targeting
RNA editing events and associated recoding of the neuronal
genome may be implemented to directly alter stroke risk
even in future generations. Epigenetic mechanisms are also
involved in regulating cell-cell communication, including
the active transport of RNAs between adjacent nerve cells
through multiple signalling pathways, to more distant sites
within the same tissue, to other organ systems through
blood-borne routes, and even back to the germline; these
processes may represent novel targets for future therapeutic
initiatives [109]. Speci�c transmembrane proteins required
for the systemic spread of RNA interference are expressed in
the adult brain preferentially in areas associated with learn-
ing and memory. Moreover, microvesicles (i.e., exosomes)
containing mRNAs and ncRNAs are produced by neural
cells and secreted locally and into the peripheralcirculation
[110]. ese microvesicles may be responsible for cell-cell
communication through local and more long distance inter-
cellular RNA transfer because they express cell recognition
molecules on their surfaces for selective targeting and uptake
into recipient cells, in which mRNAs may be translated and
ncRNAs may exert their regulatory effects. Modulation of
microvesicle composition and transport pathways may serve
as novel targets for regulating anterograde and retrograde
signalling across synapses, reinforcing local and long-range
neural network connectivity, and signalling to other organ
systems (i.e., the immune system) that may play seminal
roles in the pathogenesis and evolution of stroke syndromes
and associated co-morbidities. As epigenetic processes begin
to reveal the many previously hidden layers of functional
information embedded within the genome, many future
strategies can be envisioned that exploit these processes to
develop novel therapies. In fact, the epigenome provides
multiple layers of contextual controls that are intricately
interlaced and potentially modi�able, and a single epige-
netic intervention may even have a cascade of effects on
many interrelated processes, including those that may be
important for circumventing the pathogenesis and sequelae
of stroke. For example, the DNA double helix itself has
the potential to form alternative structural conformations
with unique epigenetic properties that can be harnessed for
the treatment of stroke. Indeed, when the neuroprotective
cytokine, colony-stimulating factor 1, is activated by the
BRG1 chromatin-remodeling enzyme, a le-handed DNA
stereoisomer referred to as a Z-DNA structurecan be found
in the region actively being transcribed [111]. e formation
of Z-DNA stereoisomers can, in turn, modulate a range of
processes responsible for �ne-tuning transcriptional events,
regulating chromatin architecture, and promoting speci�c
forms of RNA editing [112]. us, understanding complex
epigenetic mechanisms and their complementary roles in
mediating CNS functions, both in health and in disease,
is important for developing next-generation technologies to
dynamically reprogram neural cells for treatment of complex
neurological disease states, including stroke [61].

12. Final Conclusions

Studies of epigenetic mechanisms in stroke are in their
infancy but offer great promise for better understanding of
stroke pathology and the potential viability of new strategies
for its treatment. Correspondingly, inhibitors of histone
modi�cation have been suggested to be neuroprotective in
animal models of cerebral ischemia and intracranial haemor-
rhage. In turn, miRNAs have been shown to play diverse roles
in neuronal, glial, and endothelia responses to stroke. In addi-
tion, miRNAs have been suggested to regulate the effects of
ischemia on aquaporin expression and function and in some
cases may be neuroprotective. miRNAsmay also help explain
gender-based differences in responses to cerebral ischemia.
RNA editing, a related epigenetic mechanism that is partly
responsible for generating the exquisite degrees of environ-
mental responsiveness and molecular diversity. In addition,
the development of future therapeutic strategies for locus-
speci�c and genome-wide regulation of genes and functional
gene networks through themodulation of RNA transcription,
posttranscriptional RNA processing (e.g., RNA modi�ca-
tions, quality control, intracellular trafficking, and local and
long distance intercellular transport), and RNA translation.
ese novel approaches for neural cell- and tissue-selective
reprogramming of epigenetic regulatory mechanisms are
likely to promote more effective neuroprotective and neural
regenerative responses for safeguarding and even restoring
central nervous system function. Data accumulated to date
strongly suggest that further studies of these mechanisms are
well justi�ed and that future publications resulting from these
studies are worthy of careful attention.
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