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Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS)
implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes
an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in
CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses
against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify
the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the
perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation
suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their
respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure
xenobiotic responses in bronchial tissue.

1. Introduction

Humans and other mammals are equipped with a sophisti-
cated machinery to handle carcinogens and other xenobiotic
compounds. In studies assessing the effects of cigarette
smoke (CS) exposure, a particular interest is given to the
metabolism of xenobiotics. The metabolism of xenobiotics
includes oxidative reactions by phase I enzymes that convert
lipophilic chemical compounds into their hydrophilic forms,
followed by phase II conjugation enzymes, and finally the
phase III membrane transporters [1]. The second and the last
play a role in the elimination of xenobiotic metabolites [1].
The most prominent phase I enzymes are cytochrome P450s
(also known as CYPs) that detoxify or activate xenobiotic
compounds [1]. The phase I enzymes are also known to be
responsible for the metabolism of compounds present in CS,
such as nicotine, benzene, polycyclic aromatic hydrocarbons
(PAHs), and tobacco-specific nitrosamines (TSNAs) [1, 2].

The induction of a specific CYP has been utilized for the
identification of a specific chemical exposure (e.g., induc-
tion of CYP1 family specifies the exposure to PAHs) [1,
2]. The roles of various CYPs on the metabolism of CS
toxicants have been discussed elsewhere in great detail [3–
7]. The metabolization of PAHs and TSNAs can lead to
the generation of carcinogenic metabolites that can interact
with genomic DNA (i.e., leading to the formation of DNA
adducts) [8]. Subsequently, unrepaired DNA adducts would
cause gene mutations that lead to the development of cancer
(carcinogenesis) [9, 10]. Furthermore, the phase II enzymes
(mainly the transferases) catalyze conjugation reactions, such
as glucuronidation, sulfation, methylation, and acetylation.
These reactions are aimed to detoxify xenobiotic compounds
[1, 5]. Moreover, the phase III enzymes refer to the active
membrane transporters responsible for the translocation of
xenobiotic metabolites across cellular membranes [1, 11]. The
initial member of this enzyme family is the ATP-binding
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cassette (ABC) family of drug transporters [1]. Nonetheless,
the effects of CS on the phase III response have been mainly
studied in in vitro systems [12, 13].

The expression of CYPs in a specific tissue may sug-
gest a tissue-specific mechanism in response to xenobiotics
[14]. Although the liver is known to be the main organ
responsible for the metabolism of xenobiotics, the liver is
mostly processing toxicants in blood circulation, which come
directly from the digestive tract [15]. Consequently, airborne
toxicants that come via breathing, including CS exposure,
bypass the initial liver detoxification pathway [15]. Therefore,
compared to the liver, the respiratory system is exposed to a
higher concentration of these toxicants [16]. Thus, the lung
and respiratory tract are relevant and valuable for the risk
assessment of CS toxicants. Many lung cell types, including
bronchial epithelial cells, Clara cells, type II pneumocytes,
and alveolar macrophages are capable in metabolizing xeno-
biotic compounds [14]. Normally, the levels of CYPs in the
lung are expressed at trace levels, but they are induced
upon CS exposure [14]. Studies have reported that bronchial
tissues of smokers exhibit higher levels of CYPs (e.g., CYP1A1
and CYP1B1) as compared to nonsmokers [16–20]. Smoking
cessation can reverse the induction of CYP expression upon
smoking [20].

CS generates a field of tissue injury throughout the
respiratory tract [21]. Tissue injury in the respiratory tract
of healthy smokers may precede the development of CS-
associated lung diseases [21]. Alteration of the genes encoding
the xenobiotic metabolism enzymes has been reported to
occur in a similar manner in the nasal as compared to
bronchial epithelia, thus supporting the tissue injury hypoth-
esis. For example, increases in expression of CYP1A1 and
CYP1B1were also reported in the nasal epithelium in addition
to bronchial epithelium of smokers [17, 18]. Sampling of nasal
epithelia by brushing/scraping is less invasive as compared
to lung biopsy, thus, providing a better opportunity to
screen for respiratory diseases and understand the possible
mechanism associated with CS exposure [17]. Nonetheless,
identifying gene expression profiles associated with xenobi-
otic metabolism remains challenging because the expression
of genes encoding the xenobiotic enzymes is highly variable
within an individual because it may change over time [15]. In
this regard, we propose that our system approaches using a
networkmodel could potentially be useful to characterize the
perturbation in xenobiotic metabolism upon CS exposure.

In a qualitativemanner, our networkmodel can be used to
gain insight into possible biological mechanisms pertaining
to xenobiotic metabolism that are associated to a given
exposure [22, 23]. The network model is built to capture
biological mechanisms of the xenobiotic metabolism based
on evidence from the scientific literature [24] using causal
relationships encoded in Biological Expression Language
(BEL) [25].TheBEL framework is an open-source technology
for managing, publishing, and utilizing a structured life-
science knowledge (http://www.openbel.org/) [25]. Previ-
ously, we have published the first version of the xenobiotic
metabolism network model in the context of the Cellular
Stress NetworkModel [26]. Furthermore, the network model
was modified to capture a more comprehensive xenobiotic

metabolism response [23] and is shown in Figure 1. The
biological networkmodel consists of backbone nodes that are
connected by causal edges that carry directional information
encoded in BEL. In this current xenobiotic metabolism net-
work model, the central backbone node is the transcriptional
activity of aryl hydrocarbon receptor (taof (AHR)). Aryl
hydrocarbon receptor (AHR) is a transcription factor known
to be activated by xenobiotic compounds. AHR regulates
the expression of several target genes (e.g., CYP1A1, CYP1B1,
among others). The network model uses transcriptomic
data as input that are used to computationally predict the
activity/functionality of the backbone nodes (Figure 1, inset)
[26–29].The blue ovals represent the activity of the backbone
nodes (i.e., the functional layer) and the green balls represent
the expression of genes (i.e., the transcriptional layer). The
expression of a given gene can be modulated by one or
more backbone nodes as depicted by black arrows. Our
network model illustrates the fundamental paradigm shift
from forward to backward reasoning. The former considers
that the gene transcript abundance is a direct surrogate entity
for its protein (or protein function). In contrast, our model
considers the latter, in which the changes in gene expression
are the consequence of the upstream biological processes
embedded in the backbone nodes (the functional layer).
Using the backward reasoning, we develop the network per-
turbation amplitude (NPA) algorithm that provides a quan-
tification of the backbone nodes [23, 25, 29], which is called
the “differential network backbone value” (illustrated in
Figure 1, inset). Our NPA approach (described in Section 2)
aims at scoring functional biological processes based on the
fold changes of the gene expression. Thus, the quantification
of the backbone nodes (i.e., the “differential network back-
bone values”) in this model reflects the biological mecha-
nisms pertaining to xenobiotic metabolism. The NPA algo-
rithm also integrates the network topology and directionality
of edges in the network [23, 25, 29]. Both of which are taken
into account for the computation of the NPA score of the
entire network along with its companion statistics (described
in Section 2).TheNPAscore of the entire network can be used
to evaluate the degree of perturbation between experimental
measures (e.g., exposed versus unexposed samples) [23, 29].
Thus, the differential network backbone values in this specific
network exemplify the activity of biological mechanisms per-
taining to xenobiotic metabolism.Moreover, using transcrip-
tomic data derived from exposed and unexposed samples, the
NPA algorithm provides a quantitative measurement of the
network perturbation affecting the xenobiotic metabolism.

Our NPA approach has been used previously to compare
the perturbation of the xenobiotic metabolism between
an in vivo dataset derived from bronchial epithelium of
smokers obtained by brushing and an in vitro dataset derived
from organotypic bronchial model exposed to CS [23]. In
that study, we demonstrated that at the level of backbone
nodes (i.e., the differential network backbone values), the
in vivo and in vitro samples were significantly correlated
[23]. Here, we further extended the use of the xenobiotic
metabolism network model by presenting some new use
cases to probe the comparability not only between the
network perturbation derived from in vivo and in vitro
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Figure 1: A network model representing the mechanism of xenobiotic metabolism and an illustration of network perturbation amplitude
(NPA) approach.

data but also from bronchial and its surrogate nasal tis-
sue.

We and others have recently reported that in vitro
organotypic human-derived tracheal/bronchial epithelium
pseudostratified models resemble human respiratory tract
epithelium at the morphological and molecular levels [30–
33]. Our group has previously reported using Gene Set
Enrichment Analysis; CS exposure affects similar biological
changes in bronchial epithelial cells obtained from smokers
as compared to the organotypic bronchial epithelium model
exposed to CS [31]. In this present study, we not only exam-
ined the in vitro organotypical bronchial model but also nasal
model. Both the nasal and bronchial epithelia organotypic
models (Figure 2) contain ciliated cells and express the airway
lineage markers, such as p63—a marker of basal epithelials
cells that is required for the normal development of epithelial
tissues [34]—and Muc5AC that is specifically produced by
airway mucous-secreting epithelial cells [35]. Specifically, in
this present work, using the NPA approach and the network
model, we compare the CS-induced perturbations of the
xenobiotic metabolism network in: (1) nasal versus bronchial
tissues in vivo, (2) nasal versus bronchial tissues in vitro, (3)
nasal and bronchial tissues in vivo versus in vitro.

2. Materials and Methods

2.1. Organotypic Tissue Culture Models. MucilAir-human
fibroblasts-bronchial and MucilAir-human fibroblast-nasal

full-thickness tissue models were generated from primary
human respiratory epithelial cells cocultured with primary
human airway fibroblasts. The MucilAir models were pur-
chased from Epithelix Sárl (Geneva, Switzerland) and main-
tained according to the manufacturer’s protocol. MucilAir
model is a ready-to-use 3D model of differentiated human
epithelium [36]. The organotypic tissues were primary
human epithelial cells isolated from healthy, nonsmoking,
Caucasian donors that were reconstituted using fibroblasts.
Coculture of fibroblasts has been shown to contribute to the
growth and differentiation of epithelial cells in 3D cultures
[37]. The bronchial epithelial cells were obtained from one
particular donor, and the nasal epithelial cells were obtained
from another donor. Quality control assessments were per-
formed on both models (data not shown). The tissue models
were cultured at the air-liquid interface in 0.7mL media in
cell culture inserts (24-well format). The organotypic models
were maintained at 37∘C for 14 days at the air-liquid interface
with fresh medium replaced every 2 days.

2.2. Vitrocell Cigarette Smoke Exposure to the Respiratory
Organotypic Tissue Culture Models. After cell culture models
grown in culture for 2-3 days, the tissues (in triplicate)
were exposed at the air-liquid interface to 16% (vol/vol)
mainstream CS exposure (a total of 4 cigarettes, 3R4F) with
1 hour rest between each cigarette and 60% humidified air
in the Vitrocell systems (Waldkirch, Germany). The 60%
humidified air exposure was used as a control exposure.
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Organotypic bronchial epithelium model
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Figure 2: Organotypic bronchial (a) and nasal (b) models. The in vitro models contained ciliated cells shown in the apical layer of the
Hematoxylin and Eosin stained cells (left). The models were cocultured with fibroblasts that are important for the growth and differentiation
of epithelial cells (indicated by arrows). Staining of airway lineage markers: p63 and Muc5AC are shown (center and right).

The Total Particulate Matter (TPM) inside the exposure
chamber has been measured for each CS concentration (the
mean TPM deposition measured after each cigarette was
2842.4 ng/cm2± SEM = 570.7, 𝑁 = 24). The reference cig-
arette 3R4F was obtained from the University of Kentucky
(http://www.ca.uky.edu/refcig/) and smoked on the 30-port
carousel smoking machine (SM2000, Philip Morris, Int.)
according to theHealthCanada regimen [38]. After exposure,
the organotypic models were incubated with fresh culture
medium immediately (0 h after exposure). Additionally vari-
ous durations of postexposure were implemented (4, 24, and
48 h) before tissues were harvested for further analyses.

2.3. RNA and Microarray Hybridization. Exposed tissues
(𝑛 = 3) at 0, 4, 24, and 48 h postexposure time were
washed 3 times with ice-cold PBS and subsequently lysed
using Qiazol lysis reagent (miRNeasy Mini Kit, Qiagen)
and frozen at −80∘C for up to 1 week. The miRNeasy
Mini Kit was used for the extraction and purification of
mRNA. Total RNA quantity was measured using NanoDrop
ND1000 and qualitatively verified using an Agilent 2100
Bioanalyzer profile (A RIN number greater than 8). For the
mRNA analysis, total RNA (100 ng) was processed accord-
ing to the GeneChip HT 3󸀠 IVT Express User Manual
(Affymetrix). Genechip Human Genome U133 Plus 2 Arrays
were used for microarray hybridization. The dataset has
been submitted to Arrayexpress (Accession code = E-MTAB-
1721).

2.4.MicroarrayData Processing. Data processing and scoring
methods were implemented using the 𝑅 statistical environ-
ment version 2.14 [39]. Raw RNA expression data were ana-
lyzed using the affy and limma packages of the Bioconductor
suite ofmicroarray analysis tools (version 2.9) available in the
𝑅 statistical environment [40, 41]. Robust Multichip Average

(GCRMA) background correction and quantile normaliza-
tion were used to generate probe set expression values [42].
For each data set, an overall linearmodel was fitted to the data
for the specific contrasts of interest (e.g., the comparisons
of “treated” and “control” conditions) generating raw 𝑃
values for each probe set on the microarray, which were
further adjusted using the Benjamini-Hochberg procedure.
A blocking factor (the exposure plate) from the experiment
design was accounted in the model for data processing.

2.5. Network-Based Analysis. Leveraging the “cause-and-
effect” network models together with Network Perturbation
Amplitude (NPA) algorithms ([29, 43]), the fold changes
of gene expression were translated into differential network
backbone value for each backbone node in the network
(Figure 1). The “differential network backbone value” was the
result of a fitting procedure between the network model and
the gene expression fold changes, where the smoothest func-
tion (accounting for the sign of the causal edges) was derived
by further imposing a boundary condition on the backbone
nodes corresponding to the gene expression changes. Sta-
tistical correlations were computed for the differential net-
work backbone values and fold changes of gene expression,
including 𝑅2, Pearson correlation, and Spearman correlation,
along with the 𝑃 values. For a negative control analysis,
we computed a permutation test to assess if the correlation
obtained between the differential network backbone values
were solely due to the dimension reduction effect. Genes
underlying the network were randomly permuted 1000 times
for each comparison group to decorrelate the fold changes
of gene expression (the GSE16008 nasal versus bronchial
data were used in this example). Subsequently, correlations
between the backbone values were computed. This approach
leads to a 𝑃 value 0.002 two sided (see Supplementary
Figure 1 in the Supplementary Material available online at
http://dx.doi.org/10.1155/2013/512086).

http://www.ca.uky.edu/refcig/
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The differential network backbone values were in turn
summarized into a quantitative measure of NPA score for the
entire network. The NPA is computed as a (semi-)Sobolev-
type norm on the signed directed graph underlying the
network (𝑁), (which can be expressed as a quadratic form).
In summary, the NPA algorithm considers two main input
components. First the “cause-and-effect” network model
describing the mechanism and second, the gene expression
dataset from a well-designed experiment.

In addition to the confidence intervals of the NPA
scores, which account for the experimental error (e.g., the
biological variation between samples in an experimental
group), companion statistics were derived to describe the
specificity of the NPA score to the biology described in the
network. BecauseNPA is a quadratic formof the fold changes,
its variance can be computed based on the fold-change
estimated variances. A confidence interval is subsequently
derived using the central limit theorem. Two permutation
tests were implemented [43], whereby first, to assesses if
the results were specific to the underlying evidence (i.e.,
gene fold-changes) in the model, leading to a permutation 𝑃
value (denoted by ∗𝑂 in the figures when 𝑃-value < 0.05).
Second, to assess whether the “cause-and-effect” layer of the
network significantly contributed to the amplitude of the
network perturbation (denoted by 𝐾∗ in the figures when 𝑃
value < 0.05). The network was considered to be specifically
perturbed if both 𝑃 values mentioned before were <0.05, and
the perturbation was called significant when the confidence
interval was greater than 0.

2.6. Cytochrome Activity Assay. We measured the activity
of CYP1A1 and CYP1B1 using nonlytic P450-Glo assays
(CYP1A1 assay cat number V8752; CYP1B1 assay cat number
V8762; Promega) based on luminescence at the 48 h after
exposure on the human organotypic nasal and bronchial
models. The assay was performed according to the manufac-
turer’s recommendations. Briefly, both nasal and bronchial
epithelia models were incubated in medium with lumino-
genic CYP-Glo substrate, such as luciferin-CEE for 3 h
(CYP1A1 and CYP1B1), to produce a luciferin product that
can be quantified in the supernatant by a light-generating
reaction upon the addition of luciferin detection reagent.

3. Results and Discussion

3.1. Comparison between Xenobiotic Metabolism Responses in
Bronchial and Nasal Epithelia In Vivo upon CS Exposure.
Another group has reported that alterations of xenobiotic
metabolism in the bronchial epithelium obtained from
human donors are similar to those in the nasal epithelium
[21]. This observation supports the field of tissue injury
hypothesis, in which changes in the respiratory tract of
smokers precede the development of CS-associated lung
diseases [21]. To further examine this hypothesis, we used the
NPA approach and the xenobiotic networkmodel to compare
the differential network backbone values derived from the
bronchial and nasal samples in the in vivo dataset GSE16008
(smokers versus nonsmokers). This approach was taken to

compare the biological mechanisms associated to xenobiotic
metabolism that were perturbed by CS exposure in these two
tissues.

We have reported before that the xenobiotic metabolism
network model can capture the common perturbation from
several independent datasets [22, 23]. In this study, the
publicly available dataset (GSE16008) was used to compare
the xenobiotic responses in the human bronchial and nasal
epithelia upon CS exposure. The GSE16008 dataset contains
gene expression from nasal and bronchial epithelial cells
obtained from healthy current smokers and nonsmokers.The
bronchial epithelial cells were collected by bronchoscopy,
whereas the nasal epithelial cells were collected by brushing
the inferior turbinate [18]. Because we have not analyzed
GSE16008 before, we first probed the comparability of this
particular dataset to other publicly available datasets (i.e.,
GSE7895, GSE19667, and GSE14633). These datasets contain
gene expression of bronchial epithelial cells obtained by
bronchoscopy from smokers and nonsmokers (GSE7895,
[20]), (GSE19667, [44]), and (GSE14633, [45]). Figure 3 shows
the correlation of the differential network backbone values
in the xenobiotic metabolism network model (the model
is depicted in Figure 1) using the NPA approach between
GSE16008 and the aforementioned datasets.

Figure 4(a) shows that the differential network backbone
values were well correlated between the in vivo bronchial and
nasal brushing epithelia. Furthermore, we illustrated how the
backbone AHR was computed from the gene expression data
(Figure 4(a), inset). Figure 4(a) shows a correlation of the dif-
ferential network backbone values derived from the bronchial
and nasal samples in the in vivo dataset GSE16008 (smokers
versus nonsmokers) computed using the NPA approach in
the xenobiotic metabolism network model. Each data point
represents a backbone node in the xenobiotic networkmodel.
Representative node labels are shown. The blue line is the
linear regression line computed by least squares fit with
significant 𝑃 value < 0.05. The 95%-confidence intervals of
the differential backbone values are shown for the two per-
turbations (axes). The differential network backbone values
generated from the in vivo bronchial data were in general
greater than those from the in vivo nasal data (inferred from
the regression line), with the exception of aryl hydrocarbon
receptor (AHR) (Figure 4(a)).

Figure 4(b) captures the differential network backbone
values in the xenobioticmetabolismnetworkmodel using the
in vivo bronchial (left) and nasal (right) data. The different
colors reflect the quantification of the backbone nodes (i.e.,
the “differential network backbone values”) derived from the
NPA algorithm that demonstrate the biological mechanism
pertaining to xenobiotic metabolism. The values less than
0 indicate downregulation of the backbone node activity;
whereas, the values more than 0 indicate upregulation of
the backbone node activity. ∗𝑃 values < 0.05. Furthermore,
the nature of the network perturbation, which was reflected
on the differential network backbone values, was similar
between the bronchial and nasal epithelia. For example,
cigarette smoking was associated with decreased activation of
the aryl hydrocarbon receptor repressor (AHRR) in both the
bronchial and nasal samples (Figure 4(b)). AHRR is known
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Figure 3: Comparability of GSE16008 dataset to other publicly available datasets. Correlations among the differential network backbone
values from different human datasets in the xenobiotic metabolism network were shown. The human datasets comprise smoker versus
nonsmoker data. Each data point represents a backbone node in the network. The 95%-confidence intervals of the differential network
backbone values are shown for the two perturbations (axes). Blue lines show the linear regression lines computed by least squares fit. All
the regression models were significant (𝑃 value < 0.05). Insets illustrate the correlation of the fold change of gene expressions.

to inhibit the binding of AHR to xenobiotic-responsive
elements (XRE), thus, suppressing the transcription of AHR-
dependent genes, including CYP1A1, CYP1A2, and CYP1B1
[46]. Consistently, we observed the upregulated differential
network backbone values for these aforementioned CYPs
(Figure 4(b)). Despite the expression of AHR falls farther
away from the regression line (Figure 4(a) as mentioned
before); interestingly, the differential network backbone val-
ues of the AHR node were similar between the bronchial and
nasal, indicating that the activity of AHR upon CS exposure
was increased to the same extend in both bronchial and
nasal (Figures 4(a) and 4(b)). This result supports the notion
that AHR plays an important role in the activation of CS
toxicants not only in the lower respiratory tract but also
in the upper respiratory tract. Studies have indicated that
AHR is a promiscuous receptor that is capable in binding to
diverse chemicals, leading to their activations [1]. In regard to
smoking, this observation further supports that CS exposure
generates a field of tissue injury throughout the respiratory
tract [21].

Figure 4(c) shows the bar plot of the NPA scores for the
entire networks along with their companion statistics along
with their companion statistics ∗𝑂 and 𝐾∗ as described
in Section 2 (𝑃 values < 0.05). These significant statistics
suggest that both in vivonasal and bronchial samples from the
dataset significantly demonstrate the biological mechanisms
represented in the xenobiotic metabolism network model
(described in Section 2). These results suggest that the nasal
as a surrogate tissue of the bronchial epithelium elicits similar
xenobiotic responses uponCS exposure, whichwere reflected
by the similar changes of the differential network backbone
values in the xenobiotic metabolism network model. This
result also supports the overall CS exposure-related impact
on the tissues lining the respiratory tract [21].

Moreover, unlike the correlation at the backbone levels
(i.e., functional layer) (Figure 4(a)), a correlation between
the gene expression generated from the dataset GSE16008
(i.e., transcriptional layer) was not observed (Figure 4(d)).
These results indicate that the utilization of our NPA
approach using the network model, which comprised these
two layers (i.e., functional and transcriptional layers), could
facilitate a high-resolution comparison of high-throughput
transcriptomic data and to understand the biological insight
ingrained in the data.

3.2. Comparison between Xenobiotic Metabolism Responses
in Organotypic Bronchial and Nasal In Vitro Models upon
CS Exposure. We further determined whether the same
information could be observed in vitro. Development of a
reliable in vitro system that mimics the in vivo condition has
been challenging. Recently, organotypic culture models of
human cells have been developed and utilized to understand
biological processes [30–33, 47]. In this present study, we
compared the network perturbations that occurred in in vitro
organotypic bronchial and nasal epithelia models that were
exposed to whole CS (see Section 2). The gene expression
from these tissue models was measured in cells that were
immediately harvested after the last exposure (0 h after
exposure). Figure 5(a) shows that the differential network
backbone values were well correlated between the in vitro
bronchial and nasal epithelia. This comparability at the
functional layer was in agreement with what was observed
using the data generated from the in vivo dataset. Each data
point represents a backbone node in the xenobiotic network
model. The blue line is the linear regression line computed
by least squares fit with significant 𝑃 value < 0.05. The 95%-
confidence intervals of the differential backbone values are
shown for the two perturbations (axes). Figure 5(a), inset
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and nasal datasets in the xenobiotic metabolism network model.



8 BioMed Research International

1.0

0.8

0.6

0.4

0.2

0.0

0.08

0.06

0.04

0.02

0.00

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0

0.0 0.5 1.0

Correlations of differential network backbone values (in vitro)

Correlations of differential network backbone values (in vitro)

Pearson cor. = 0.98

Spearman cor. = 0.94

P value = 1.52e − 26

∗O ∗OK∗ K∗

NPA scores in the
xenobiotic metabolism network

NPA scores in the
xenobiotic metabolism network

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

∗ ∗

∗O

∗O ∗O

∗O

∗O ∗OK∗

K∗
K∗K∗

K∗
K∗
∗

∗

∗
∗ ∗

∗

Organotypic bronchial
epithelium
Organotypic nasal
epithelium

Organotypic bronchial
epithelium
Organotypic nasal
epithelium

Ra
tio

Organotypic bronchial epithelium
Organotypic nasal epithelium

Organotypic bronchial epithelium

organotypic bronchial epithelium

Organotypic nasal epithelium

organotypic nasal epithelium

organotypic bronchial epithelium organotypic nasal epithelium

In vitro

In
 v

itr
o

Ra
tio

Organotypic nasal (0h after exposure versus air exposed)

 (0h after exposure versus air exposed)

 (0h after exposure versus air exposed)

IPA

(a)

(b)

(c)

(d)

xenobiotic metabolism canonical pathway
0.25
0.20
0.15
0.10
0.05
0.00

4 24 48 4 24 48

After exposure (hours) After exposure (hours) 4 24 48

After exposure (hours)Aryl hydrocarbon
receptor signaling

Xenobiotic metabolism
signaling

O
rg

an
ot

yp
ic

 b
ro

nc
hi

al
(0

h 
aft

er
 ex

po
su

re
 v

er
su

s a
ir 

ex
po

se
d)

−0.2

In
 v

itr
o 

or
ga

no
ty

pi
c b

ro
nc

hi
al

4h after exposure 24h after exposure 48h after exposure

In vitro organotypic nasal

Gene fold-
changes

Gene fold-
changes

Gene fold-
changes

0.4

0.3

0.2

0.1

0.0

−0.1

0.3

0.2

0.1

0.0

−0.1
−0.2

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8

Gene fold-changes

Pearson cor. = 0.78

Spearman cor. = 0.48

IPA xenobiotic metabolism canonical pathway

IPA xenobiotic metabolism signaling (partial pathway shown)

IPA aryl hydrocarbon receptor signaling (partial pathway shown)

Aryl hydrocarbon
receptor signaling

Xenobiotical metabolism
signaling

dataset

Overlay: Overlay:

dataset

dataset

Overlay: Overlay:

dataset

AHR ligand

ERK
1/2 JNK

NCOA2

Rb
BRG1

TRIP230

TRAP220

SRC-1

NEDD8

AHR ARNT

DRE/XRE

p27Kip1 p21Cip1 p21Cip1BAX Fas FasLCYP1A1
CYP1A2

CYP1B1ALDH NQOGST UGT NRF2 AHRR

G1/S arrest
cell cycle inhibition

G1/S arrest
cell cycle inhibition

Apoptosis Estrogen metabolism

Modulation of
estrogen receptor signaling

Reactive metabolites Detoxification of xenobiotics
Metabolism of xenobiotics

Phase I metabolizing
enzymes

Phase II metabolizing
enzymes phase II metabolizing

enzymes

ARE pathway

Tumorigenesis Cell survival

p300
NF-1

RIP140
NCOA7

SMRT

NR0B2

NR2F1
NCOA3

Estrogen
ESR1

AHR ligand

ERK
1/2 JNK

NCOA2

Rb
BRG1

TRIP230

TRAP220

SRC-1

NEDD8

AHR ARNT

DRE/XRE

BAX Fas FasLCYP1A1
CYP1A2

CYP1B1ALDH NQOGST UGT NRF2 AHRR

Apoptosis Estrogen metabolism

Modulation of
estrogen receptor signaling

Reactive metabolites Detoxification of xenobiotics
Metabolism of xenobiotics

Phase I metabolizing
enzymes

Phase II metabolizing
enzymes phase II metabolizing

enzymes

ARE pathway

Tumorigenesis Cell survival

p300
NF-1

RIP140
NCOA7

SMRT

NR0B2

NR2F1
NCOA3

Estrogen
ESR1

HDAC4
HDAC5

ANKRA2 AHRR ARNT

DRE/XRE

DRE/XRE

AHRR-ARNT
repressor complex

SUMO1

AHRR

AHRR

ARNT

ARNT

AHR ligand

AHR ligand

AHR

AHR

CYP1A1
CYP1A2

CYP1B1
ALDH

NQO UGT GST

HDAC4
HDAC5

ANKRA2 AHRR ARNT

DRE/XRE

DRE/XRE

AHRR-ARNT
repressor complex

AHRR

AHRR

ARNT

ARNT

AHR ligand

AHR ligand

AHR

AHR

CYP1A1
CYP1A2

CYP1B1
ALDH

NQO UGT GST

R
2
= 0.96

p27Kip1

AHR ligand AHR ligand

Figure 5: Comparison between xenobiotic metabolism responses in organotypic bronchial and nasal epithelia in vitro models upon CS
exposure.

illustrates the correlation between the fold changes of the
gene expression (correlation at the transcriptional layer).The
NPA scores (bar plot) indicating the statistical significance
of the perturbation of the xenobiotic metabolism network
model in response to smoking are shown: ∗indicates signif-
icance of NPA scores of the entire network level generated
from the in vitro bronchial and nasal datasets as well as their
companion statistics ∗𝑂 and 𝐾∗ as described in Section 2
(𝑃 values < 0.05). The bar plot (Figure 5(a)) shows the NPA
scores for the entire networks along with their companion
statistics. These significant statistics suggest that both in
vitro nasal and bronchial samples from the dataset signifi-
cantly demonstrate the biological mechanisms represented
in the xenobiotic metabolism network model (described in
Section 2).

Furthermore, to investigate how our analysis using the
xenobioticmetabolismnetworkmodel was comparable to the
commercially available data analysis and interpretation tool
(Ingenuity Pathways Analysis (IPA)), the same datasets gen-
erated from the in vitro organotypic samples were uploaded
to IPA. Within the IPA’s knowledge base, the “Xenobiotic
Metabolism” canonical pathways are comprised of two sig-
naling pathways: the “Aryl Hydrocarbon Receptor Signal-
ing” and the “Xenobiotic Metabolism Signaling.” Figure 5(b)
shows significant associations between the datasets and the
two IPA’s canonical pathways within the category of “Xeno-
biotic Metabolism” (𝑃 value < 0.05). The 𝑦-axis displays
the ratio calculated as follows: the number of genes in the
associated pathways that meet cutoff criteria, divided by the
total number of genes that make up that specific pathway.
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The taller the bars, the more genes were associated with the
pathway. Representative pathways overlayed with the two
datasets generated from the organotypic bronchial and nasal
models are shown. Interestingly, the bronchial and nasal data
were associated to the two signaling pathways in a similar
manner, which was indicated by the similarity of the ratios
(Figure 5(b), top). This observation was in agreement with
our approach using the NPA analyses and the networkmodel
(Figure 5(a)).

Additionally, we examined the effects of various postex-
posure time points to assess the ability of cells to recover
fromCS exposure.We hypothesized that the longer the dura-
tion of postexposure, the less perturbed the xenobiotic
metabolism would be. The differential network backbone
values continue to be correlated between the bronchial
and nasal at the 4, 24, and 48 h after exposure time
(Figure 5(c)). Nevertheless, the correlations were reduced as
the duration of the postexposure increased (Figure 5(c) and
Table 1). Each data point represents a backbone node in
the xenobiotic network model as indicated with the node
labels. The blue line is the linear regression line computed
by least squares fit with significant 𝑃 value < 0.05. The
95%-confidence intervals of the differential backbone values
are shown for the two perturbations (axes). Figure 5(c),
inset, illustrates the correlation between the fold changes
of the gene expression (correlation at the transcriptional
layer, Table 1). The reduced responses that were inferred
from the reduced correlations between the differential net-
work backbone values, were also reflected from the analysis
using IPA, in which decreased ratios (i.e., the association
between the datasets with the two pathways) were observed
in the datasets at the later time point of postexposure
(Figure 5(d), left bar plot).The results from IPA analysis were
also in agreement to those reflected by the NPA scores for
the entire network (Figure 5(d), right bar plot), in which the
later time point of postexposure had reduced scores. Taken
together, this data suggests that the shorter the postexposure
time, the more perturbed the xenobiotic metabolism in both
bronchial and nasal tissues. This observation is consistent
with a previous study in which a transient induction of phase
I xenobiotic metabolism enzymes (e.g., cyp1A1 and aldh3A1)
is observed in CS-exposed lung tissues of Sprague-Dawley
rats [48]. Furthermore, this could offer a likely explanation
for why we observed a better correlation of the differential
network backbone values between the in vitro organotypic
bronchial and nasal models with shorter postexposure time
(Figure 5(c) and Table 1).

3.3. In Vivo and In Vitro Comparison between Xenobiotic
Metabolism Responses in Bronchial and Nasal Epithelia upon
CS Exposure. We further examined whether in vitro organ-
otypic models could reveal a similar xenobiotic response
uponCS exposure as compared to that observed in vivo.Thus,
we determined whether the differential network backbone
values generated from the in vivo datasets were correlated to
those from the in vivo. The NPA approach that quantifies the
changes at the backbone levels (i.e., the differential network
backbone values) could indicate the potential biological
mechanisms that were perturbed upon exposure to CS.

Therefore, whether similar biological responses occurred in
in vivo situation were comparable to those in in vitromodels
can be inferred from the correlation between the differential
network backbone values. Figures 6(a) and 6(b) show the
correlations, in bronchial and nasal samples, respectively,
between the differential network backbone values generated
from in vivo dataset to those generated from in vitromodels.
This observation is in agreement with our other publication,
in which a similar biological alteration was observed in in
vivo bronchial epithelial cells as compared to an in vitro
organotypic bronchial epithelial model (EpiAirway system,
MatTeK Corporation) [31]. Nonetheless, this present study
further suggests that the in vitro organotypic nasal model
would also be useful to investigate the mechanisms occur in
the in vivo nasal situation upon smoking.

Moreover, we compared the data derived from organ-
otypic in vitromodels at various postexposure time to the in
vivo datasets at the backbone nodes level in the xenobiotic
metabolism network model; the xenobiotic responses were
better correlated (Table 2) in the bronchial (Figure 6(a))
as compared to the nasal samples (Figure 6(b)). The dif-
ferential network backbone values were derived from the
bronchial and nasal data in the in vivo dataset GSE16008
(smokers versus nonsmokers) and from the data generated
from CS-exposed in vitro organotypic bronchial and nasal
models computed using the NPA approach in the xenobiotic
metabolism network model. Each data point represents a
backbone node in the xenobiotic network model. The blue
line is the linear regression line computed by least squares fit
with significant 𝑃 value < 0.05.The 95%-confidence intervals
of the differential backbone values are shown for the two
perturbations (axes). The insets illustrate the correlations
between the fold-changes of the gene expression (corre-
lation at the transcriptional layer). Zhang and colleagues
have previously reported that the effect of smoking is less
pronounced in the nasal epithelium when compared to
bronchial epithelium obtained from smokers [18], which
could explain why the correlation observed in the nasal
samples was weaker. Moreover, to better assess the in vitro
organotypic nasal model, we tested the effects of CS exposure
on the enzymatic activity of CYP1A1 and CYP1B1. We
found that CS exposure significantly increased the activity
of both CYP1A1 and CYP1B1 measured in the nasal epithe-
lium in vitro model (Figure 6(c)), supporting the potential
of the nasal model to be utilized for toxicity assessment
against airborne exposure.The CYP activities (luminescence,
RLU) of the CS-exposed nasal tissues as compared to the
air-exposed tissues were measured at 48 h after exposure
(see Section 2). Shown are CYP1A1 and CYP1B1 activities
obtained from triplicate measurements (𝑁 = 3), ∗𝑃 <
0.05 as compared to the air-exposed tissue. Additionally,
although the xenobiotic responses generated from the in
vitro organotypic models at the later time of postexposure
were reduced (Figure 5(d) and Table 2), the differential net-
work backbone values remained well correlated as compared
to those generated from the in vivo datasets (Figure 6(d)
and Table 2). However, the in vivo/in vitro correlations of
the gene expression (Figure 6(d), insets and Table 2) were
weak.
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Figure 6: Correlations between the differential network backbone values in response to CS exposure generated from in vivo datasets and in
vitro organotypic models in the xenobiotic metabolism network model.

4. Conclusion

Here we show that our quantitative systems-level approach
utilizing the xenobiotic metabolism network model allowed
a robust comparison derived from transcriptional data. This
approach could provide a mechanistic insight that occurred
in response to CS exposure, which is reflected from the
differential network backbone values. The quantification of

the xenobiotic network model perturbation using the NPA
approach not only could compare the responses observed
from datasets generated from in vivo samples and in vitro
organotypic models but also from bronchial and its surrogate
nasal epithelia. Furthermore, our results suggested that the
organotypic nasal in vitro model could be useful as a risk
assessment tool in understanding biological mechanisms
leading to lung diseases associated to airborne exposure. Our



BioMed Research International 11

Table 1: Statistical correlation between the bronchial versus nasal in vitro data.

Between the backbone values Between the fold change of genes expression

Comparison group Pearson
correlation

Spearman
correlation

Pearson
correlation

Spearman
correlation

Bronchial in vitro versus nasal in vitro (4 h after exposure) 0.97 0.95 0.72 0.55
Bronchial in vitro versus nasal in vitro (24 h after exposure) 0.93 0.94 0.62 0.49
Bronchial in vitro versus nasal in vitro (48 h after exposure) 0.77 0.86 0.39 0.37
P values < 0.05 for all comparisons.

Table 2: Statistical correlation between the in vivo versus in vitro data at various postexposure times.

Between the backbone values Between the fold change of genes expression

Comparison group Pearson
correlation

Spearman
correlation

Pearson
Correlation

Spearman
Correlation

Bronchial
In vivo versus 4 h after exposure in vitro 0.73 0.77 0.25 0.13
In vivo versus 24 h after exposure in vitro 0.81 0.83 0.37 0.29
In vivo versus 48 h after exposure in vitro 0.77 0.80 0.35 0.30
Nasal
In vivo versus 4 h after exposure in vitro 0.57 0.76 0.35 0.27
In vivo versus 24 h after exposure in vitro 0.71 0.74 0.31 0.09
In vivo versus 48 h after exposure in vitro 0.65 0.73 0.26 0.14
P values < 0.05 for all comparisons.

results are consistent with an overall CS exposure-related
impact on the tissues lining the respiratory tract, and thus
supporting the field of tissue injury theory [21].

Studies have reported that CS exposure is associated
with increased expression of genes encoding the xenobiotic
metabolism enzymes, such as CYP1A1 and CYP1B1 in both
the nasal [17, 18] and buccal epithelia [49, 50]. Similar to
the nasal epithelium, buccal epithelium has been postulated
as a suitable surrogate tissue for the lung, which could be
useful to determine disease risk biomarkers [51]. Because
collections of both nasal and buccal epithelial samples are
relatively simpler and less invasive as compared to the collec-
tion of bronchial epithelium, these tissues become attractive
surrogate tissues for toxicology assessment in response to CS
exposure. Sampling of the lung is usually done by brushing
or biopsy [52]. However, these methods are invasive, thus,
unfeasible for large clinical studies [51]. Additionally, the use
of in vitro organotypic models provides an attractive tool
for toxicology assessments of specific airborne exposures. In
this study, we also demonstrated that the perturbation of the
xenobiotic metabolism in the CS-exposed organotypic nasal
in vitro epithelia models resembled that in the nasal epithelial
cells obtained by brushing from smoker donors. Nonethe-
less, whether similar results would be observed in organ-
otypic model derived from different donors is unknown.
Donor-dependent variability is expected [36] and should
be addressed in future studies. Furthermore, future studies
should also investigate whether other bronchial surrogate
tissues (e.g., buccal epithelial in vivo samples and organotypic
in vitro models) could be utilized to assess and compare
the perturbation in the xenobiotic metabolism upon CS

exposure. Such data would further highlight the relevance
and practicality of in vitro organotypic models for toxicology
assessment.

Our present work provided a useful example for the
utilization of transcriptomic data for impact assessment that
focuses on xenobiotic responses against airborne exposure.
However, theories have been developed supporting how the
entire respiratory tract exhibits genomic, epigenomic (e.g.,
methylation of genes encoding the xenobiotic metabolizing
enzymes), transcriptomic, and proteomic modifications [17,
53, 54]. Additionally, CS exposure has often been associated
with adduct formation not only in the lung tissue but
also in the blood circulation [55–62]. Figure 7 depicts how
transcriptomic data could be leveraged into various systems
approaches that implement the larger spectrum of “omics”
technologies. Although this present study described the
utilization of transcriptomic data, further information from
genome and its derivatives, including proteins, metabolites,
and adducts would be useful for the overall assessment of CS
exposure on the metabolism of xenobiotic.
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