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ABSTRACT Streptococcus pseudopneumoniae is a close relative of the major human
pathogen S. pneumoniae. It is increasingly associated with lower-respiratory-tract in-
fections (LRTI) and a high prevalence of antimicrobial resistance (AMR). S. pseudo-
pneumoniae is difficult to identify using traditional typing methods due to similari-
ties with S. pneumoniae and other members of the mitis group (SMG). Using whole-
genome sequencing of LRTI isolates and a comparative genomic approach, we
found that a large number of pneumococcal virulence and colonization genes are
present in the core S. pseudopneumoniae genome. We also reveal an impressive
number of novel surface-exposed proteins encoded by the genome of this species.
In addition, we propose a new and entirely specific molecular marker useful for the
identification of S. pseudopneumoniae. Phylogenetic analyses of S. pseudopneumoniae
show that specific clades are associated with allelic variants of core proteins. Resis-
tance to tetracycline and macrolides, the two most common types of resistance,
were found to be encoded by Tn916-like integrating conjugative elements and
Mega-2. Overall, we found a tight association of genotypic determinants of AMR and
phenotypic AMR with a specific lineage of S. pseudopneumoniae. Taken together, our
results shed light on the distribution in S. pseudopneumoniae of genes known to be
important during invasive disease and colonization and provide insight into features
that could contribute to virulence, colonization, and adaptation.

IMPORTANCE S. pseudopneumoniae is an overlooked pathogen emerging as the
causative agent of lower-respiratory-tract infections and associated with chronic ob-
structive pulmonary disease (COPD) and exacerbation of COPD. However, much re-
mains unknown on its clinical importance and epidemiology, mainly due to the lack
of specific markers to distinguish it from S. pneumoniae. Here, we provide a new
molecular marker entirely specific for S. pseudopneumoniae and offer a comprehen-
sive view of the virulence and colonization genes found in this species. Finally, our
results pave the way for further studies aiming at understanding the pathogenesis
and epidemiology of S. pseudopneumoniae.

KEYWORDS infectious disease, Streptococcus pseudopneumoniae, Streptococcus
pneumoniae, bacterial diagnostics, comparative genomics

Streptococcus pseudopneumoniae is a close relative of the human pathogen S.
pneumoniae, and it was first described in 2004 (1). It belongs to the mitis group

along with 13 other species, including some of the most common colonizers of the oral
cavity, such as S. mitis (2). An increasing number of reports indicate that S. pseudo-
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pneumoniae is a potential pathogen, usually associated with underlying medical con-
ditions (3–5). It can be isolated from multiple invasive and noninvasive sites (6–9) and
was reported as the probable causative agent in fatal septicemia cases (5). Experiments
using multiple S. pseudopneumoniae strains in a mouse peritonitis/sepsis model have
further underlined its pathogenic potential (10). S. pseudopneumoniae is also frequently
associated with high rates of antimicrobial resistance (AMR), in particular to penicillin,
macrolides, co-trimoxazole, and tetracycline (6–8).

Despite its emerging role as a pathogen, relatively little is known about the
epidemiology, pathogenic potential, and genetic features of S. pseudopneumoniae. This
problem is partially attributable to difficulties in distinguishing it from S. pneumoniae
and S. mitis, highlighted by the incorrect identification of 50% of the publicly available
genome sequences of S. pseudopneumoniae (11, 12). It is likely that infections due to S.
pseudopneumoniae are overlooked or misdiagnosed due to lack of reliable measures to
identify this species. S. pseudopneumoniae was originally described as optochin resis-
tant if grown in the presence of 5% CO2 but susceptible in ambient atmosphere, bile
insoluble, and nonencapsulated (1), but exceptions to these phenotypes were later
reported (4, 5, 7, 13). Molecular methods, such as PCR amplification of specific markers,
mostly aim at identifying pneumococci and, thus, have limited value for the positive
identification of S. pseudopneumoniae. The only molecular marker reported so far for
the identification of S. pseudopneumoniae, SPS0002, is also found in a subset of S.
pneumoniae strains (12). Understanding the clinical significance and epidemiology of S.
pseudopneumoniae requires more discriminative identification methods and a more
complete picture of its genetic diversity.

All S. pseudopneumoniae strains described to date lack a polysaccharide capsule,
which is considered the major virulence factor of S. pneumoniae due to its inhibitory
effect on complement-mediated opsonophagocytosis. In addition to the capsule, a
plethora of other factors, and especially surface-exposed proteins, have been shown to
significantly contribute to pneumococcal disease and colonization (reviewed in refer-
ences 14 and 15), and some of these features have been identified in S. pseudopneu-
moniae (3, 9, 14, 16). Despite the lack of a capsule, naturally nonencapsulated pneu-
mococci can cause disease, and the surface protein PspK, expressed by a subgroup of
nonencapsulated pneumococci, promotes adherence to epithelial cells and mouse
nasopharyngeal colonization to levels comparable with those of encapsulated pneu-
mococci (17, 18). A comprehensive overview of the distribution of known and poten-
tially new genes that could promote virulence and colonization in S. pseudopneumoniae
is, however, still lacking.

In this study, we performed an extensive comparative genomic analysis with the aim
of elucidating the molecular features that characterize S. pseudopneumoniae and
distinguish it from its close relative, S. pneumoniae. We show that a substantial number
of known pneumococcal virulence factors are conserved in S. pseudopneumoniae, and
we identify a vast number of novel surface-exposed proteins. Finally, our results
establish a tight association of AMR determinants with certain lineages and reveal the
composite scenario of genetic elements that characterize this species. Importantly, we
identified a genetic marker uniquely present in S. pseudopneumoniae that can allow the
identification of this overlooked species.

RESULTS
Identification of S. pseudopneumoniae genomes. Whole-genome sequencing

(WGS) followed by a phylogenetic analysis, including 147 genomes from various
streptococci of the mitis group (SMG) species, was performed to classify 24 isolates
collected from lower-respiratory-tract infections (LRTI) (19) that we suspected to be S.
pseudopneumoniae (n � 16) or S. mitis (n � 3) or for which no definitive classification
was possible to obtain using traditional typing methods and multilocus sequence
analysis (MLSA) (n � 5). Twenty-one of 24 LRTI isolates clustered within the S. pseudo-
pneumoniae clade (Fig. 1A). The 3 strains initially identified as S. mitis clustered within
the S. mitis clade and are not discussed further in this study. As previously reported (11,
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FIG 1 Phylogenetic and pangenome analysis of S. pseudopneumoniae. (A) Unrooted consensus parsimony phylogenetic tree based on all SNPs (1,230,968)
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nontypeable S. pneumoniae (gray). Background shading delineates clades of different species. The tree was built in kSNP and visualized in MEGA7 (51). (B)
Pangenome of S. pseudopneumoniae and S. pneumoniae showing the distribution of shared and unique COGs.
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12), 8 nontypeable S. pneumoniae NCBI genomes fell within the S. pseudopneumoniae
clade, along with only 15/38 publicly available genomes currently classified as S.
pseudopneumoniae (Fig. 1A). Based on our phylogenetic analysis, a total of 44 se-
quenced genomes were considered S. pseudopneumoniae and further analyzed (see
Data Set S1 in the supplemental material). The pangenome of these 44 S. pseudopneu-
moniae genomes is composed of 3,447 clusters of orthologous genes (COGs), of which
44% are found in the core genome (�95% isolates) and 56% in the accessory genome.

A single locus, SPPN_RS10375, can be used to identify S. pseudopneumoniae.
We then aimed to identify COGs present in S. pseudopneumoniae but absent from S.
pneumoniae. We first defined the pangenome of these two species, using the 44 S.
pseudopneumoniae genomes and 39 completed and fully annotated S. pneumoniae
NCBI genomes, and found that 2,186/4,548 COGs (48%) were shared by both species
(Fig. 1B). We identified 30 core COGs, present in each of the 44 S. pseudopneumoniae
genomes, among the 1,236 COGs unique to S. pseudopneumoniae (Table S1). We then
assessed the presence of each of these 30 COGs in other bacterial species by BLASTn
analysis against all NCBI genomes, including the 8,358 S. pneumoniae genomes depos-
ited at the time of the study. This revealed that only two COGs, represented by open
reading frames (ORFs) SPPN_RS10375 and SPPN_RS06420, were found exclusively in S.
pseudopneumoniae genomes. While SPPN_RS06420 has a G�C content challenging for
the design of PCR primers (average of 27.1%), further analysis of SPPN_RS10375, which
encodes a hypothetical protein, and its surrounding intergenic regions in the 44
genomes indicated that this 627-bp locus is a suitable candidate for a molecular
marker. Eight clinical isolates not subjected to whole-genome sequencing and col-
lected during the same LRTI study (19) that were either impossible to identify (n � 4)
or suspected to be S. pseudopneumoniae (n � 4) were found to be positive by PCR for
SPPN_RS10375, indicating that they belong to the S. pseudopneumoniae species
(Fig. S1A). These strains were also positive for the recently published S. pseudopneu-
moniae marker SPS0002 (12) (Fig. S1B).

Among the 29 S. pseudopneumoniae LRTI isolates, 16 (55%) displayed the typical
optochin susceptibility and bile solubility phenotypes originally attributed to this
species (1) (Table 1). As previously described (7), the pneumococcus-specific markers
16S rRNA and spn9802 were positive in the majority of the isolates. Discrepancies
between the restriction fragment length polymorphism (RFLP) and PCR results used for
detecting the pneumococcal variant of the autolysin gene lytA were found to be due
to phage-encoded lytA genes similar enough to be identified by PCR as the pneumo-
coccal lytA but lacking the BsaAI restriction site used for RFLP analysis (20) (Fig. S1C).

TABLE 1 Phenotypic and genotypic characterization of S. pseudopneumoniae LRTI isolates

Parameter
No. (%) of strains
(n � 29)

Phenotypic markers
Optochin susceptibility

5% CO2 3 (10.3)
Ambient atmosphere 19a (65.5)
Bile solubility 1b (3.4)

Genotypic markers
PCR markers

Pneumococcal lytA 2 (6.9)
cpsA 0 (0.00)
spn9802 28 (96.5)
Pneumococcus-specific 16S rRNA 25 (86.2)

RFLP signatures
Pneumococcal/atypical lytA 0/29 (0.100)
ply-mly 5/24 (17.2/82.8)

aEight strains did not grow in ambient atmosphere. The 18/19 strains susceptible in ambient atmosphere
were resistant in CO2.

bTwo strains showed partial solubility.
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The pneumococcal variant of the cytotoxin pneumolysin gene ply was detected by
RFLP in three instances. However, this is due to the presence of the BsaAI restriction
used for RFLP in some nonpneumococcal variants of Ply (see below and Fig. S2).

Pneumococcal virulence and colonization genes are widely distributed in S.
pseudopneumoniae. To gain insight into genetic features that could promote adhe-
sion, virulence, and colonization, we investigated the presence of orthologues of 92
pneumococcal surface-exposed proteins, transcriptional regulators, and two-component
signal transducing systems (TCSs) for which the distribution among pneumococcal
genomes has been studied (21, 22). No orthologs were found in S. pseudopneumoniae
for 16/92 proteins, including the subunits of both pneumococcal pili (RrgABC and
PitAB), surface-exposed proteins PsrP and PspA, and the stand-alone regulators MgrA
and RlrA (Fig. 2A). Three of these sixteen proteins, HysA, PclA, and MgrA, are core S.
pneumoniae features (21). Other core S. pneumoniae proteins were represented in only
a very small subset of S. pseudopneumoniae strains, such as Eng (n � 1), PiaA (n � 1),
GlnQ (n � 3), and the histidine kinase (HK) and response regulator (RR) that constitute
TCS06 (n � 3). Of 61 surface-exposed proteins, 29 were found in the core S. pseudo-
pneumoniae genome, including major virulence factors such as pneumolysin (Ply),
NanA, and HtrA (Fig. 2A). The NanA variant found in S. pseudopneumoniae shares similar
domains and has good similarity with pneumococcal NanA (61.2%). However, it differs
strongly in its C-terminal region, where the LPxTG-anchoring domain normally found in
S. pneumoniae NanA is replaced with a choline-binding domain (CBD). The S. pseudo-
pneumoniae Ply proteins (sometimes referred to as Pply) are extremely well conserved
(99.1% pairwise identity). Interestingly, while S. pneumoniae and S. pseudopneumoniae
carry Ply in their core genome, it is found in only a small fraction (8%) of S. mitis strains.
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Although they are closely related to pneumococcal Ply (97.4% pairwise identity),
phylogenetic analysis shows that all S. pseudopneumoniae and S. mitis Ply variants fall
in a phylogenetic clade distinct from that of their pneumococcal counterparts (7, 9)
(Fig. S2). Hemolysis assays show that S. pseudopneumoniae strains encoding Ply pro-
teins from each phylogenetic clade have a hemolytic activity comparable or superior to
that of the reference S. pneumoniae TIGR4 strain (Fig. 3).

Pneumococcal LPxTG cell wall-anchored proteins were found to have the lowest
levels of representation in S. pseudopneumoniae, with 12/23 being absent from all
genomes. With the exception of TCS06 and HK11, all HK-RR pairs were core S. pseudo-
pneumoniae proteins. Two of the three isolates encoding TCS06 also harbor a PspC-like
protein in the same locus, such as that found in pneumococcal genomes. These two
PspC-like proteins carry an LPxTG-anchoring domain and share limited similarity to
each other (30.8%) and to their closest pneumococcal allele, PspC11.3 (32.9%) (23). The
third genome encoding TCS06 carries a truncated gene encoding a PspC-like protein.

We further evaluated the presence in S. pseudopneumoniae of genes relevant for
infection and colonization by investigating the presence of 356 S. pneumoniae genes
differentially expressed in mouse models of invasive disease (IPD) and during epithelial
cell contact (ECC) (24). We found that 94% are present in at least one S. pseudopneu-
moniae genome (Data Set S2). The use of draft S. pseudopneumoniae genomes (43/44),
in contrast to fully assembled S. pneumoniae genomes, would likely result in an
underestimation of the presence of these genes due to contig breaks. Hence, we
considered genes present in 42/44 S. pseudopneumoniae genomes to belong to the
core genome. A large fraction of IPD/ECC genes were found in the core genome of S.
pseudopneumoniae (87%) and S. pneumoniae (74%) (Fig. 4A and Table S3). Of the 356
genes, 20 (5.6%) were absent from S. pseudopneumoniae, and among them was the
gene encoding pneumococcal surface protein A (pspA), a known virulence factor
present in the majority of S. pneumoniae genomes (34/39). The remaining genes
belonged to various functional categories (Fig. 4B and Data Set S2).

Identification of an encapsulated S. pseudopneumoniae strain. Unexpectedly,
our analysis revealed the presence of the capsular polysaccharide biosynthesis genes
cpsA and cpsC in one instance (Data Set S2). Further analysis showed that one LRTI S.
pseudopneumoniae isolate, BHN880, encodes a full capsular locus similar to the pneu-
mococcal serotype 5 capsule and to the capsule locus of S. mitis strain 21/39 (Fig. 5). Gel
diffusion assays typed BHN880 as pneumococcal serotype 5, which is supported by the
high nucleotide identity (97.7%) between the regions encoding the sugar precursors of
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BHN880 and serotype 5 capsular loci. The 43 remaining genomes do not encode a
capsule and carry the NCC3-type locus, which encompasses genes dexB, aliD, and glf
(also known as cap or capN [18, 25]).

S. pseudopneumoniae encodes a substantial number of new potential surface-
exposed proteins and two-component systems. We then investigated if S. pseudo-
pneumoniae harbored additional features that could be relevant for colonization and
adaptation by searching the proteome of the S. pseudopneumoniae species for novel
choline-binding proteins (CBPs) and new TCSs. We found 19 previously undescribed
proteins containing a choline-binding domain (CBD), which we named Cbp1 to Cbp19.
In total, 4 of the 19 proteins belong to the core genome, while the others have various
levels of presence among the 44 genomes (Fig. 2B). Each strain carried between 6 and
15 new CBPs, and some S. pseudopneumoniae genomes carried a total of 26 CBPs.
Prediction of functional domains in these proteins indicates that the majority of these
proteins have an SP1 signal peptide and a C-terminal CBD composed of 2 to 9 repeats
(Fig. 6A). While no functional domain could be identified in the majority of cases, some
proteins contained known domains, such as the trypsin-like serine protease domain
and the G5 domain, the latter of which is frequently associated with zinc metallopro-
teases (ZMPs) such as the IgA protease, ZmpA. In addition, we found that S. pseudo-
pneumoniae encodes two new putative ZMPs containing the HEMTH. . .E motif (26),
which we named ZmpE and ZmpF. While ZmpE is present in most of the isolates, ZmpF
is found in only one strain (BHN914) (Fig. 2B). ZmpE harbors the domains typically
found in ZMPs, such as the pneumococcal ZmpA (Fig. 6B). ZmpF, however, lacks the
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FIG 4 Distribution of IPD and ECC genes. (A) Pie charts representing the percentage of core, accessory, and absent genes from S.
pneumoniae (n � 39) and S. pseudopneumoniae (n � 44) genomes. Due to the use of draft S. pseudopneumoniae genomes compared
with complete S. pneumoniae genomes, genes were considered core in S. pseudopneumoniae when they were found in �95% of the
genomes. (B) Distribution of the 20 genes absent from S. pseudopneumoniae in the functional categories defined by Orihuela et al. (24).
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typical LPxTG motif and transmembrane domain and instead carries a LysM domain,
which is thought to bind peptidoglycan.

We found six additional HK-RR pairs in the S. pseudopneumoniae pangenome, 4 of
which are core features (Table 2 and Fig. 2B). We named these TCS14 to TCS19. A more
detailed analysis of their genetic loci revealed that TCS14 is found next to genes
encoding a ComC/Blp family peptide and bacteriocins. These genes that encode
ComC/Blp peptides are distinct from those encoding ComC and BlpC associated with
TCS12 and TCS13, respectively, present elsewhere in the S. pseudopneumoniae genome.
The remaining five TCSs are genetically linked to genes predicted to encode ABC
transporters involved in iron, potassium, and sugar transport, thiamine biosynthesis,
and bacitracin export.

Bacteriophages are tightly associated with S. pseudopneumoniae. Among the 44
S. pseudopneumoniae strains, 27 carried at least one putatively full-length prophage,
and the remaining 17 strains all carried phage genes, although the presence of
full-length prophages could not be confirmed. Twenty-one of the full-length prophages
shared a highly related novel integrase (�90.5% nucleotide identity), which we termed
intSppn1, and in 19 cases these prophages were found integrated between SP-
PN_RS05275 (encoding a putative CYTH domain protein) and SPPN_RS05395 (encoding
a putative GTP pyrophosphokinase) (Table S2). The integration site of the remaining 2
full-length prophages encoding IntSppn1 could not be confirmed, as they were found
alone in a contig without chromosomal flanking sequences. IntSppn1 was found in the
other 23 strains. However, a full-length prophage could not be confirmed in these
strains. In all strains, except for strains G42 and ATCC BAA_960, intSppn1 was associated
with some phage genes. Six strains carried a second putatively full-length prophage
encoding an integrase closely related to that of pneumococcal group 2a prophages,
int2a (27). These prophages were found between SPPN_RS07570 and SPPN_RS07555,
which are the homologs of the genes flanking the phage group 2a integration site in
pneumococci (28). Twenty-three other strains harbored int2a; however, the presence of
more than one phage per strain severely impaired our ability to confirm the complete-
ness of the phages they were associated with, as phage sequences were split between
various contigs.

S. pseudopneumoniae clades are characterized by distinct alleles of a peptide
pheromone and different patterns of antibiotic resistance. A single-nucleotide
polymorphism (SNP)-based phylogenetic tree, which was constructed using the 793 S.
pseudopneumoniae core COGs, shows that the species is divided into three clades
(Fig. 7A). Clades II and III encompass most of the isolates, while clade I is composed of
five isolates which fall closer to S. pneumoniae genomes (Fig. 7A and Fig. S3A). All three

FIG 6 Legend (Continued)
S. pneumoniae (Spn) was calculated using the proteins from IS7493 and S. pneumoniae TIGR4, except in the following cases: NanA (R6) and PspC (allele PspC11.3;
AF276622.1). Representations of domains found in each CBP are based on the variant found in IS7493. In the absence of the protein in IS7493, the analysis was
based on BHN914 (PspC, Cbp15, Cbp16, Cbp17, Cbp18, and Cbp19), BHN879 (Cbp1), and BHN886 (Cbp19). Nb, number. (B) Zinc metalloproteases ZmpE and
ZmpF from S. pseudopneumoniae. ZmpA from S. pneumoniae (Spn ZmpA) is included for comparison. Asterisks indicate the ZMP motif HEMTH. . . .E (26). Domain
prediction is based on ZmpE from IS7493 and ZmpF from BHN914. Locus tags can be found in Table S3.

TABLE 2 Novel two-component signaling systems of S. pseudopneumoniae

TCS RRa HKb Species of closest homologue Family of regulators Associated gene category

14 SPPN_RS00570 SPPN_RS00565 S. mitis LytTR Bacteriocins
15 SPPN_RS11635 SPPN_RS01890 S. mitis YesN Ferric iron transport
16 SPPN_RS03570 SPPN_RS03565 S. pseudoporcinus, S. canis OmpR Potassium transportc

17 SPPN_RS07705 SPPN_RS07700 S. parasanguinis LytTR/YesN Thiamine biosynthesisd

18 E3V59_10390 E3V59_10385 S. mitis YesN/AraC Sugar transport
19 E3V34_05540 E3V34_05535 S. suis CitB Bacitracin export
aLocus tag of the response regulator (RR). Locus tag in IS7493 was used when present.
bLocus tag of the sensor histidine kinase (HK). Locus tag in IS7493 was used when present.
cSimilar to KdpD/KdpE from E. coli (61).
dSimilar to TCS02 of S. thermophilus (62).
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clades are composed of strains isolated from the nasopharynx and from sputum or
lower-respiratory-tract samples. The three blood isolates belonged to clade II. No
specific association between accessory virulence/colonization features and specific
phylogenetic clades could be seen, except for PcpA, which was found exclusively in
clade II, and CbpC, which was found in most strains of clade I and in all strains of clade
III (Fig. 7B). Isolates carrying PiaA, ZmpD, and Eng, three features found only once,
belonged to clade I. The presence of CbpC correlated with specific alleles of the protein
encoded by the neighboring gene, CbpJ (Fig. 7B and Fig. S3B). Strains which carried
variant I of CbpJ were exclusively found in clade II and in all cases were devoid of CbpC.
Interestingly, the major clades II and III were characterized by distinct alleles of the
histidine kinase HK13 (BlpH) and of BlpC, the peptide pheromone which controls the
expression of bacteriocins in S. pneumoniae (Fig. 7B and Fig. S3C). Four variants of BlpH,
which did not specifically cluster with a specific clade, were found to be similar to BlpH-I
in boxes 1 and 2, which are important for interaction with BlpC (29). As expected, BlpH
variants were almost strictly associated with specific variants of BlpC, BlpCSpp1.1 and
BlpCSpp2. The latter is identical to BlpC 6A (29), while the former differs from BlpC R6
by one amino acid in the leader peptide sequence (Fig. S3D). Two strains carried other
BlpC alleles, BlpCSpp1.2, which is identical to BlpC R6, and BlpCSpp3, which is unique.
Unlike the case for BlpC, most strains had the same CSP pherotype. Besides CSP6.1 and
CSP6.3, which have previously been described in S. pseudopneumoniae (30), 2 new
alleles of ComC were found, CSP6.4 and CSP10 (Fig. 7B and Fig. S3E).

Additionally, we investigated the presence of antibiotic resistance. Resistance to
erythromycin and tetracycline were the most common among our LRTI isolates (Ta-
ble 3). More than half of the S. pseudopneumoniae genomes (n � 24) harbored genes
encoding resistance to tetracycline [tet(M)], 14- and 15-membered macrolides [mef(E)
and msr(D)], and/or macrolides, lincosamides, and streptogramin B (MLSB antibiotics)
[erm(B)]. mef(E) and msr(D) were encoded by Mega-2 elements (macrolide efflux genetic
assembly) integrated within the coding sequence of a DNA-3-methyladenine glycosy-
lase homolog to SP_RS00900 of S. pneumoniae TIGR4 (Fig. S4A). Integration of Mega-2
in this site has been previously reported in S. pneumoniae (31, 32). Nine of the 11
strains carrying Mega-2 belonged to a subset of clade III, and the presence of this
element was almost strictly associated with the absence of a plasmid (Fig. 7B).
tet(M) and erm(B) genes were found within the Tn916-like integrating conjugative
elements (ICEs) Tn5251 (33) and Tn3872 (34) (Fig. S4B). Tn5251 and Tn3872 ICEs
were integrated in 7 different integration sites (Fig. 7B and Fig. S4C). Four of the
integration sites were unique, while the other 3 were shared by two or more strains. ICE
integration sites were mostly shared by closely related strains. One strain carried the
tet(O) gene, which also encodes tetracycline resistance, and 2 other strains carried an
aminoglycoside-3=-phosphotransferase [aph(3=)-Ia] gene.

Phenotypic resistance to penicillin and co-trimoxazole (SXT) had high prevalence in
other reports (4, 6–8) and were available for many of the NCBI genomes. We found that
these types of resistance were also strongly associated with clade III. Taken together,
19/20 strains (95.2%) of clade III carried at least one genetic element encoding an AMR
determinant or were shown to be resistant to at least one antibiotic (Fig. 7B). In
contrast, a relatively small percentage of strains belonging to clade II (31.6%) were
associated with AMR.

DISCUSSION

Correct identification of SMG isolates remains a challenge to this day and impairs
our understanding of their epidemiology and contribution to human disease. The high

FIG 7 Legend (Continued)
pheromones, genotypic and phenotypic antibiotic resistance, and plasmids. Description of the colors is indicated in the key. Supporting
information on allelic variants can be found in Fig. S3B to E. Roman numerals in the ICE column refer to integration sites (Fig. S4). ICE, Mega-2,
and other types of resistance refer to genotypic resistance; penicillin (Pen) and co-trimoxazole (SXT) refer to phenotypic resistance (Table 3 and
references 5, 16, and 58–60). NP, nasopharynx; ND, pseudogenes/truncated; NA, data not available.
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genetic relatedness of S. pneumoniae and S. pseudopneumoniae, exemplified by our
result that they share 50% of their pangenomes, is likely due to their ability to acquire
genetic material through natural transformation. Even though S. pseudopneumoniae
causes milder infections than S. pneumoniae and is associated with underlying diseases
(5, 8), it has been isolated from normally sterile body sites (5, 7). A causative agent has
not been identified in a significant percentage of LRTI (�40%) and community-acquired
pneumonia cases, both in the community and hospital settings (35), and it is possible
that a fraction of these cases are due to potential pathogens such as S. pseudopneu-
moniae, which might be discarded as commensals and for which reliable identification
methods are lacking. Hence, some LRTI isolates included in this study could only be
classified using WGS and phylogenetic analyses. By performing a thorough comparative
genomic analysis, we identified for the first time a genetic marker that is entirely
specific for S. pseudopneumoniae.

Our results show that pneumococcal genes known to be differentially regulated
under infection- and colonization-relevant conditions are widespread in S. pseudopneu-
moniae and that only a surprisingly small percentage (5.6%) of them are absent from
S. pseudopneumoniae. We further report the first S. pseudopneumoniae isolate encoding
and expressing a capsule. The lack of transposase genes on either side of the capsule
locus and its higher similarity to the capsular locus of an S. mitis strain suggest it was
acquired from S. mitis rather than from a pneumococcal strain. Interestingly, a high
prevalence of pneumococcal serotype 5 antigens in urine samples in the absence of
culture confirmation has been reported in one study of community-acquired pneumo-
nia cases in the United States (36). The possibility for S. pseudopneumoniae and other
SMG species (37) to express the pneumococcal serotype 5 capsule should be taken into

TABLE 3 Antibiotic susceptibility profile of LRTI S. pseudopneumoniae isolatesa

Strain

MIC (�g/ml) for:

SXT Penicillin G Erythromycin Clindamycin Tetracycline Levofloxacin

BHN868 0.064 0.0004 2 0.5 32 0.5
BHN871 1.5 0.047 1.5 0.5 64 1
BHN877 4 0.064 4 0.5 32 1
BHN879 0.047 0.0004 0.19 0.125 0.5 0.5
BHN880 0.25 0.012 0.19 0.125 0.25 1
BHN881 2 0.125 6 0.5 48 0.75
BHN885 0.032 0.0008 3 0.094 32 1
BHN886 0.032 0.0008 4 0.094 0.094 0.5
BHN890 0.064 0.0008 0.25 0.125 0.25 1
BHN891 0.064 0.0008 0.125 0.094 32 0.75
BHN892 0.064 0.0008 0.125 0.064 0.25 0.5
BHN893 0.047 0.0008 0.125 0.125 0.5 0.75
BHN912 0.047 0.0008 0.125 0.094 0.5 1
BHN913 0.064 0.004 2 0.125 32 1.5
BHN914 0.064 0.016 0.125 0.125 0.5 0.75
BHN915 0.064 0.016 0.19 0.125 0.5 0.75
BHN916 0.094 0.0008 0.125 0.125 0.38 0.75
BHN918 0.064 0.016 0.25 0.125 0.5 0.75
BHN919 0.125 0.008 4 0.125 32 0.75
BHN920 0.064 0.006 0.125 0.125 0.38 1
BHN922 0.032 0.008 0.19 0.125 0.38 1
BHN1333 0.064 0.008 0.125 0.125 0.25 0.75
BHN1334 0.094 0.008 0.125 0.125 0.19 1.5
BHN1335 0.19 0.008 0.19 0.19 0.38 0.75
BHN1336 0.094 0.008 0.125 0.094 0.19 0.5
BHN1337 0.047 0.008 0.094 0.094 0.38 1.5
BHN1338 0.023 0.008 0.125 0.125 0.38 2
BHN1339 0.064 0.008 0.19 0.125 0.5 1
BHN1340 0.38 0.016 8 0.5 0.38 1.5
Nonsusceptibleb 10.34 (3) 0 (0) 31.03 (9) 17.24 (5) 27.59 (8) 0 (0)
aMICs were interpreted using the CLSI guidelines for viridans streptococci (44), except for SXT, which was interpreted according to EUCAST guidelines (45) for non-
meningitis S. pneumoniae isolates.

bValues are shown as % (n).
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consideration when interpreting results based solely on serotype-specific assays. Fur-
ther studies are needed to understand the role of the capsule in S. pseudopneumoniae
and to evaluate the prevalence of encapsulated isolates in larger clinical collections.

The multiple pneumococcal virulence and colonization factors found in the core
genome of S. pseudopneumoniae confirm earlier observations (3, 16). The presence of
some crucial virulence factors, such as pneumolysin (Ply), could mark an important
difference between S. pseudopneumoniae and the more commensal S. mitis, especially
in light of our recent study in which Ply was shown to drive internalization of
pneumococci within nonlysosomal compartments of immune cells commonly found in
the lungs (38). In addition, the presence of large numbers of surface-exposed proteins
could provide an advantage for adhesion and colonization, as was described for
nonencapsulated pneumococci (17, 18). Surface-exposed proteins are important play-
ers for successful pneumococcal colonization, which constitutes the first step of pneu-
mococcal disease, and display a wide variety of functions, from virulence to fitness and
antibiotic tolerance (39, 40). In this scenario, the lack of a capsule might avoid
restricting the ability of surface-exposed proteins to interact with their ligands on host
cells (24). The large number of two-component signaling systems in S. pseudopneu-
moniae suggests that it is equipped to fine-tune its response to different environmental
cues.

Our observations reveal a composite scenario of genetic elements in S. pseudopneu-
moniae, where prophages are abundant and plasmids and AMR-encoding ICEs are
found in a large number of isolates. The fact that the core genome phylogeny
delineates clades that harbor different genetic elements suggests that small differences
in their core genome play a role in the maintenance or exclusion of these elements. Our
findings suggest multiple acquisition events and subsequent clonal expansion of
Tn916-like ICEs in S. pseudopneumoniae or intrachromosomal mobilization. Most of the
strains carrying a Mega-2 element were found in a subset of the same clade, suggesting
that its presence is mainly driven through clonal expansion, as was suggested for S.
pneumoniae (31, 32). Besides genetic determinants of AMR, phenotypic resistance also
showed a tight association with a specific lineage. In S. pneumoniae, longer durations
of carriage are associated with increased prevalence of resistance (41). No specific
known virulence factor except for PcpA could be specifically associated with a given S.
pseudopneumoniae clade. However, the 4 PcpA� strains as well as the 3 septicemia
isolates belong to the same phylogenetic clade, which is also characterized by fewer
AMR determinants. It will be interesting in the future to evaluate the relative virulence
of strains belonging to different clades.

In conclusion, our single specific molecular marker for identifying S. pseudopneu-
moniae from other SMG species will be a useful resource for better understanding the
clinical importance of this species. Moreover, our results reveal the impressive amount
of surface-exposed proteins encoded by some strains and shed light on the overall
distribution in S. pseudopneumoniae of genes known to be important during pneumo-
coccal invasive disease and colonization.

MATERIALS AND METHODS
Bacterial isolates and molecular typing. Thirty-two alpha-hemolytic strains isolated from sputum

or nasopharyngeal swabs of patients with lower-respiratory-tract infections collected during the GRACE
study (19) and presenting atypical results in traditional biochemical tests to identify S. pneumoniae were
included in this study. Isolates were tested for optochin susceptibility and bile solubility (7, 42) by PCR
for pneumococcal markers (lytA, cpsA, spn_9802, 16SrRNA) and by RFLP for pneumococcus-specific
signatures (lytA, ply-mly) (7). BHN880 was serotyped by gel diffusion (43). MICs to all antibiotics were
determined using Etests (bioMérieux) and interpreted using the Clinical and Laboratory Standards
Institute (CLSI) guidelines for viridans streptococci (44), except for SXT, which was interpreted using the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints for non-meningitis S.
pneumoniae (45).

Whole-genome sequencing, assembly, and phylogenetic analysis. Chromosomal DNA was pre-
pared from overnight cultures on blood agar plates using the genomic DNA buffer set and Genomic-tip
100/G (Qiagen) by following the manufacturer’s instructions. Long DNA insert sizes were used, and
libraries were prepared with the Illumina TruSeq HT DNA sample preparation kit. Two-hundred-fifty-bp-
long paired-end reads were generated. Adapters were removed from the demultiplexed reads, and reads

Streptococcus pseudopneumoniae Comparative Genomics ®

May/June 2019 Volume 10 Issue 3 e01286-19 mbio.asm.org 13

https://mbio.asm.org


were quality trimmed using Trimmomatic (46). The 24 genomes were assembled de novo with SPADES
(v3.1.1) (47), annotated with PROKKA (v1.11) (48, 49), and deposited in NCBI (SOQB00000000 to
SOQV00000000 [see Data Set S1 in the supplemental material]). Assembly metrics were calculated with
QUAST 4.5.4 (49). kSNP 3.1 (50) was used to generate the SNP-based phylogenetic tree of SMG genomes.
The optimum k-mer value of 19, estimated from Kchooser, and a consensus parsimony tree based on all
the SNPs generated by kSNP were used (50). The phylogenetic tree was visualized in MEGA7 (51).

Pangenome analysis, construction of SPPN species tree, and identification of virulence factors.
The pangenome analysis of orthologous gene clusters, species trees, and their respective gene trees were
analyzed using panX (52) for the 39 completed S. pneumoniae genomes (pan:SPN), 44 S. pseudopneu-
moniae genomes (pan:SPPN), and both species (pan:SPPN-SPN) with default cutoff values. pan:SPPN
analysis resulted in 885 core genes (strict core; 100% present in all strains), and the core genome
tree/species tree for the SPPN species was constructed based on the core genome SNPs, including only
single-copy core genes (n � 793). Using pan:SPPN-SPN, all COGs were queried for S. pneumoniae locus
tags corresponding to 356 IPD/ECC genes (24) and 92 well-studied pneumococcal genes (21) listed in
Data Set S2 and Table S3. Proteins listed in Table S3 were analyzed using a 70% length cutoff to score
proteins as present; conservation of synteny was confirmed for all proteins. Genetic loci of proteins
scored as absent were manually checked for contig breaks and pseudogenes.

Molecular markers and PCR assay. Thirty COGs unique to the 44 S. pseudopneumoniae genomes
and absent from the 39 S. pneumoniae genomes (Table S1) were filtered from the pangenome analysis
(pan:SPPN_SPN) and subjected to BLAST searches against all NCBI genomes, which included 8,358 S.
pneumoniae genomes. The 44 nucleotide sequences of the two unique ORFs (SPPN_RS10375 and
SPPN_RS06420) were aligned using the ClustalW algorithm in Geneious, version 10.1.3 (https://www
.geneious.com), with default parameters (gap open cost, 15; gap extend cost, 6.66). The upstream (70 bp)
and downstream (329 bp) intergenic regions of SPPN_RS10375 were included. Primers SPPN_RS10375F
(5=-CTAATTGCTACTGCTATTTCCGGTG-3=) and SPPN_RS10375R (5=-CTGATACCTGCAACAAAAATCGAAG-3=)
were designed in regions of 100% identity. PCR was performed using Phusion flash high-fidelity PCR
master mix (ThermoFisher) by following the manufacturer’s instructions with an annealing temperature
of 50°C. One �l of lysate, prepared by resuspending 2 to 3 isolated colonies in 100 �l Tris-EDTA
containing 0.1% Triton and incubating at 98°C for 5 min, was used as the template. PCR products were
run on a 1.2% agarose gel stained with GelRed (Biotium).

In silico identification of new putative virulence features. A database was built using the
concatenated sequence of all proteins from the 44 S. pseudopneumoniae genomes and was queried for
the conserved choline-binding domain COG5263 and the peptidase_M26 domain pfam07580/cl06563 to
identify novel choline-binding proteins and ZMPs, respectively, using the NCBI Batch CD-Search tool (53).
Novel two-component signal transduction systems (TCSs) were identified by finding proteins containing
the HATPase domain of histidine kinase (cd00075/smart00387/pfam02518) that were immediately
preceded or followed by a DNA-binding regulator possessing the signal-receiver domain cd00156.

Analysis of capsular loci. Homologues of cpsA and wzg were searched for in pan:SPPN_SPN using
gene family SP_RS01690. The locus was subsequently checked manually for the presence of the
complete locus [BHN880_01411 to BHN880_01431]. The retrieved cps locus was subjected to a BLASTN
search to identify the closest homologs. Pairwise alignment with the S. pneumoniae Ambrose serotype
5 locus (CR931637.1) (54) and S. mitis 21/39 (AYRR01000010.1) cps locus was performed using Easyfig
(55).

Hemolysis assay. Bacteria were grown overnight on blood agar plates at 37°C in 5% CO2. S.
pneumoniae strains were grown into C�Y medium until exponential phase (optical density at 620 nm
[OD620] of 0.4). S. pseudopneumoniae strains were grown in C�Y medium to an OD620 of 0.3 and then
inoculated into a secondary culture, which was grown to an OD620 of 0.25. Dilutions were made to obtain
the desired concentration of bacterial cells, and viable counts were performed to retrospectively confirm
bacterial numbers. Blood from healthy human donors (obtained from Karolinska University Hospital) was
diluted 1:100 in phosphate-buffered saline– 0.5 mM dithiothreitol, mixed 1:1 with 2-fold serial dilutions
of S. pneumoniae or S. pseudopneumoniae cultures in 96-well plates, and incubated at 37°C for 1 h. After
50 min of incubation, 0.1% Triton X-100 was added to the positive-control wells. Cells were spun down
at 400 � g for 15 min, and the absorbance of the supernatants was measured at 540 nm in a microplate
reader. Percentage of lysis compared to the positive control was calculated. All strains were tested in
triplicate.

In silico identification of AMR determinants, plasmids, and phages. The 44 genomes were
screened in Resfinder 3.0 (56) for the acquired AMR genes (90% identity threshold, minimum length of
60%). Chromosomal genes flanking Tn916-like ICEs were defined by using BLASTn to retrieve the loci in
strain IS7493 (NC_015875.1) of the genes located immediately upstream of the integrase and immedi-
ately downstream of orf24 of Tn5251 (FJ711160.1). Genome assemblies were queried for genes associ-
ated with known S. pneumoniae and S. mitis phages (SPH_0026, IPP61_00001, SPH_0070, SP670_2134,
SP670_0091, SM1p01, SPPN_RS05280, and HMPREF1112_1362) and the S. pseudopneumoniae plasmid
pDRPIS7493 (NC_015876.1). Phage sequences were manually analyzed and deemed full length if they
started with an integrase gene, ended with a lytic amidase, and were �30 kb in length.

Data availability. All 21 S. pseudopneumoniae sequenced genomes have been deposited in GenBank
under BioProject code PRJNA528011, BioSample numbers SAMN11166137 to SAMN11166157, and
accession numbers SOQV00000000, SOQU00000000, SOQT00000000, SOQS00000000, SOQR00000000,
SOQQ00000000, SOQP00000000, SOQO00000000, SOQN00000000, SOQM00000000, SOQL00000000,
SOQK00000000, SOQJ00000000, SOQI00000000, SOQH00000000, SOQG00000000, SOQF00000000,
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SOQE00000000, SOQD00000000, SOQC00000000, and SOQB00000000. The accession numbers of the
other genomes used in this study are listed in Data Set S1.
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