

G OPEN ACCESS

Citation: Turgeon RD, Kolber MR, Loewen P, Ellis U, McCormack JP (2019) Higher versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in heart failure with reduced ejection fraction: Systematic review and meta-analysis. PLoS ONE 14(2): e0212907. https://doi.org/10.1371/journal.pone.0212907

Editor: Vinayak Shenoy, California Health Sciences University, UNITED STATES

Received: June 22, 2018

Accepted: February 12, 2019

Published: February 28, 2019

Copyright: © 2019 Turgeon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All data is contained within the paper.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Higher versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and betablockers in heart failure with reduced ejection fraction: Systematic review and meta-analysis

Ricky D. Turgeon¹, Michael R. Kolber², Peter Loewen³, Ursula Ellis⁶, James P. McCormack⁵*

1 Division of Cardiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Family Medicine, University of Alberta, Edmonton, Alberta, Canada, 3 Faculty of Pharmaceutical Sciences, Collaboration for Outcomes Research & Evaluation, University of British Columbia, Vancouver, British Columbia, Canada, 4 Woodward Library, University of British Columbia, Vancouver, British Columbia, Canada, 5 Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada

* james.mccormack@ubc.ca

Abstract

Background

Current heart failure (HF) guidelines recommend titrating angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) and beta-blockers (BBs) to target doses used in pivotal placebo-controlled randomized controlled trials (RCTs). Despite a number of RCTs comparing different doses (i.e. higher versus lower doses) of ACEIs, ARBs and BBs, the effects of higher versus lower doses on efficacy and safety remains unclear. For this reason, we performed a systematic review and meta-analysis to evaluate the efficacy and safety of higher versus lower doses of ACEIs, ARBs and BBs in patients with HFrEF.

Methods

We searched MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL) via Ovid from inception to April 25th, 2018 and opentrials.net and clinicaltrials. gov for relevant trials that compared different doses of medications in heart failure. We analyzed trials by drug class (ACEIs, ARBs, and BBs) for efficacy outcomes (all-cause mortality, cardiovascular mortality, all-cause hospitalizations, HF hospitalizations, HF worsening). For safety outcomes, we pooled trials within and across drug classes.

Results

Our meta-analysis consisted of 14 RCTs. Using GRADE criteria, the quality of evidence for ACEIs and ARBs was assessed as generally moderate for efficacy and high for adverse effects, whereas overall quality for BBs was very low to low. Over ~2–4 years higher versus lower doses of ACEIs, ARBs or BBs did not significantly reduce all-cause mortality [ACEIs

relative risk (RR) 0.94 (95% confidence interval 0.87–1.02)], ARBs RR 0.96 (0.87–1.04), BBs RR 0.25 (0.06–1.01)] or all cause hospitalizations [ACEIs relative risk (RR) 0.94 (95% confidence interval 0.86–1.02)], ARBs RR 0.98 (0.93–1.04), BBs RR 0.93 (0.39–2.24)]. However, all point estimates favoured higher doses. Higher doses of ARBs significantly reduced hospitalization for HF [RR 0.89 (0.80–0.99)– 2.8% ARR], and higher doses of ACEIs and ARBs significantly reduced HF worsening [RR 0.85 (0.79–0.92)– 5.1% ARR and 0.91 (0.84–0.99)– 3.2% ARR, respectively] compared to lower doses. None of the differences between higher versus lower doses of BBs were significant; however, precision was low. Higher doses of these medications compared to lower doses increased the risk of discontinuation due to adverse events, hypotension, dizziness, and for ACEIs and ARBs, increased hyperkalemia and elevations in serum creatinine. Absolute increase in harms for adverse effects ranged from ~ 3 to 14%.

Conclusions

Higher doses of ACEIs and ARBs reduce the risk of HF worsening compared to lower doses, and higher doses of ARBs also reduce the risk of HF hospitalization but the evidence is sparse and imprecise. Higher doses increase the chance of adverse effects compared to lower doses. Evidence for BBs is inconclusive. These results support initially always starting at low doses of ACEIs/ARBs and only titrating the dose up if the patient tolerates dose increases.

Introduction

Heart failure (HF) with reduced ejection fraction (HFrEF) is a prevalent condition with an overall poor prognosis.[1] The combination of an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin-2 receptor blocker (ARB) plus a beta-blocker (BB) is first-line therapy for HFrEF management,[1],[2] as these medications reduce morbidity and mortality compared to placebo.[3],[4],[5] These results have led guideline authors to universally recommend starting these agents in most patients with (HFrEF).[1],[2]

The approach recommended by guidelines when initiating these medications is to start at a low-to-moderate dose and titrate as tolerated to the target doses used in placebo-controlled randomized controlled trials (RCTs).[1],[2] However, many patients are unable to achieve and maintain target doses due to adverse effects, with most patients only achieving ~50% of the target doses.[6] Despite a number of RCTs comparing different doses (i.e. higher versus lower doses) of ACEIs, ARBs and BBs, the effects of higher versus lower doses on efficacy and safety remains unclear. For this reason, we performed a systematic review and meta-analysis to evaluate the efficacy and safety of higher versus lower doses of ACEIs, ARBs and BBs in patients with HFrEF.

Methods

Design

Systematic review with meta-analysis in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.[7]

Search strategy

We searched MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL) via Ovid from inception to April 25th, 2018 using keywords and subject headings for the following concepts: heart failure, ACEI, ARB, BB, dose, and randomized controlled trial (see <u>S1 Appendix</u> for MEDLINE search strategy). We also searched opentrials.net and clinicaltrials.gov for relevant RCTs, and hand-searched bibliographies of included studies.

Eligibility criteria and outcomes

We included parallel RCTs published in English evaluating different doses of the same drug within the class of ACEIs, ARBs, or BBs in patients with HFrEF as defined by study investigators. Eligible trials needed to report results for at least one of the following outcomes: all-cause mortality, cardiovascular mortality, all-cause hospitalizations, HF hospitalizations, HF worsening, serious adverse events, discontinuation due to adverse events, hypotension, lightheaded-ness/dizziness, hyperkalemia, renal dysfunction, and cough. While there is evidence some of these drug classes have dose-related hemodynamic and neurohormonal effects, we chose to only include trials whose clinical outcomes would likely be relevant to clinicians and patients.

Study selection and data collection

Three authors (MK, PL, JM) screened candidate articles for inclusion, identified missing data, and consulted original publications. The same authors individually extracted crude outcome data from full-text reports into a standardized database. For trials comparing >2 doses, we included the results from only the lowest and highest dose arms, hereafter referred to as "higher dose" and "lower dose". Discrepancies and missing data were resolved by group discussion, reference to the original publication, and additional independent adjudication by all authors.

Risk of bias and quality of evidence assessment

Two authors (JM, PL) assessed individual trials for risk of bias using the Cochrane Collaboration Risk of Bias Tool.[8] For each trial, we classified trials as being at low, high, or unclear risk of bias in each of 5 domains: sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessors and incomplete outcome data. Disagreements were resolved by consensus with a third author (RT). We also rated the quality of evidence for individual outcomes from high to very low based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, which incorporates risk of bias, consistency, directness, precision, and other considerations.[9]

Synthesis of results and assessment of heterogeneity

We performed all analyses using Review Manager 5.3 (Cochrane Collaboration). We pooled trials by drug class studied at the study level and calculated risk ratios (RRs) with 95% confidence intervals (CIs), and absolute risk difference per 1000 patients treated over the follow-up period. For efficacy outcomes, we analyzed trials by drug class (ACEIs, ARBs, and BBs). For safety outcomes, we pooled trials within and across drug classes. All comparisons used high dose as the experimental intervention and low dose as the control intervention. We evaluated for statistical heterogeneity by visually inspecting forest plots and by calculating the I² statistic. For efficacy outcomes, we reported fixed-effects model results for analyses with I²<50% and the random-effects model results for an I² ≥50%. We reported all safety outcomes using fixed-effects models to minimize type 2 error.

Results

Included studies

From 1923 articles identified, we included 14 RCTs with sample size ranging from 83 to 3846 participants (Fig 1). We identified evidence for the following interventions: ACEIs (7 studies, n = 5,817),[10],[11],[12],[13],[14],[15],[16] ARBs (3 studies, n = 4,908),[17],[18],[19] and BBs (4 studies, n = 1,018).[20],[21],[22],[23]

Characteristics of included trials

Table 1 summarizes key characteristics of the included trials. At baseline, the mean age across trials ranged from 54–70 years, approximately 75% of participants were male, and the majority

Fig 1. PRISMA flow diagram.

Table 1. Characteristics of included trials.

		Follow-up	Baselin	e										Study intervention				
Trial (year)	n		Mean age, y	Male, %		HA ss, %		LVEF, %		ACEI or ARB	BB	MRA	Digoxin	Drug	Higher dose, mg/	Lower dose,	Ratio	
		months			II	III	IV	For inclusion	Mean						day	mg/day		
ACEIs																		
ATLAS (1999)	3164	Mean 46 (range 39– 58)	64	80	16	77	7	≤30	23	89	NR	NR	NR	Lisinopril	32.5 to 35	2.5 to 5	7–13	
NETWORK (1998)	1532	6	70	64	65	33	2	None	20a	NR	11	NR	24	Enalapril	20	5	4	
CHIPS (2000)	298	12	65	69	38	50	0	<45	NR	NR	26	NR	31	Captopril	100	50	2	
HEDS (2000)	248	12	56	85	42	44	11	\leq 35	20	NR	NR	NR	92	Enalapril	60	20	3	
CASSIS (1995)	248	3	58	83	25	56	19	<40	28	5	NR	NR	91	Spirapril	6	1.5	4	
van Veldhuisen (1998)	244	3	61	77	77	23	0	<45	34	NR	NR	NR	38	Imidapril	10	2.5	4	
Pacher (1996)	83	11	56	83	2	80	18	None	NR	100	NR	2	100	Enalapril	40	10	4	
ARBs																		
HEAAL (2009)	3846	Mean 56 (IQR 41–66)	66	71	69	30	1	<40	33	NR	72	38	42	Losartan	150	50	3	
STRETCH (1999)	844	3	62	68	81	19	0	30-40	39	59	NR	NR	42	Candesartan	16	4	4	
Havranek (1999)	218	3	60	82	63	21	16	<40	24	NR	NR	NR	NR	Irbesartan	150	12.5	12	
BBs																		
J-CHF (2013)	360	Mean 36	60	74	83	17	0	\leq 40	30	87	NR	NR	33	Carvedilol	20	2.5	8	
MOCHA (1996)	345	6	60	76	46	52	2	≤35	23	94	NR	NR	92	Carvedilol	50	12.5	4	
MUCHA (2004)	174	6-12	60	78	79	21	0	<40	30	76	NR	NR	67	Carvedilol	20	5	4	
Bristow (1994)	139	3	54	61	42	55	0	<40	24	87	NR	NR	79	Bucindolol	200	12.5	16	

ACEI: Angiotensin-converting enzyme inhibitor, ARB: Angiotensin-2 receptor blocker, BB: beta-blocker, IQR: Interquartile range, LVEF: Left ventricular ejection fraction, MRA: Mineralocorticoid receptor antagonist, NR: Not reported.

a Estimated from mean baseline left ventricular end-diastolic (LVEDD) and end-systolic dimensions (LVESD) using the equation LVEF = (LVEDD-LVESD) / LVEDD

https://doi.org/10.1371/journal.pone.0212907.t001

had NYHA functional class 2 or 3 symptoms. Twelve trials required reduced ejection fraction (EF) at baseline, ranging from <30% to <50%. Eight trials compared >2 doses; seven studies (50%) compared a 4-fold increase in dose (between the groups receiving the lowest and highest dose), 4 studies (29%) compared 7 to 16-fold differences in doses, and three studies (21%) compared a 2 to 3-fold difference in dose. The weighted mean follow-up duration across included studies was 34 months (ACEIs 28 months, ARBs 45 months, BBs 17 months). Three studies that accounted for 63% of patients in this meta-analysis had follow-up greater than 12 months.[10],[18],[21]

Risk of bias and quality assessment

All trials except the HEAAL study had high or unclear risk of bias in at least 3 of the 5 domains (Fig 2). Quality of evidence for ACEIs and ARBs was generally moderate for efficacy and high

Fig 2. Risk of bias summary.

		ACEIs			ARBs		BBs				
Outcome	Quality of evidence		Effect -up range 3–58 mean 28 months)	Certain assessment		Effect 7-up range 3–66 mean 45 months)	Certain assessment	Effect (follow-up range 3–36 months-mean 17 months)			
		RR (95% CI)	Absolute change, per 1000		RR (95% CI)	Absolute change, per 1000		RR (95% CI)	Absolute change, per 1000		
Mortality											
All-cause	MODERATE ¹	0.94 (0.87 to 1.02)	19 fewer (from 6 more to 40 fewer)	MODERATE ¹	0.96 (0.87 to 1.04)	12 fewer (from 12 more to 40 fewer)	LOW ²	0.25 (0.06 to 1.01)	36 fewer (from 0 more to 45 fewer)		
Cardiovascular	MODERATE ¹	0.92 (0.85 to 1.01)	30 fewer (from 4 more to 55 fewer)	MODERATE ¹	0.93 (0.83 to 1.04)	17 fewer (from 10 more to 42 fewer)	-	NR	NR		
Hospitalization											
All-cause	MODERATE ¹	0.94 (0.86 to 1.02)	22 fewer (from 7 more to 52 fewer)	MODERATE ¹	0.98 (0.93 to 1.04)	11 fewer (from 23 more to 40 fewer)	LOW ²	0.93 (0.39 to 2.24)	8 fewer (from 66 fewer to 134 more)		
Heart failure	LOW ¹³	0.86 (0.56 to 1.32)	18 fewer (from 42 more to 58 fewer)	MODERATE ¹	0.89 (0.80 to 0.99)	28 fewer (from 3 to 52 fewer)	LOW ²	2.48 (0.60 to 10.28)	23 more (from 6 fewer to 143 more)		
Heart failure worsening	HIGH	0.85 (0.79 to 0.92)	51 fewer (from 27 to 71 fewer)	MODERATE ¹	0.91 (0.84 to 0.99)	32 fewer (from 4 to 57 fewer)	LOW ²	0.45 (0.11 to 1.86)	16 fewer (from 26 fewer to 26 more)		
Adverse effects											
Leading to discontinuation	MODERATE ¹	1.19 (0.97 to 1.46)	13 more (from 2 fewer to 31 more)	MODERATE ¹	1.17 (0.94 to 1.45)	11 more (from 4 fewer to 30 more)	VERY LOW ²	1.98 (0.37 to 10.62)	16 more (from 11 fewer to 162 more)		
Hypotension	HIGH	1.60 (1.28 to 2.00)	30 more (from 14 to 51 more)	HIGH	1.40 (1.15 to 1.72)	27 more (from 10 to 49 more)	VERY LOW ²	1.12 (0.35 to 3.53)	7 more (from 39 fewer to 152 more)		
Dizziness	MODERATE ³	1.39 (1.22 to 1.59)	51 more (from 29 to 77 more)	-	NR	NR	LOW ¹⁴	1.59 (1.00 to 2.52)	142 more (from 0 to 366 more)		
Hyperkalemia	HIGH	1.87 (1.39 to 2.51)	24 more (from 11 to 42 more)	MODERATE ⁴	1.48 (1.20 to 1.83)	33 more (from 14 to 57 more)	-	NR	NR		
Serum creatinine increase	HIGH	1.46 (1.18 to 1.81)	27 more (from 10 to 47 more)	HIGH	1.41 (1.24 to 1.60)	62 more (from 37 to 91 more)	-	NR	NR		
Cough	MODERATE ¹	0.83 (0.71 to 0.97)	23 fewer (from 4 to 39 fewer)	-	NR	NR	-	NR	NR		

Table 2. GRADE summary of findings. Statistically significant results are shown in bold text.

ACEI: Angiotensin-converting enzyme inhibitor, ARB: Angiotensin-2 receptor blocker, BB: beta-blocker, NR: Not reported.

¹ Rated down 1 category for serious imprecision

² Rated down 2 categories for very serious imprecision

³ Rated down 1 category for serious inconsistency

⁴ Rate down 1 category for suspected selective outcome reporting bias

https://doi.org/10.1371/journal.pone.0212907.t002

for adverse effects, whereas overall quality for BBs was very low to low. Table 2 lists the quality of evidence for each outcome and reasons for downgrading. We did not assess for publication bias as the number of studies for each meta-analysis was insufficient according to accepted criteria.[24]

Efficacy

Figs <u>3–7</u> illustrate the meta-analyses for efficacy outcomes, and <u>Table 2</u> summarizes the absolute and relative estimates for efficacy. Post-hoc analyses pooling studies of ACEIs and ARBs are shown in Figs <u>8</u> and <u>9</u>.

Adverse effects

Figs <u>10–15</u> illustrate the meta-analyses for adverse effects, and <u>Table 2</u> summarizes the absolute and relative estimates for adverse effects.

Discussion

In this systematic review and meta-analysis of RCTs, higher doses of ACEIs were not statistically superior to the lower doses studied in terms of mortality or hospitalizations, but point estimates were in favour of higher doses. Higher doses of ACEIs statistically-significantly reduced the proportion of patients with episodes of worsening HF compared to lower doses. Similarly, higher doses of ARBs did not statistically reduce mortality or all-cause

Fig 3. Forest plot of risk ratios (with 95% confidence intervals) of overall mortality for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

	High	ı	Low			Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-H, Fixed, 95% Cl	
1.2.1 ACEIs									
Pacher 1996	6	41	8	42	1.2%	0.77 [0.29, 2.02]			
Clement 2000 (CHIPS)	9	152	9	146	1.4%	0.96 [0.39, 2.35]			
Packer 1999 (ATLAS) Subtotal (95% CI)	583	1568 1761	641	1596 1784	97.4% 100.0%	0.93 [0.85, 1.01] 0.92 [0.85, 1.01]		●	
Total events	598		658						
Heterogeneity: Chi ² = 0.15	, df = 2 (P	9 = 0.93); l ² = 0%						
Test for overall effect: Z =	1.77 (P =	0.08)	,.						
1.2.2 ARBs									
Konstam 2009 (HEAAL) Subtotal (95% CI)	448	1921 1921	478	1913 1913	100.0% 100.0%	0.93 [0.83, 1.04] 0.93 [0.83, 1.04]			
Total events Heterogeneity: Not applica	448 ble		478						
Test for overall effect: Z =	1.20 (P =	0.23)							
							- <mark> </mark> 0.2	0.5 1 2	+ 5
Test for subgroup difference	01.13	0.00		0.001	12 00/			Favors high dose Favors low dose	

Test for subgroup differences: $Chi^2 = 0.02$, df = 1 (P = 0.89), I² = 0%

Fig 4. Forest plot of risk ratios (with 95% confidence intervals) of cardiovascular mortality for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g004

Fig 5. Forest plot of risk ratios (with 95% confidence intervals) of all-cause hospitalization overall mortality for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

	High	ı	Low	/		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rand	om, 95% Cl	
1.4.1 ACEIs										
Clement 2000 (CHIPS)	11	152	21	146	21.9%	0.50 [0.25, 1.01]				
Poole-Wilson 1998 (NETWORK)	36	516	26	506	30.7%	1.36 [0.83, 2.21]		+	-	
Packer 1999 (ATLAS)	198	1568	247	1596	47.4%	0.82 [0.69, 0.97]				
Subtotal (95% CI)		2236		2248	100.0%	0.86 [0.56, 1.32]			•	
Total events	245		294							
Heterogeneity: Tau ² = 0.09; Chi ² =	5.91, df =	2 (P =	0.05); l² =	= 66%						
Test for overall effect: Z = 0.70 (P	= 0.48)									
1.4.2 ARBs										
Havranek 1999	2	47	3	48	0.4%	0.68 [0.12, 3.89]		<u> </u>		
Konstam 2009 (HEAAL)	450	1921	503	1913	99.6%	0.89 [0.80, 0.99]				
Subtotal (95% CI)		1968		1961	100.0%	0.89 [0.80, 0.99]		•	-	
Total events	452		506							
Heterogeneity: $Tau^2 = 0.00$; Chi ² = Test for overall effect: Z = 2.08 (P		1 (P =	0.76); l² =	= 0%						
rest for overall effect. Z – 2.06 (P	- 0.04)									
1.4.3 Beta-blockers										
Hori 2004 (MUCHA)	2	77	0	47	22.2%	3.08 [0.15, 62.74]				
Bristow 1996 (MOCHA)	5	89	2	83	77.8%	2.33 [0.46, 11.69]				
Subtotal (95% CI)		166		130	100.0%	2.48 [0.60, 10.28]		-		
Total events	7		2							
Heterogeneity: Tau ² = 0.00; Chi ² =	0.03, df =	1 (P =	0.87); l² =	= 0%						
Test for overall effect: Z = 1.25 (P	= 0.21)									
							I			
							0.01	0.1 1	10	100
Test for subgroup differences: Chi	² = 2.02, di	f = 2 (P	= 0.36),	l² = 0.9	%		F	avors high dose	Favors low dose	

Fig 6. Forest plot of risk ratios (with 95% confidence intervals) of hospitalization for heart failure for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g006

hospitalizations compared to lower doses, but point estimates were again in favour of higher doses. However, higher doses of ARBs did statistically reduced HF hospitalization and episodes of worsening HF compared to the lower doses studied. We did not find statistically-significant differences between higher and lower doses of BBs for any efficacy outcome, though results were imprecise due to few events, limiting the certainty of these findings. Higher doses increased the risk of discontinuation due to adverse events, hypotension, dizziness, and for ACEIs and ARBs, increased hyperkalemia and elevations in serum creatinine compared to lower doses.

Based on these pooled results, treating 1000 patients with higher versus lower doses of ACEIs over a mean of 28 months would result in 51 fewer patients experiencing worsening HF and 23 fewer patients experiencing cough (possibly related to the lower incidence of worsening HF). These benefits would be offset by 30–51 more patients experiencing hypotension or dizziness, and 24–27 patients having laboratory abnormalities including hyperkalemia or an increase in serum creatinine. Treating 1000 patients with higher versus lower doses of ARBs over a mean of 45 months would lead to 28–32 fewer cases of HF hospitalization or worsening, 27 more patients experiencing symptomatic hypotension, 33 more patients with hyperkalemia and 62 more patients with increased serum creatinine. For BBs the data is too imprecise to estimate efficacy, but suggest 142 more cases of dizziness per 1000 patients treated with higher doses versus lower doses over 17 months.

Our results differ somewhat from those of a recent meta-analysis comparing higher versus lower doses of ACEIs/ARBs by Khan et al.[25] These authors reported that when the data from

	ı	Low	,		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.5.1 ACEIs							
van Veldhuisen 1998	0	60	2	65	0.3%	0.22 [0.01, 4.42]	
Pacher 1996	3	41	3	42	0.4%	1.02 [0.22, 4.78]	
Poole-Wilson 1998 (NETWORK)	40	516	39	506	5.0%	1.01 [0.66, 1.54]	
Clement 2000 (CHIPS)	34	152	45	146	5.8%	0.73 [0.49, 1.06]	- <u>-</u> -
Packer 1999 (ATLAS)	594	1568	709	1596	88.6%	0.85 [0.78, 0.93]	
Subtotal (95% CI)		2337		2355	100.0%	0.85 [0.79, 0.92]	•
Total events	671		798				
Heterogeneity: Chi ² = 2.11, df = 4 (P = 0.72);	l² = 0%	, 0				
Test for overall effect: Z = 3.89 (P <	< 0.0001)						
1.5.2 ARBs							
Riegger 1999 (STRETCH)	2	213	2	208	0.3%	0.98 [0.14, 6.87]	
Havranek 1999	1	47	5	48	0.6%	0.20 [0.02, 1.68]	
Konstam 2009 (HEAAL)	699	1921	759	1913	99.1%	0.92 [0.85, 0.99]	
Subtotal (95% Cl)		2181		2169	100.0%	0.91 [0.84, 0.99]	•
Total events	702		766				
Heterogeneity: Chi ² = 1.95, df = 2 (P = 0.38);	l² = 0%	, 0				
Test for overall effect: Z = 2.22 (P =	= 0.03)						
1.5.3 Beta-blockers							
Bristow 1996 (MOCHA)	1	89	0	83	8.5%	2.80 [0.12, 67.79]	
Hori 2004 (MUCHA)	1	77	1	47	20.4%	0.61 [0.04, 9.53]	
Bristow 1994	0	35	4	38	71.1%	0.12 [0.01, 2.16]	
Subtotal (95% CI)		201		168	100.0%	0.45 [0.11, 1.86]	
Total events	2		5				
Heterogeneity: Chi ² = 2.11, df = 2 (P = 0.35);	l² = 5%	, 0				
Test for overall effect: Z = 1.11 (P =	= 0.27)						
							· · · · · · · · · · · · · · · · · · ·
							0.01 0.1 1 10 100
Test for subgroup differences: Chi ²	= 2.27, di	f = 2 (P	= 0.32),	² = 12.	1%		Favors high dose Favors low dose

Fig 7. Forest plot of risk ratios (with 95% confidence intervals) of heart failure worsening for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g007

trials evaluating ACEIs and ARBs are combined, higher doses showed a reduced risk of allcause mortality, but no difference in hospitalizations for HF or discontinuations due to adverse effects when compared to lower doses [25] Our meta-analysis included 4 additional trials not included in the Khan meta-analysis. In our post-hoc analysis pooling ACEIs plus ARBs for the outcome of all-cause mortality, we did not find a statistically significant difference between higher and lower doses. However, our results are quantitatively nearly identical (confidence interval 0.89–1.01 versus 0.89–1.00), and the apparent difference in the report of findings can be solely explained by dogmatic adherence to arbitrary dichotomous statistical significant thresholds.[26] Finally, for safety outcomes we used fixed-effects meta-analyses to minimize type 2 error which might account for some of the differences reported.

Applying the evidence

Given that the benefit of ACEIs, ARBs and BBs accrue over months, yet adverse effects typically occur early after starting or increasing doses, clinicians should initiate these agents at a low dose and titrate them gradually while assessing tolerability. American and Canadian HFrEF guidelines recommend this approach, with a goal of titrating the dose every 2–4 weeks as an outpatient to target doses used in the landmark placebo-controlled trials.[1],[2] Missing

High			,	Risk Ratio			Risk Ratio
Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 95% Cl
0	60	0	65		Not estimable		
3	51	2	48	0.1%	1.41 [0.25, 8.09]		
5	41	7	42	0.5%	0.73 [0.25, 2.12]		
12	152	11	146	0.8%	1.05 [0.48, 2.30]		
15	516	21	506	1.5%	0.70 [0.37, 1.34]		+
23	126	22	122	1.5%	1.01 [0.60, 1.72]		-+
666	1568	717	1596	49.3%	0.95 [0.87, 1.02]		
	2514		2525	53.7%	0.94 [0.87, 1.02]		•
724		780					
(P = 0.93);	l² = 0%	D					
= 0.13)							
1	47	0	48	0.0%	3.06 [0.13, 73.33]		
3	213	1	208	0.1%	2.93 [0.31, 27.94]		
635	1921	665	1913	46.2%	0.95 [0.87, 1.04]		
	2181		2169	46.3%	0.96 [0.87, 1.04]		•
639		666					
(P = 0.48);	l² = 0%	D					
= 0.31)							
	4695		4694	100.0%	0.95 [0.89, 1.01]		•
1363		1446					
(P = 0.94);	l² = 0%	D					
= 0.07)						0.01	0.1 1 10 100 Favors high dose Favors low dose
² = 0.06, d	f = 1 (P	= 0.81),	² = 0%				Favors high dose Favors low dose
	Events 0 3 5 12 15 23 666 724 (P = 0.93); = 0.13) 1 3 635 639 (P = 0.48); = 0.31) 1363 (P = 0.94); = 0.07)	Events Total 0 60 3 51 5 41 12 152 15 516 23 126 666 1568 2514 724 P = 0.93); $l^2 = 0\%$ = 0.13) 1 47 3 213 635 1921 2181 639 P = 0.48); $l^2 = 0\%$ = 0.31) 4695 1363 P = 0.94); $l^2 = 0\%$ = 0.07); $l^2 = 0\%$	Events Total Events 0 60 0 3 51 2 5 41 7 12 152 11 15 516 21 23 126 22 666 1568 717 2514 780 P = 0.93); l ² = 0% 780 = 0.13) 1 47 0 3 213 635 1921 665 2181 666 639 666 P = 0.48); l ² = 0% 666 P = 0.94); l ² = 0% 1446 P = 0.94); l ² = 0% 1446	Events Total Events Total 0 60 0 65 3 51 2 48 5 41 7 42 12 152 11 146 15 516 21 506 23 126 22 122 666 1568 717 1596 2514 2525 724 780 P = 0.93); l ² = 0% = 0.13) 1 208 635 1921 665 1913 2169 639 666 1913 2169 639 666 1913 2169 639 666 1913 2169 639 666 1913 2169 639 666 1446 1363 P = 0.48); l ² = 0% 1446 1446 P = 0.94); l ² = 0% =0.07) 1446	Events Total Events Total Weight 0 60 0 65 3 51 2 48 0.1% 5 41 7 42 0.5% 12 152 11 146 0.8% 15 516 21 506 1.5% 23 126 22 122 1.5% 666 1568 717 1596 49.3% 2514 2525 53.7% 724 780 P = 0.93); l ² = 0% 665 1913 46.2% 2181 208 0.1% 635 639 666 1913 46.2% 639 666 1913 46.2% 639 666 1913 46.2% 9 0.31) 4695 4694 100.0% 1363 1446 1446 P = 0.94); l ² = 0% 1446	EventsTotalEventsTotalWeightM-H, Fixed, 95% C060065Not estimable3512480.1%1.41 [0.25, 8.09]5417420.5%0.73 [0.25, 2.12]12152111460.8%1.05 [0.48, 2.30]15516215061.5%0.70 [0.37, 1.34]23126221221.5%1.01 [0.60, 1.72]6661568717159649.3%0.95 [0.87, 1.02]2514252553.7%0.94 [0.87, 1.02]724780P = 0.93); l² = 0%665191346.2%0.95 [0.87, 1.04]6351921665191346.2%0.95 [0.87, 1.04]639666666666666666P = 0.48); l² = 0%666666666P = 0.94); l² = 0%666100.0%0.95 [0.89, 1.01]136314466954694100.0%0.95 [0.89, 1.01]1363144660.94100.0%0.95 [0.89, 1.01]	Events Total Events Total Weight M-H, Fixed, 95% CI 0 60 0 65 Not estimable 3 51 2 48 0.1% 1.41 [0.25, 8.09] 5 41 7 42 0.5% 0.73 [0.25, 2.12] 12 152 11 146 0.8% 1.05 [0.48, 2.30] 15 516 21 506 1.5% 0.70 [0.37, 1.34] 23 126 22 122 1.5% 1.01 [0.60, 1.72] 666 1568 717 1596 49.3% 0.95 [0.87, 1.02] 2514 2525 53.7% 0.94 [0.87, 1.02] 724 724 780 780 2.93 [0.31, 27.94] 635 1921 665 1913 46.2% 0.95 [0.87, 1.04] 2181 2169 46.3% 0.96 [0.87, 1.04] 639 666 P = 0.48); I ² = 0% 4694 100.0% 0.95 [0.89, 1.01] 1363 1446 P = 0.94

Fig 8. Forest plot of risk ratios (with 95% confidence intervals) of overall mortality (post-hoc analyses pooling studies of ACE inhibitors and angiotensin-2 receptor blockers) for higher doses versus lower doses in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g008

	High		Low	,	Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	1	M-H, Fixed, 95% C	1	
1.13.1 ACEIs										
Clement 2000 (CHIPS)	11	152	21	146	2.7%	0.50 [0.25, 1.01]				
Poole-Wilson 1998 (NETWORK)	36	516	26	506	3.3%	1.36 [0.83, 2.21]		+		
Packer 1999 (ATLAS) Subtotal (95% CI)	198	1568 2236	247	1596 2248	30.6% 36.6%	0.82 [0.69, 0.97] 0.84 [0.72, 0.99]		= ♦		
Total events	245		294							
Heterogeneity: Chi ² = 5.91, df = 2 (Test for overall effect: Z = 2.13 (P =		² = 66	%							
1.13.2 ARBs										
Havranek 1999	2	47	3	48	0.4%	0.68 [0.12, 3.89]				
Konstam 2009 (HEAAL) Subtotal (95% CI)	450	1921 1968	503	1913 1961	63.0% 63.4%	0.89 [0.80, 0.99] 0.89 [0.80, 0.99]		•		
Total events	452		506							
Heterogeneity: Chi² = 0.09, df = 1 (Test for overall effect: Z = 2.08 (P =		² = 0%	, D							
Total (95% CI)		4204		4209	100.0%	0.87 [0.80, 0.95]		♦		
Total events	697		800							
Heterogeneity: Chi ² = 6.35, df = 4 (P = 0.17);	l² = 37	%				⊢ 0.01	0.1 1	10	100
Test for overall effect: Z = 2.96 (P = Test for subgroup differences: Chi ²	,	f = 1 (P	= 0.57),	² = 0%				Favors high dose Favors lo		100

Fig 9. Forest plot of risk ratios (with 95% confidence intervals) of hospitalization for heart failure (post-hoc analyses pooling studies of ACE inhibitors and angiotensin-2 receptor blockers) for higher doses versus lower doses in patients with heart failure with reduced ejection fraction.

	High		Low	,		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.6.1 ACEIs							
van Veldhuisen 1998	2	60	0	65	0.2%	5.41 [0.26, 110.45]	
Clement 2000 (CHIPS)	19	152	16	146	5.4%	1.14 [0.61, 2.13]	_ _
Poole-Wilson 1998 (NETWORK)	61	516	34	506	11.4%	1.76 [1.18, 2.63]	
Packer 1999 (ATLAS)	105	1568	107	1596	35.1%	1.00 [0.77, 1.30]	÷
Subtotal (95% CI)		2296		2313	52.0%	1.19 [0.97, 1.46]	◆
Total events	187		157				
Heterogeneity: Chi ² = 6.38, df = 3 (P = 0.09);	l² = 53	%				
Test for overall effect: Z = 1.70 (P =	= 0.09)						
1.6.2 ARBs							
Riegger 1999 (STRETCH)	12	213	4	208	1.3%	2.93 [0.96, 8.94]	
Havranek 1999	8	47	6	48	2.0%	1.36 [0.51, 3.62]	
Konstam 2009 (HEAAL)	148	1921	133	1913	44.1%	1.11 [0.88, 1.39]	
Subtotal (95% CI)		2181		2169	47.4%	1.17 [0.94, 1.45]	◆
Total events	168		143				
Heterogeneity: Chi ² = 2.92, df = 2 (P = 0.23);	l² = 31	%				
Test for overall effect: Z = 1.43 (P =	= 0.15)						
1.6.3 Beta-blockers							
Okamoto 2013 (J-CHF)	4	120	2	119	0.7%	1.98 [0.37, 10.62]	
Subtotal (95% CI)		120		119	0.7%	1.98 [0.37, 10.62]	
Total events	4		2				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.80 (P =	= 0.42)						
Total (95% CI)		4597		4601	100.0%	1.19 [1.02, 1.38]	•
Total events	359		302				
Heterogeneity: Chi ² = 9.69, df = 7 (P = 0.21);	l² = 28	%				
Test for overall effect: Z = 2.29 (P =	= 0.02)						0.01 0.1 1 10 100 Favors high dose Favors low dose
Test for subgroup differences: Chi ²	= 0.38, d	f = 2 (P	= 0.83),	² = 0%			Tavors night dose Favors low dose

Fig 10. Forest plot of risk ratios (with 95% confidence intervals) of discontinuation for adverse effects for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g010

from these guidelines, however, is a discussion of the benefits and harms of dose titration. Ideally, HF guidelines would stress the important role that shared decision-making plays in this process, particularly when a patient experiences adverse effects and must decide on the value of maintaining their current dose or continuing to up-titrate. Clinicians can use the results of this review, as summarized in <u>Table 2</u>, to discuss what is known about the benefits and harms of higher versus lower doses of these agents, as well areas of uncertainty about clinicallyimportant outcomes.

Limitations

Our meta-analysis has limitations stemming primarily from the included trials. First, included trials did not always report all outcomes of interest, especially for BBs, limiting available data and decreasing the certainty in pooled estimates. Furthermore, trials seldom reported the definitions for adverse effects such as hypotension and increase in serum creatinine, and it is therefore difficult to put their clinical significance into context without knowledge of their severity or consequence. Second, the ranges of doses studied varied widely between trials, limiting our ability to evaluate any specific dose intensity or compare lower doses to "target doses" recommended by guidelines. Additionally, for trials evaluating more than two dosages, we selected the highest and lowest daily doses for the intervention and control group,

	High		Low	,		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.7.1 ACEIs							
Widimsky 1995 (CASSIS)	1	51	2	48	0.8%	0.47 [0.04, 5.02]	
Clement 2000 (CHIPS)	7	152	3	146	1.1%	2.24 [0.59, 8.50]	
Poole-Wilson 1998 (NETWORK)	6	516	4	506	1.5%	1.47 [0.42, 5.18]	
Packer 1999 (ATLAS)	169	1568	107	1596	39.3%	1.61 [1.27, 2.03]	≢
Subtotal (95% CI)		2287		2296	42.7%	1.60 [1.28, 2.00]	•
Total events	183		116				
Heterogeneity: Chi ² = 1.29, df = 3	(P = 0.73);	l² = 0%	/o				
Test for overall effect: Z = 4.12 (P	< 0.0001)						
1.7.2 ARBs							
Havranek 1999	6	47	1	48	0.4%	6.13 [0.77, 48.97]	+
Riegger 1999 (STRETCH)	1	213	3	208	1.1%	0.33 [0.03, 3.10]	
Konstam 2009 (HEAAL)	203	1921	145	1913	53.9%	1.39 [1.14, 1.71]	Image: A set of the
Subtotal (95% CI)		2181		2169	55.4%	1.40 [1.15, 1.72]	◆
Total events	210		149				
Heterogeneity: Chi ² = 3.55, df = 2	(P = 0.17);	l² = 44	%				
Test for overall effect: Z = 3.31 (P	= 0.0009)						
1.7.3 Beta-blockers							
Bristow 1996 (MOCHA)	6	89	5	83	1.9%	1.12 [0.35, 3.53]	
Subtotal (95% CI)		89		83	1.9%	1.12 [0.35, 3.53]	
Total events	6		5				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.19 (P	= 0.85)						
Total (95% CI)		4557		4548	100.0%	1.48 [1.28, 1.72]	◆
Total events	399		270				
Heterogeneity: $Chi^2 = 5.85$, df = 7	(P = 0.56);	² = 0%	6				
Test for overall effect: Z = 5.21 (P	· //						
Test for subgroup differences: Chi		,	= 0.62),	l² = 0%			Favors high dose Favors low dose
Heterogeneity: $Chi^2 = 5.85$, df = 7 Test for overall effect: Z = 5.21 (P	(P = 0.56); < 0.00001)	6	l² = 0%			0.01 0.1 1 10 100 Favors high dose Favors low dose

Fig 11. Forest plot of risk ratios (with 95% confidence intervals) of hypotension for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g011

respectively, for our analyses. For instance, in one trial the higher-dose arm received enalapril 10 mg daily, which is a quarter of the maximum approved dose for this indication (40 mg) and half the recommended target dose, whereas in another the lower-dose arm received enalapril 20 mg daily (the recommended target dose) and the higher-dose arm received 60 mg daily (triple the target dose). Finally, we could not reliably assess for publication bias as there were too few studies (<10 trials) in each meta-analysis.[24]

Conclusion

Evidence comparing lower and higher doses of drugs in HFrEF is sparse and imprecise. Higher doses of ACEIs and ARBs reduce the risk of HF worsening compared to lower doses, and higher doses of ARBs also reduce the risk of HF hospitalization. Effects of higher versus lower doses of these agents on other outcomes, as well as the impact of higher versus lower doses of BBs on any efficacy outcome, remain unclear. Higher doses importantly increase the risk of hypotension and agent-specific adverse effects (e.g. hyperkalemia, cough, creatinine rise) compared to lower doses. These results reinforce recommendations to start these agents at low doses, involve patients in dose titration decisions, carefully monitor for adverse effects after dose changes, and not be averse to lowering doses when tolerability issues arise.

	High		Low		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
1.8.1 ACEIs							
Widimsky 1995 (CASSIS)	3	51	3	48	1.0%	0.94 [0.20, 4.44]	
Clement 2000 (CHIPS)	13	152	6	146	1.9%	2.08 [0.81, 5.33]	
Poole-Wilson 1998 (NETWORK)	104	516	99	506	31.1%	1.03 [0.81, 1.32]	
Packer 1999 (ATLAS) Subtotal (95% CI)	297	1568 2287	193	1596 2296	59.6% 93.6%	1.57 [1.33, 1.85] 1.39 [1.22, 1.59]	•
Total events	417		301				
Heterogeneity: Chi ² = 8.59, df = 3 (P = 0.04);	l² = 65	%				
Test for overall effect: Z = 4.77 (P ·	< 0.00001)					
1.8.2 Beta-blockers							
Bristow 1996 (MOCHA) Subtotal (95% CI)	34	89 89	20	83 83	6.4% 6.4%	1.59 [1.00, 2.52] 1 .59 [1.00, 2.52]	
Total events	34	05	20	00	0.470	1.00 [1.00, 2.02]	
Heterogeneity: Not applicable	54		20				
Test for overall effect: Z = 1.95 (P =	= 0.05)						
	0.00)						
Total (95% CI)		2376		2379	100.0%	1.40 [1.23, 1.60]	•
Total events	451		321				
Heterogeneity: Chi ² = 8.90, df = 4 (P = 0.06);	l² = 55	%				
Test for overall effect: Z = 5.10 (P ·	< 0.00001)					Favors high dose Favors low dose
Test for subgroup differences: Chi ²	= 0.28, d	f = 1 (P	= 0.60),	l² = 0%			

Fig 12. Forest plot of risk ratios (with 95% confidence intervals) of dizziness for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g012

	Higł	ı	Low	,		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	l	M-H, Fix	ed, 95% Cl	
1.9.1 ACEIs										
Clement 2000 (CHIPS)	1	152	0	146	0.3%	2.88 [0.12, 70.19]				
Widimsky 1995 (CASSIS)	1	51	0	48	0.3%	2.83 [0.12, 67.76]			<u> </u>	
Poole-Wilson 1998 (NETWORK)	17	516	8	506	4.1%	2.08 [0.91, 4.79]			⊢-	
Packer 1999 (ATLAS) Subtotal (95% CI)	100	1568 2287	56	1596 2296	28.3% 33.0%	1.82 [1.32, 2.50] 1.87 [1.39, 2.51]			→	
Total events	119		64							
Heterogeneity: Chi ² = 0.23, df = 3 ((P = 0.97);	l² = 0%	6							
Test for overall effect: Z = 4.14 (P	< 0.0001)									
1.9.2 ARBs										
Konstam 2009 (HEAAL) Subtotal (95% CI)	195	1921 1921	131	1913 1913	67.0% 67.0%	1.48 [1.20, 1.83] 1.48 [1.20, 1.83]				
Total events	195		131							
Heterogeneity: Not applicable										
Test for overall effect: Z = 3.64 (P	= 0.0003)									
Total (95% CI)		4208		4209	100.0%	1.61 [1.35, 1.91]			•	
Total events	314		195							
Heterogeneity: Chi ² = 1.75, df = 4	(P = 0.78);	l² = 0%	6						+ +	100
Test for overall effect: Z = 5.42 (P	< 0.00001)					0.01	0.1 ors high dose	1 10 Favors low do	100
Test for subgroup differences: Chi	² = 1.55, d	f = 1 (P	= 0.21),	² = 35.	3%		rav	ora nigri uose	1 40015 1000 00	196

Fig 13. Forest plot of risk ratios (with 95% confidence intervals) of hyperkalemia for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

	High			,		Risk Ratio		Risk	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fix	ed, 95% Cl		
1.10.1 ACEIs											
Clement 2000 (CHIPS)	3	152	3	146	0.7%	0.96 [0.20, 4.68]			+		
Poole-Wilson 1998 (NETWORK)	30	516	15	506	3.3%	1.96 [1.07, 3.60]					
Packer 1999 (ATLAS) Subtotal (95% CI)	155	1568 2236	112	1596 2248	24.5% 28.5%	1.41 [1.12, 1.78] 1.46 [1.18, 1.81]			+ ♦		
Total events	188		130								
Heterogeneity: Chi ² = 1.27, df = 2 (P = 0.53);	l² = 0%	D								
Test for overall effect: Z = 3.47 (P =	= 0.0005)										
1.10.2 ARBs											
Riegger 1999 (STRETCH)	2	213	6	208	1.3%	0.33 [0.07, 1.59]			+-		
Konstam 2009 (HEAAL)	454	1921	317	1913	70.1%	1.43 [1.25, 1.62]					
Subtotal (95% Cl)		2134		2121	71.5%	1.41 [1.24, 1.60]			♦		
Total events	456		323								
Heterogeneity: Chi ² = 3.31, df = 1 (P = 0.07);	l² = 70	%								
Test for overall effect: Z = 5.21 (P <	< 0.00001)									
Total (95% CI)		4370		4369	100.0%	1.42 [1.27, 1.59]			•		
Total events	644		453								
Heterogeneity: $Chi^2 = 4.63$, df = 4 ($ ^2 = 14$					H		ł		
Test for overall effect: $Z = 6.26$ (P							0.01	0.1	1 10		100
Test for subgroup differences: Chi ²			= 0.75),	l² = 0%				Favors high dose	Favors low o	iose	

Fig 14. Forest plot of risk ratios (with 95% confidence intervals) of creatinine increases for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g014

	Higl	h	Low	,		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.11.1 ACEIs							
Clement 2000 (CHIPS)	16	152	16	146	5.4%	0.96 [0.50, 1.85]	
Poole-Wilson 1998 (NETWORK)	71	516	78	506	25.9%	0.89 [0.66, 1.20]	-
Packer 1999 (ATLAS) Subtotal (95% CI)	166	1568 2236	211	1596 2248	68.7% 100.0%	0.80 [0.66, 0.97] 0.83 [0.71, 0.97]	•
Total events 253 305 Heterogeneity: Chi² = 0.55, df = 2 (P = 0.76); l² = 0% Test for overall effect: Z = 2.29 (P = 0.02)							
Total (95% CI)		2236		2248	100.0%	0.83 [0.71, 0.97]	•
Total events	253		305				
Heterogeneity: Chi² = 0.55, df = 2 (P = 0.76); l² = 0%							
Test for overall effect: Z = 2.29 (P = 0.02) Test for subgroup differences: Not applicable							0.01 0.1 1 10 100 Favors high dose Favors low dose

Fig 15. Forest plot of risk ratios (with 95% confidence intervals) of cough for higher doses versus lower doses of ACE inhibitors, angiotensin-2 receptor blockers and beta-blockers in patients with heart failure with reduced ejection fraction.

https://doi.org/10.1371/journal.pone.0212907.g015

Supporting information

S1 Appendix. (DOCX)

Author Contributions

Conceptualization: James P. McCormack.

Formal analysis: Ricky D. Turgeon, Peter Loewen, James P. McCormack.

Methodology: Michael R. Kolber, Ursula Ellis.

Writing - original draft: Ricky D. Turgeon, Peter Loewen, James P. McCormack.

Writing – review & editing: Ricky D. Turgeon, Michael R. Kolber, Ursula Ellis, James P. McCormack.

References

- 1. Ezekowitz JA, O'Meara E, McDonald MA, Abrams H, Chan M, Ducharme A, et al. 2017 comprehensive update of the Canadian Cardiovascular Society Guidelines for the management of heart failure. Can J Cardiol. 2017; 33: 1342–1433. https://doi.org/10.1016/j.cjca.2017.08.022 PMID: 29111106
- Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American college of cardiology foundation/American Heart Association task force on practice guidelines. Circulation. 2013; 128: 1810– 1852. https://doi.org/10.1161/CIR.0b013e31829e8807 PMID: 23741057
- Flather MD, Yusuf S, Køber L, Pfeffer M, Hall A, Murray G, et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet. 2000; 355: 1575–81. PMID: 10821360
- Brophy JM, Joseph L, Rouleau JL. Beta-blockers in congestive heart failure. A Bayesian meta-analysis. Ann Intern Med. 2001; 134: 550–60. PMID: <u>11281737</u>
- Shibata MC, Tsuyuki RT, Wiebe N. The effects of angiotensin-receptor blockers on mortality and morbidity in heart failure: a systematic review. Int J Clin Pract. 2008; 62: 1397–1402. https://doi.org/10. 1111/j.1742-1241.2008.01806.x PMID: 18793376
- Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N, et al. Effect of Natriuretic Peptide-Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2017; 318: 713–720. https://doi.org/10.1001/jama.2017.10565 PMID: 28829876
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine. Public Library of Science; 2009. p. e1000100. <u>https://doi.org/10.1371/journal.pmed.1000100</u> PMID: 19621070
- Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. British Medical Journal Publishing Group; 2011; 343: d5928. https://doi.org/10.1136/bmj.d5928 PMID: 22008217
- Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011; 64: 401–406. https://doi.org/10.1016/j.jclinepi. 2010.07.015 PMID: 21208779
- Packer M, Poole-Wilson PA, Armstrong PW, Cleland JG, Horowitz JD, Massie BM, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999; 100: 2312–8. PMID: 10587334
- Widimský J, Kremer HJ, Jerie P, Uhlír O. Czech and Slovak spirapril intervention study (CASSIS). A randomized, placebo and active-controlled, double-blind multicentre trial in patients with congestive heart failure. Eur J Clin Pharmacol. 1995; 49: 95–102. PMID: 8751029
- Clement DL, De Buyzere M, Tomas M, Vanavermaete G. Long-term effects of clinical outcome with low and high dose in the Captopril in Heart Insufficient Patients Study (CHIPS). Acta Cardiol. 2000; 55: 1–7. https://doi.org/10.2143/AC.55.1.2005711 PMID: 10707752
- Nanas JN, Alexopoulos G, Anastasiou-Nana MI, Karidis K, Tirologos A, Zobolos S, et al. Outcome of patients with congestive heart failure treated with standard versus high doses of enalapril: a multicenter study. High Enalapril Dose Study Group. J Am Coll Cardiol. 2000; 36: 2090–5. PMID: 11127445
- Poole-Wilson PA, Bain RJ, Baksi A, Baxter RH, Been A, Benaim, et al. Clinical outcome with enalapril in symptomatic chronic heart failure; A dose comparison. Eur Heart J. 1998; 19: 481–489. <u>https://doi.org/ 10.1053/euhj.1997.0839</u> PMID: 9568453
- Pacher R, Stanek B, Globits S, Berger R, Hülsmann M, Wutte M, et al. Effects of two different enalapril dosages on clinical, haemodynamic and neurohumoral response of patients with severe congestive heart failure. Eur Heart J. 1996; 17: 1223–32. PMID: 8869864

- van Veldhuisen DJ, Genth-Zotz S, Brouwer J, Boomsma F, Netzer T, Man In 'T Veld AJ, et al. High- versus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J Am Coll Cardiol. 1998; 32: 1811–8. PMID: 9857856
- Havranek EP, Thomas I, Smith WB, Ponce GA, Bilsker M, Munger MA, et al. Dose-related beneficial long-term hemodynamic and clinical efficacy of irbesartan in heart failure. J Am Coll Cardiol. 1999; 33: 1174–81. PMID: 10193713
- Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet (London, England). 2009; 374: 1840–8. https://doi.org/10.1016/S0140-6736(09)61913-9
- Riegger GA, Bouzo H, Petr P, Münz J, Spacek R, Pethig H, et al. Improvement in exercise tolerance and symptoms of congestive heart failure during treatment with candesartan cilexetil. Symptom, Tolerability, Response to Exercise Trial of Candesartan Cilexetil in Heart Failure (STRETCH) Investigators. Circulation. 1999; 100: 2224–30. PMID: 10577995
- Bristow MR, O'Connell JB, Gilbert EM, French WJ, Leatherman G, Kantrowitz NE, et al. Dose-response of chronic beta-blocker treatment in heart failure from either idiopathic dilated or ischemic cardiomyopathy. Bucindolol Investigators. Circulation. 1994; 89: 1632–42. PMID: 7908610
- Okamoto H, Hori M, Matsuzaki M, Tsutsui H, Yamazaki T, Nagai R, et al. Minimal dose for effective clinical outcome and predictive factors for responsiveness to carvedilol: Japanese chronic heart failure (J-CHF) study. Int J Cardiol. 2013; 164: 238–44. https://doi.org/10.1016/j.ijcard.2012.11.051 PMID: 23245621
- Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. 1996; 94: 2807–16. PMID: 8941106
- 23. Hori M, Sasayama S, Kitabatake A, Toyo-oka T, Handa S, Yokoyama M, et al. Low-dose carvedilol improves left ventricular function and reduces cardiovascular hospitalization in Japanese patients with chronic heart failure: the Multicenter Carvedilol Heart Failure Dose Assessment (MUCHA) trial. Am Heart J. 2004; 147: 324–30. https://doi.org/10.1016/j.ahj.2003.07.023 PMID: 14760332
- 24. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0. In: Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0 [Internet]. 2011 [cited 25 Apr 2018]. Available: http://handbook-5-1.cochrane.org/
- Khan MS, Fonarow GC, Ahmed A, Greene SJ, Vaduganathan M, Khan H, et al. Dose of angiotensinconverting enzyme inhibitors and angiotensin receptor blockers and outcomes in heart failure: a metaanalysis. Circ Hear Fail. 2017; 10: 1–8. <u>https://doi.org/10.1161/CIRCHEARTFAILURE.117.003956</u> PMID: 28790052
- McCormack J, Vandermeer B, Allan GM. How confidence intervals become confusion intervals. BMC Med Res Methodol. 2013; 13: 134. https://doi.org/10.1186/1471-2288-13-134 PMID: 24172248