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1  | INTRODUC TION

Endometriosis represents a common gynecological condition in 
which the stromal or glandular epithelium gets implanted in ex-
trauterine locations.1-3 The prevalence of endometriosis is es-
timated to be 10% among women of reproductive age, which is 
approximately 190 million women worldwide.4 Some women with 
endometriosis are asymptomatic; however, most of them suffer 

from chronic pelvic pain, dysmenorrhea, deep dyspareunia, and 
infertility.5 Although the hypotheses about the etiopathology of 
endometriosis have been reported for almost one century, the 
etiology remains unknown.6 Several evidences suggested that 
environmental pollutants might be involved in the pathogenesis 
of endometriosis.7-11 These endocrine-disrupting chemicals in-
terrupt hormonal homeostasis and result in estrogen signaling 
changes.11-23
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Abstract
Background: Endometriosis is a common gynecological condition in which stromal 
or glandular epithelium is implanted in extrauterine locations. Endometriosis causes 
detrimental effects on the granulosa cells, and phthalate interferes with the biologi-
cal and reproductive function of endometrial cells at a molecular level.
Methods: This article retrospectively reviewed the studies on phthalate exposure 
and its relationship with endometriosis. A literature search was performed for sci-
entific articles using the keywords “phthalate and endometriosis,” “endometriosis 
and granulosa cells,” “phthalate and granulosa cells,” and “phthalates and endometrial 
cells.”
Results: Endometriosis can affect cytokine production, steroidogenesis, cell cycle 
progression, expression of estrogen receptor-α (ER-α)/progesterone receptor (PR), 
and cause endoplasmic reticulum stress, senescence, apoptosis, autophagy, and oxi-
dative stress in the granulosa cells. Mono-n-butyl phthalate (MnBP) alters the expres-
sion of cytokines, cell cycle-associated genes, ovarian stimulation, steroidogenesis, 
and progesterone production. Several in vitro studies have demonstrated that phtha-
late caused inflammation, invasion, change in cytokines, increased oxidative stress, 
viability, resistance to hydrogen peroxide, and proliferation of endometrial cells.
Conclusion: This might provide new insights about the impact of phthalate on the 
pathogenesis of endometriosis and its consequences on the ovarian function.

K E Y W O R D S

endometrial cells, endometriosis, granulosa cells, phthalate, reproductive function

www.wileyonlinelibrary.com/journal/rmb
mailto:
https://orcid.org/0000-0002-7445-0261
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tzengcr@tmu.edu.tw


160  |     CHOU and TZEnG

Phthalate is diesters of phthalate, which are commonly used in 
several plastic products, and solubilize other agents.24-26 Ingestion 
and inhalation are the common routes of phthalate exposure.27-29 
After entering the body, phthalates are hydrolyzed by the diges-
tive tract into monoesters, then absorbed, oxidized, and excreted 
in the urine.28,30-32 Several reports have suggested a link between 
phthalates and human reproductive health through their influence 
on spermatogenesis in males.33 Previous studies have demon-
strated that sexually mature female rats exposed to di (2-ethylhexyl) 
phthalate (DEHP) and its metabolite, mono (2-ethylhexyl) phthalate 
(MEHP) showed a decrease in serum progesterone, delayed ovu-
lation, and smaller preovulatory follicles with high levels of serum 
follicle-stimulating hormone (FSH).17,19,34,35 Many studies demon-
strated that phthalate exposure is significantly associated with 
endometriosis.10,36-40

Kim et al. demonstrated the effects of DEHP on endometrial 
cells, including cell invasion, viability, proliferation, and oxidative 
stress through mitogen-activated protein kinase (MAPK)/ extracel-
lular regulated protein kinase (Erk), and nuclear factor-κB (NF-κB) 
pathways.10,41 Endometriosis is harmful to granulosa cells, because it 
affects steroidogenesis and cell cycle progression, lowers aromatase 
activity, and alters the mitochondrial gene expression in human 
granulosa cells.38,42-47 This article retrospectively searched the key-
words “phthalate and endometriosis,” “endometriosis and granulosa 
cells,” “phthalate and granulosa cells,” and “phthalates and endome-
trial cells” on PubMed. This review aims to evaluate the exposure of 
phthalate and the risk of endometriosis, and its impact on the granu-
losa cells based on current data.

2  | PHTHAL ATE E XPOSURE AND THE RISK 
OF ENDOMETRIOSIS

Several studies and meta-analyses have suggested an association 
between phthalate exposure and the risk of endometriosis (Table 1). 
In 2003, Cobellis et al.48 found a positive correlation between 
plasma DEHP and endometriosis. DEHP and MEHP were detected in 
the peritoneal fluid. Reddy et al. published two papers about higher 
levels of butyl benzyl phthalate (BBP), DEHP, di-n-butyl phthalate 
(DnBP), and di-n-octyl phthalate (DnOP) in women with endome-
triosis compared to those in the control group, which were also sig-
nificantly associated with stage I-IV of endometriosis.49,50 Nazri et al. 
also reported that DEHP was increased in the serum of women with 
endometriosis.51 In Taiwan, two studies demonstrated an increased 
level of urinary mono-n-butyl phthalate (MnBP) in women with en-
dometriosis.38,52 In Korea, Kim et al. reported that women with en-
dometriosis had higher levels of DEHP and MEHP in the plasma, and 
the presence of mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), 
mono-2-ethyl-5-oxohexyl phthalate (MEOHP), Log mono-2-ethyl-
5-carboxyphentyl phthalate (MECPP), Log MEHHP, Log MEOHP in 
the urine.41,53 In the United States, 14 phthalate metabolites were 
analyzed in both, population cohort comprised women matched on 
age and residence (n = 131) and operative cohort comprised women 

undergoing laparoscopy (n = 495). The study found that MnBP, 
mono-2-carboxymethyl hexyl phthalate (MCMHP), MECPP, MEHP, 
MEHHP, MEOHP were higher in the population cohort in women 
with endometriosis. Moreover, MEHP and monooctyl phthalate 
(MOP) were increased in the operative cohort in women with en-
dometriosis.8 Upson et al.54 showed an inverse association between 
MEHP and the risk of endometriosis. However, some studies have 
reported a reverse correlation or no association between endome-
triosis and some phthalate metabolites, which might be due to non-
adjustment for other covariates or small sample size.54-57

Recently, two meta-analyses reported about the association 
between endometriosis and phthalate metabolites. The most com-
monly used phthalate, DEHP, showed a significant risk of endometri-
osis (OR = 1.42; 95% CI: 1.19-1.7).39 Another meta-analysis analyzed 
five phthalate metabolites from eight studies and reported that only 
MEHHP was associated with endometriosis in Asia but not in the 
USA.58

These studies and meta-analyses strengthen the evidence that 
phthalate metabolites might play an important role in the occurrence 
of endometriosis. More studies on urine samples of women with en-
dometriosis should be conducted to prove the association between 
phthalate exposure and endometriosis.

3  | GR ANULOSA CELL S IN WOMEN WITH 
ENDOMETRIOSIS

Endometriosis might affect the granulosa cell steroidogenesis, 
change the cell cycle progression, cytokine expression (interleukin-6 
[IL6], interleukin-8 [IL-8], interleukin-12 [IL-12], and tumor necrosis 
factor-α [TNF-α]), alter the mitochondrial gene expression, decrease 
the aromatase activity, and vascular endothelial growth factor 
(VEGF) and growth differentiation factor-9 (GDF-9) in human granu-
losa cells.42-46,59-63 These reports suggest that endometriosis might 
be harmful to granulosa cells making them less sensitive to lutein-
izing hormone stimulation.47,64 Moreover, the expression of proges-
terone receptor (PR) and estrogen-α in granulosa cells was higher 
in women with endometriosis than in those with tubal infertility.65 
Sreerangaraja Urs et al.66demonstrated that decrease in steroido-
genic acute regulatory protein (StAR) and 3β-hydroxysteroid dehy-
drogenase (3β-HSD), mitochondrial dysfunction, and apoptosis were 
found in the granulosa cells of women with endometriosis. Sanchex 
et al.67 reported that dysregulation of the wingless-related inte-
gration site (WNT) pathway and down-regulation of survivin were 
found in the granulosa cells of women with endometriosis.

Recently, Sirtuin 2 (silent information regulator proteins; SIRT2) 
and kisspeptin receptor (KISS1R) were found to be increased in the 
granulosa cells of women with endometriosis.68,69 The granulosa 
cells from women with endometriosis had higher NF-κB binding ac-
tivity, increased expression of inhibitor of NF-κB kinase subunit β 
(IKKβ) and NF-κB inhibitor α (IκBα), which decreased the telomer-
ase activity and human telomerase reverse transcriptase (hTERT).70 
Moreover, intrafollicular TNF-α might decrease the telomerase 
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activity and hTERT through NF-κB activation.70 Li et al.71 found that 
down-regulation of the long non-coding RNA MALAT1 decreased 
the granulosa cell proliferation in women with endometriosis 
through an increase in the p21 expression via the MAPK/Erk activa-
tion pathway. In women with peritoneal endometriosis, the expres-
sion of bone morphogenetic protein 6 (BMP6) and mothers against 
decapentaplegic homolog 6 (SMAD6) were decreased in the gran-
ulosa cells.72 Moreover, Ding et al.73 demonstrated the increased 
Beclin-1 (BECN1) and provoked autophagy in the late follicular 

progesterone elevation in the granulosa cells of women with ovarian 
endometriosis.

There are many evidences about increased oxidative stress 
in the granulosa cells of women with endometriosis, who when 
compared to women with normal ovaries showed higher 8-hy-
droxydeoxyguanosine and lipid peroxidation (4-hydroxy-2-non-
enal).74-76 Lin et al. reported that the granulosa cells from women 
with endometriosis had excessive reactive oxygen species, which 
provoked senescence through endoplasmic reticulum (ER) stress, 

TA B L E  1   Epidemiological studies and meta-analysis of the association between Phthalate or and endometriosis

Author Study design

No. of 
Endometriosis/
control Samples Metabolites Outcomes of endometriosis Reference

Cobellis et al. 
2003

Case-control 35/24 Blood DEHP, MEHP Higher plasma DEHP 48

Peritoneal 
fluid

Detectable peritoneal fluid 
DEHP and/or MEHP

Reddy et al. 
2006

Case-control 49/38 Blood BBP, DEHP, DnBP, DnOP Higher BBP, DEHP, DnBP, 
DnOP

50

Reddy et al. 
2006

Case-control 
(stage I-IV)

85/135 Blood BBP, DEHP, DnBP, DnOP Higher BBP, DEHP, DnBP, 
DnOP

49

Itoh et al. 
2009

Case-control 57/80 Urine MBzP, MEHHP, MEHP, 
MEOHP, MEP, MnBP

No significant association 57

Weuve et al. 
2010

Case-sectional 87/1020 Urine MnBP, MBzP, MEHHP, MEHP, 
MEOHP, MEP

Higher MnBP, Lower MEHP 56

Huang et al. 
2010

Case-control 28/29 Urine MMP, MEP, MnBP, MBzP, 
MEOHP, MEHHP

Higher MnBP 52

Kim et al. 
2011

Case-control 97/169 Blood DEHP, MEHP Higher DEHP, MEHP 53

Buck Louis 
et al. 2013

Cohort 
(Population)

14/113 Urine MnBP, MBzP, MCHP, 
MCMHP, MCPP, MECPP, 
MEHHP, MEHP, MEOHP, 
MEP, MIBP, MMP, MNP, 
MOP

Two fold higher MnBP, 
MCMHP, MECPP, MEHP, 
MEHHP, MEOHP

8

Cohort 
(Operative)

190/283 Urine Higher MEHP, MOP,

Upson et al. 
2013

Case-control 95/195 Urine MEHP, MEHHP,MEOHP, 
MECPP, DEHP, MBzP, BzBP, 
MEP, MiBP, MnBP, DBP

Lower MEHP 54

Kim et al. 
2015

Cohort 55/33 Urine MBzP, MECPP, MEHHP, 
MEOHP, MnBP

Higher MEHHP, MEOHP, Log 
MECPP, Log MEHHP, Log 
MEOHP

41

Nazri et al. 
2018

Case-control 50/50 Blood DEHP Higher DEHP 51

Cai et al. 2019 Meta-analysis 8 studies MEHHP, MEHP, MEP, MBzP, 
MEOHP

Higher MEHHP 58

Wen et al. 
2019

Meta-analysis 6 studies PAEs Higher DEHP 39

Moreira 
Fernandez 
et al. 2019

Case-control 30/22 Urine MMP, MiBP, MnBP, MCHP, 
MiNP, MOP, MBzP, MEHP

No significant association 55

Chou et al. 
2020

Case-control 
(Operative)

123/82 Urine MnBP, MEHP, MBzP, MEOHP, 
MEHHP

Higher MnBP 38

Abbreviations: BBP, butyl benzyl phthalate; DEHP, di-2-ethylhexyl phthalate; DnBP, di-n-butyl phthalate; DnOP, di-n-octyl phthalate; MBzP, 
monobenzyl phthalate; MCHP, monocyclohexyl phthalate; MCMHP, mono-2-carboxymethyl hexyl phthalate; MCPP, mono-3-carboxypropyl 
phthalate; MECPP, mono-2-ethyl-5-carboxyphentyl phthalate; MEHHP, mono-2-ethyl-5-hydroxyhexyl phthalate; MEHP, mono-2-ethylhexyl 
phthalate; MEOHP, mono-2-ethyl-5-oxohexyl phthalate; MEP, monoethyl phthalate; MIBP, mono-2-isobutyl phthalate; MMP, monomethyl 
phthalate;MNP, monoisonoyl phthalate; MnBP, mono-n-butyl phthalate; MOP, monooctyl phthalate; PAEs, phthalate esters.
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decrease in mitochondrial membrane potential, and reduction in 
ATP production.77 ER stress is significantly associated with oxida-
tive stress. Treating the oxidative stress inducer caused upregu-
lation of the unfold protein response (UPR)-associated genes and 
apoptosis in human granulosa cells.78 Moreover, the granulosa 
cells from women with endometriosis expressed several tran-
scripts associated with UPR and increased the phosphorylation of 
ER stress sensor proteins, including inositol-requiring enzyme 1 
and double-stranded RNA-activated protein kinase-like ER kinase 
(PERK). These results suggested that high oxidative stress in the 
granulosa cells in women with endometriosis provoked ER stress 
and apoptosis.78 These studies illustrated that endometriosis is 
harmful to the granulosa cells and might lead to ovarian dysfunc-
tion (Figure 1).

4  | EFFEC TS OF PHTHAL ATE ON 
GR ANULOSA CELL S

Phthalates are common synthetic chemicals with ubiquitous ex-
posures in our daily life. Till now, several epidemiologic evidences 
have reported that phthalates might be toxic to the male and fe-
male reproductive system.37 Studies from laboratory examinations 
showed that phthalates interacted with the female reproductive 

system in animal models; these findings support the potential 
hazardous effects of phthalates in women. Granulosa cells play 
an important role in the ovarian follicular growth and steroido-
genesis. The first study from Treinen et al.79 reported that MEHP 
decreased FSH-induced cyclic adenosine monophosphate (cAMP) 
accumulation in the granulosa cells. Furthermore, MEHP also inhib-
ited FSH-induced progesterone production by a protein kinase-C-
independent mechanism.80 Davis et al. found that MEHP-related 
decrease in estradiol concentration might be due to decreased aro-
matase independent of the cAMP-stimulated pathway in granulosa 
cells.17,19,81 Lovekamp-Swan et al. demonstrated that MEHP stimu-
lated peroxisome proliferator-activated receptor-α (PPAR-α) and 
peroxisome proliferator-activated receptor-γ (PPAR-γ) to inhibit 
aromatase and decreased cAMP stimulation to alter the metabo-
lism- and differentiation-associated genes.82,83 MEHP stimulated 
basal steroidogenesis and StAR expression in primary cultures of 
Leydig cell progenitors and immature granulosa cells in rats.84 It in-
duced ovarian toxicity by inhibition of follicular development and 
abnormal steroid hormone synthesis in cultured rat ovarian fol-
licles.85 It also inhibited the rat granulosa cell viability, increased 
apoptosis through caspase-3 activation and Bcl-2-associated x pro-
tein (BAX) expression, stimulated steroid hormone secretion, and 
induced the expression of key enzymes in progesterone expression 
and sex hormone receptors.86-88

F I G U R E  1   The potential effects of endometriosis on granulosa cells. Endometriosis might affect steroidogenesis (aromatase, StAR, 
3β-HSD), cytokine production (IL6, IL-8, IL-12, TNF- α), cell cycle progression, ER-α/ PR, oxidative stress, ER stress, apoptosis, senescence, 
and autophagy in granulosa cells. The granulosa cells in women with endometriosis showed increased oxidative stress, which induced DNA 
damage, and decreased the mitochondrial membrane potential and ATP production and induced apoptosis. The increased TNF-α activated 
NF-κβ to decrease the telomerase activity and hTERT. TNF-α also induced extrinsic and intrinsic apoptosis pathway and decreased survivin 
expression. The increased oxidative stress in the granulosa cells in women with endometriosis stimulated senescence and apoptosis through 
ER stress. StAR, steroidogenic acute regulatory protein; 3β-HSD, 3β-hydroxysteroid dehydrogenase; IL-6, interleukin-6; IL-8, interleukin-8; 
IL-12, interleukin-12; TNF-α, tumor necrosis factor α; ER-α, estrogen receptor- α ; PR, progesterone receptor; NF-κB, nuclear factor-κB.; 
hTERT, human telomerase reverse transcriptase, ER stress, endoplasmic reticulum stress; BECN1, beclin-1. This figure was created with 
BioRender.com [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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In DEHP-fed rats, the estrous cycles were prolonged, delayed, 
or ovulation was suppressed; moreover, smaller preovulatory fol-
licles were found, suggestive of polycystic ovaries and hypoestro-
genic anovulatory cycles.34 PPARs are the crucial regulators of cell 
differentiation and lipid metabolism. DEHP had a dual effect on the 
pituitary-gonadal axis including stimulation of the hormonal effects 
of the pituitary gland and inhibition of steroidogenesis in granulosa 
cells at the same time.89 The DEHP exposure induced apoptosis and 
increased the production of reactive oxygen species (ROS) in horse 
granulosa cells.90 DEHP also provoked oxidative stress by increasing 
the ROS levels and mitochondrial membrane potential, and the levels 
of apoptotic markers (BAX and cytochrome c).91 Furthermore, DEHP 
arrested the cell cycle progression in G0/G1 phases and increased the 
proportion of apoptosis in rat granulosa cells.92 Chen et al.93 found 
that benzyl butyl phthalate (BBP) stimulated necrosis through aryl hy-
drocarbon receptor (AhR) and cytochrome-P450 (CYP)1B1 in HO23 
cells (immortalized human granulosa cells). In KGN cells (human gran-
ulosa cell lines), DEHP reduced estradiol production and induced AhR 
expression to regulate the function of granulosa cells.94 DEHP also 
induced several microRNAs (miRNAs), including let-7b, miR-17-5p 
miR-181a, and miR-151, to inhibit the proliferation of follicular gran-
ulosa cells. Moreover, DEHP affected the anti-apoptosis function of 
KIT ligand (KITL) and growth differentiation factor-9 (GDF-9) and in-
creased the BAX/ BCL2 expression ratio to promote apoptosis of the 
granulosa cells.95 Recently, Li et al.88 demonstrated that quails fed on 

DEHP showed mitochondrial damage and decreased thickness of the 
ovarian granulosa cell layer, along with oxidative stress.

DBP is ubiquitous in our daily life and might affect the health 
in humans. Wang et al.96 reported that DBP reduced FSH-induced 
KIT ligand G (KITLG) expression and hypoxia-inducible factor 1-α 
(HIF1-α) to suppress estradiol and progesterone production and pro-
liferation of the granulosa cells. From global gene expression analysis, 
expression of the cell cycle, mitosis, Rho GTPases, polo-like kinase-1 
(PLK1), Aurora B signaling pathways, and E2F-mediated regulation 
of DNA replication, steroidogenic, angiogenic, and epidermal growth 
factor-like growth factor genes, including CYP11A1, CYP19A1 (aro-
matase), VEGF-A, betacellulin (BTC), StAR and epiregulin (EREG) 
were associated with DBP exposure in the granulosa cells.97,98 Li 
et al.99 reported that DBP reduced oocyte germinal vesicle break-
down (GVBD) and polar body extrusion (PBE) rate in mice, damaged 
oocyte cytoskeleton, and disrupted the cortical granule-free do-
mains (CGFDs), and induced early apoptosis of the oocyte and gran-
ulosa cells. In the human granulosa cell line KGN, treatment with 
DBP upregulated the expression of aromatase, estradiol, and FSH 
receptors.100 Moreover, Mei et al.101 found that dimethyl phthalate 
(DMP) increased the apoptotic rate of ovarian granulosa cells and 
interfered with the pituitary-ovary axis. These studies proved that 
phthalate interferes with the biological and reproductive function.

The effects of MnBP on granulosa cells are shown in Figure 2. 
With a low dose of MnBP, the expression of progesterone, vimentin, 

F I G U R E  2   Potential mechanisms of MnBP on human granulosa cells. A high dose of MnBP, it stimulates IL-1β and TNF-α cytokine 
expression. MnBP also affects the G2/M phase of mitosis and spindle assembly checkpoint, including BIRC5, BUB1, CDC20, and cyclin B1 
gene expression. These changes cause decrease in AMH, inhibin B, StAR, and P450scc, which affect ovarian stimulation and steroidogenesis. 
The affected gene expressions result in poor health of the cells. A low dose of MnBP stimulated NF-κB binding to vimentin promoter and 
induced progesterone production. MnBP, Mono-n-butyl phthalate; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor α; BIRC5, baculoviral 
inhibitor of apoptosis repeat-containing 5; BUB1B, budding uninhibited by benzimidazoles 1 homolog beta, mitotic checkpoint serine/
threonine kinase beta; CDC20, cell division cycle 20; AMH, anti-Mullerian hormone; StAR, steroidogenic acute regulatory protein; P450ssc, 
cytochrome cholesterol side-chain cleavage enzyme; NF-κB, nuclear factor-κB. This figure was created with BioRender.com [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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and phosphorylated p65 was significantly increased in the mouse 
granulosa cells. Further experiments found that MnBP stimulated 
the binding of p65 to vimentin promoter to induce progesterone 
production.102 Recently, Chou et al. demonstrated that MnBP at-
tenuated the ratio of the mitochondrial membrane potential and 
affected the gene expression levels of baculoviral inhibitor of apop-
tosis repeat-containing 5 (BIRC3), budding uninhibited by benzimid-
azoles 1 homolog beta, mitotic checkpoint serine/threonine kinase 
beta (BUB1B), cell division cycle 20 (CDC20), cyclin B1, IL-1β, and 
TNF-α in human granulosa cells. Moreover, MnBP also decreased 
the steroidogenesis genes and hormones, including anti-Mullerian 
hormone (AMH), inhibin B, StAR, and cytochrome cholesterol side-
chain cleavage enzyme (P450ssc), and expression of human granu-
losa cells.38

5  | EFFEC TS OF PHTHAL ATE 
METABOLITES ON ENDOMETRIAL CELL S

The first report of the effects of phthalate on endometrial cells 
showed that DEHP and MEHP stimulated the secretion of pros-
taglandin F2-α (PGF2-α) and inhibited the secretion of prosta-
glandin E2 (PGE2).103 Kim et al.104 also found that DEHP results 
in increased viability of the endometrial stromal cells in the se-
rum-free condition with exposure to hydrogen peroxide. Another 

study demonstrated that DEHP induced the expression of IL-1β, 
IL-8, matrix metalloproteinase-2 (MMP2), intercellular cell adhe-
sion molecule-1 (ICAM-1), cyclooxygenase-2 (COX2), and PPARγ 
to stimulate the inflammatory response, and it might be mediated 
by PPARγ.105

The effects of DEHP on human endometrial cells include in-
creased ROS generation and decreased expression of superoxide 
dismutase (SOD), glutathione peroxidase (GPX), heme oxygenase 
(HO), and catalase (CAT), phosphorylated-Erk/ phosphorylated-p38 
and NF-κB-mediated transcription, and estrogen receptor-α (ER-α) 
expression.106 In DEHP-treated mice, the volume of peritoneal endo-
metriotic lesion increased, with higher expression of MMP-2, MMP-
9, and p21-activated kinase-4 (Pak-4). Increased cell invasion and 
phosphorylation of Erk were observed in DEHP-treated endometrial 
cells.41 Human endometrial cells from the eutopic endometrium of 
endometriosis showed upregulation of aldo-keto reductase (AKR) 
1C1, AKR1C2, AKR1C3, and AKR1B10 after DEHP exposure, while 
AKR1C3 continuously increased in the endometrial cells of the ecto-
pic endometrium in patients of endometriosis both before and after 
DEHP exposure.107 Under conditions of hypoxia, DEHP decreased 
the ER-α protein and VEGF secretion in Ishikawa endometrial ade-
nocarcinoma cells.108 In chronic, low-dose DEHP feeding mice, the 
endometrial stromal cells were significantly increased and changed 
the localization of steroid hormone receptors.109 These studies are 
illustrated in Figure 3.

F I G U R E  3   The effect of phthalates on endometrial cells. After phthalate stimulation, the endometrial cells showed inflammation, 
invasion, change of cytokines, increased oxidative stress, cell viability, resistance to hydrogen peroxide, and proliferation. The inflammatory 
effects stimulated the secretion of PGF2-α, Pak-4, PPARγ, ICAM-1, COX2, cytokine (IL-1β and IL-8), and inhibited the secretion of PGE2. 
Phthalate also increased ROS generation and decreased the expression of SOD, GPX, HO, and CAT. In DEHP-treated mice, the endometrial 
cell might show increased migration through MMP-2 and MMP-9. Increased ER-α/PR activated p-ERK/p-p38 and NF-κB. Exposure to 
phthalate induced endometrial cell viability, resistance to hydrogen peroxide and proliferation. PGF2-α, prostaglandin F2-α; IL-1β, interleukin-
1β; IL-8, interleukin-8; Pak-4, p21-acticvated kinase-4; PPARγ, peroxisome proliferator-activated receptor-γ; ICAM-1, intercellular cell 
adhesion molecule-1; COX2, cyclooxygenase-2; prostaglandin E2, PGE2. ROS, reactive oxygen species; SOD, superoxide dismutase, GPX, 
glutathione peroxidase; HO, heme oxygenase; CAT, catalase; MMP2, matrix metalloproteinase-2; MMP9, matrix metalloproteinase-9; ER-α, 
estrogen receptor-α; PR, progesterone receptor; NF-κB, nuclear factor-κB. This figure was created with BioRender.com [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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From these studies, it is evident that phthalate exposure might 
affect gene regulation, invasion, cell viability, and proliferation of en-
dometrial cells to influence the development of endometriosis.

6  | CONCLUSION

In this review, the interaction between phthalate exposure and gran-
ulosa cells in women with endometriosis has been discussed based 
on the evidence from several studies. A thorough understanding 
of the effects of phthalate on granulosa cells and endometrial cells 
might provide new insights into the pathogenesis of endometriosis 
and its biological effects on ovarian function. More studies are nec-
essary to understand the detailed mechanisms of the interplay be-
tween phthalate, granulosa cells, and endometriosis.
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