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Evolutionary screening of precision oncology
biomarkers and its applications
in prognostic model construction

Zhi-Wen Zhang,1 Ke-Xin Zhang,1 Xuan Liao,1 Yuan Quan,1,* and Hong-Yu Zhang1,2,*
SUMMARY

Biomarker screening is critical for precision oncology. However, one of the main challenges in precision
oncology is that the screened biomarkers often fail to achieve the expected clinical effects and are rarely
approved by regulatory authorities. Considering the close association between cancer pathogenesis and
the evolutionary events of organisms, we first explored the evolutionary feature underlying clinically
approved biomarkers, and two evolutionary features of approved biomarkers (Ohnologs and specific
evolutionary stages of genes) were identified. Subsequently, we utilized evolutionary features for
screening potential prognostic biomarkers in four common cancers: head and neck squamous cell carci-
noma, liver hepatocellular carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Finally,
we constructed an evolution-strengthened prognostic model (ESPM) for cancers. These models can pre-
dict cancer patients’ survival time across different cancer cohorts effectively and perform better than con-
ventional models. In summary, our study highlights the application potentials of evolutionary information
in precision oncology biomarker screening.

INTRODUCTION

Cancer is still the leading cause of premature death worldwide, and its prominence as a death cause is increasingly rising.1–3 The lack of

early diagnosis and appropriate treatment strategies may substantially result in a high cancer mortality rate.4–6 Precision oncology is one of

the most critical fields of modern medicine, and its dominant therapeutic paradigm is to personalize each patient’s treatment based on

oncology biomarkers.7 Oncology biomarkers are essential in optimizing cancer prevention, diagnosis, and treatment.8 Therefore, the effec-

tive identification of biomarkers will promote the progress of precision oncology. The rapid accumulation of multi-omics data over the past

decades has facilitated the identification of cancer-related genes and screening oncology biomarkers.9–11 However, biomarker screening

has faced a dilemma: the screened biomarkers often do not achieve the expected clinical effects and are rarely approved by regulatory

authorities.12

High-throughput genomics, proteomics, and metabolomics approaches allow the characterization and quantification of thousands of

epigenetic markers, transcripts, proteins, and metabolites.13 Precision oncology specialists are increasingly using computer technology

to help explain complex cancer mechanisms and guide clinical decision-making.14 Constructing a prognostic model using biomarkers

can guide clinicians to stratify patients based on their pathological conditions and tailor personalized treatment plans, thereby

improving survival rates for cancer patients.15–17 Wang et al. used bioinformatics to explore the potential of glypican 2 as a biomarker

for pan-cancer.18 Yang et al. screened long non-coding RNAs associated with prognosis in ovarian cancer and constructed prognostic

prediction models. Their model showed better predictive precision than traditional clinical factors.19 Based on the results of multivariate

Cox regression analysis of patients with liver cancer, Zhang et al. constructed a model for survival in high-risk and low-risk groups that

could be differentiated.20 These results suggest that combining machine learning and multi-omics data is an effective way to screen

biomarkers.

Carcinogenesis depends on key driver changes (mutations and epigenetic alterations in cancer cells), making it easily associated with evo-

lution.21 The various distinguishing hallmarks of cancer did not evolve independently with the advent of the organism but are an ordered and

effective response to survival pressures.With the development of evolutionary medicine, accumulated evolutionary knowledge has been suc-

cessfully used to interpret the pathogenesis of many diseases, including cancer, and to identify causative genes.22,23 Cancer evolution is a

process in which tumor cells adapt to the external environment, which can suppress the immune system’s ability to recognize and attack tu-

mors.24 Based on the hallmarks of cancer cells, they can de- and trans-differentiate25 and have unlimited replication potential, similar to
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Figure 1. The proportion of Ohnologs in different types of biomarkers

Hypergeometric distribution tests confirmed a significant enrichment of Ohnologs in clinical biomarkers (p = 2.77e�05) and FDA-approved biomarkers

(p = 3.65e�07) compared to all TTD biomarkers.
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unicellular organisms.26,27 Furthermore, cancer shares many characteristics with organisms at certain stages of evolution.28,29 This provides an

association between cancer and the evolutionary stage.

The vertebrate genome has undergone two important evolutionary events, namely whole-genome duplications (WGDs), which occurred

in their jawless ancestor about 500 million years ago.30 WGD gene duplicates, which have been uniformly termed ‘‘Ohnologs,’’ contained

approximately 30% of the human protein-coding genes.31 Ohnologs are characterized by relatively high dosage sensitivity and tend to

bring phenotypic variety upon changes in gene expression.32 Ohnologs have been found to harbor mutations that are strongly associated

with both cancer and genetic disorders.30,31,33 The evolutionary stages of genes have also shown an association with cancer. Trigos et al.

compared gene expression levels between cancer and normal tissue, and they found that overexpressed oncogenes were attributed to

older age groups but that low-expressed genes were attributed to younger age groups.34 Liebeskind et al. made inferences about the

age of genes based on 13 popular homology inference algorithms, dividing human genes into eight evolutionary stages.35 Then, it was

demonstrated that the cancer driver genes were significantly enriched in genes that originated from the evolutionary stages of eukaryota,

opisthokonta, and eumetazoa.21,36 These results suggest that the evolutionary stages of genes may represent a valuable feature for

screening oncology biomarkers. Incorporating evolutionary stages into systems-level analyses and retracing the cancer history may facil-

itate the identification of critical vulnerabilities in cancer, thereby identifying new oncology biomarkers and simplifying therapeutic

strategies.37

In this study, we first investigated whether clinically approved biomarkers share some evolutionary features. Then, we used these

evolutionary features to screen potential oncology biomarkers and validate the biological function of these potential oncology

biomarkers. Finally, we constructed evolution-strengthened prognostic models (ESPMs) to predict the overall survival for four

cancers and further validate their portability in different cancer cohorts. In summary, our study indicates the potential application of

evolutionary information in biomedicine and provides a paradigm for how evolutionary information can be used for screening oncology

biomarkers.
RESULTS

Ohnolog feature of approved biomarkers

Considering the close association between the Ohnologs with human diseases, we examined whether Ohnologs information can facilitate

biomarker screening. We extracted 9,057 Ohnolog gene pairs from previous studies, encompassing 7,090 human genes.31 The 1,514 bio-

markers obtained from the TTDdatabase include 23 Food andDrugAdministration (FDA)-approved biomarkers and 119 biomarkers currently

in clinical research. Notably, none of the 23 FDA-approved biomarkers were considered oncology biomarkers. This result further suggested

the urgent need to improve the efficiency of oncology biomarker screening.

Of all TTD biomarkers, 533 were identified as Ohnolog genes, accounting for 35.20%. (Figure 1). Notably, 52.94% (63/119) of clinical

research biomarkers were Ohnolog genes. Comparing the proportion of Ohnologs in clinical study biomarkers and all TTD biomarkers,

the p value for the hypergeometric distribution test is 2.77e�05. This result indicated significant enrichment of Ohnologs in clinical bio-

markers. Among FDA-approved biomarkers, Ohnologs accounted for an even higher 86.96% (20/23). Similarly, comparing this proportion

with the proportion of Ohnologs in all TTD biomarkers, the hypergeometric distribution test had a p value of 3.65e�07. This result suggested
2 iScience 27, 109859, June 21, 2024



Table 1. The evolutionary stage distribution of FDA oncology pharmacogenomic biomarkers in drug labeling

Evolutionary stage Number of oncology biomarker

Cellular organisms 1

Euk+bac 8

Euk_archaea –

Eukaryota 9

Opisthokonta 6

Eumetazoa 12

Vertebrata 16

Mammalia 4

All 56

Table 1 shows the number of FDA oncology pharmacogenomic biomarkers in drug labeling for different evolutionary stages.
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that Ohnologs were equally enriched in FDA-approved biomarkers. We extracted oncology biomarkers from the clinical trial biomarkers and

also conducted a statistical analysis. Of 40 oncology biomarkers, 21 wereOhnologs, accounting for 52.5%. The hypergeometric test yielded a

p value of 0.028. This finding suggested that Ohnologs are similarly enriched among tumor biomarkers. Therefore, Ohnologs may have the

potential as an evolutionary feature that facilitates oncology biomarker screening.
Evolutionary stage feature of approved biomarkers

Previous studies have shown that cancer driver genes are significantly enriched in genes originating from the evolutionary stages of eukaryota,

opisthokonta, and eumetazoa.36 To determine the effectiveness of evolutionary stages in identifying oncology biomarkers, we obtained the

list of FDA oncology pharmacogenomic biomarkers in drug labeling from the official website (Table 1). We found that FDA oncology phar-

macogenomic biomarkers originating from the evolutionary stages of eukaryota, opisthokonta, and eumetazoa contain mutated genes

commonly found in tumors.

Kirsten rat sarcoma viral oncogene homolog (KRAS), one of themost commonlymutated oncogenes, originated from the eukaryota stage.

It usually acts as a molecular switch that, when turned on, activates some signaling pathways related to cell proliferation.38 Wild-type KRAS

amplification may be involved in the progression of tumors in the esophagogastric, colorectal, ovarian, and endometrial tissues.39 Mutations

in the KRAS are most commonly found in gastrointestinal and lung cancers, particularly pancreatic cancer.40,41

Another classical tumor target, epidermal growth factor receptor (EGFR), is a gene originating from the opisthokonta stage. EGFR is a

transmembrane glycoprotein involved in cell proliferation, differentiation, and various regulatory mechanisms.42 It is often overexpressed

out of control in tumors, which makes it one of the proto-oncogenes.43,44 EGFR is widely considered to be an important therapeutic target

for non-small cell lung cancer, breast cancer, and esophageal-gastric cancer.45,46

Rearranged during transfection (RET) originates from the eumetazoa stage and is the transforming proto-oncogene that encodes a recep-

tor tyrosine kinase.47 The activated RET can initiate signaling pathways and promote cell proliferation and growth.48 When RET undergoes

oncogenic mutations, typically fusions or point mutations, the protein can become abnormally activated in a ligand-independent manner.49

RET fusion is the main variant observed in non-small cell lung cancer and papillary thyroid cancer, and its point mutations are primarily asso-

ciated with the development of sporadic medullary thyroid carcinoma.50

Furthermore, we analyzed andquantified the proportion of tumor biomarkers at various evolutionary stageswithin theMarkerDBdatabase

(Table 2). The analysis indicated that, compared to human genes, genes originating from eukaryota, opisthokonta, and eumetazoa weremore

enriched with oncology biomarkers. This enrichment, validated by Fisher’s exact test with top three odds ratios and exceeding 1, highlights

the potential of using evolutionary insights to identify oncology biomarkers. The aforementioned results suggested that biomarkers origi-

nating from three stages—eukaryota, opisthokonta, and eumetazoa—occupy pivotal positions in oncology research, providing evidence

that the evolutionary stage of genes can serve as an evolutionary feature to screen potential precision oncology biomarkers.
Identification of potential oncology biomarkers

We downloaded RNA sequencing and clinical data from The Cancer Genome Atlas (TCGA) for four cancers: head and neck squamous cell

carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC) for further

research (Table 3). To comprehensively evaluate the impact of clinicopathological characteristics on our subsequent research, we conducted

a detailed statistical analysis of clinical data from cancer patients (Tables 4 and S1–S3). Specifically, we analyzed the age of patients, AJCC

pathological stage, radiotherapy and chemotherapy received, and the distribution characteristics of high-frequency mutation genes in

two groups of samples (positive and negative). Considering the significant intertumoral heterogeneity, three mutations with the highest fre-

quency in each cancer were purposely selected for detailed statistics. The statistical results indicated that only the pathological stage in can-

cer types other than HNSC and tumor protein p53 (TP53) gene mutations in LIHC and HNSC showed significant statistical differences. This
iScience 27, 109859, June 21, 2024 3



Table 2. Proportion of each evolutionary stage in oncology biomarkers of MarkedDB

Evolutionary stage All human genes MarkerDB Odds ratio

Cellular organisms 4.54% 4.84% 1.06

Euk+bac 7.79% 8.06% 1.03

Euk_archaea 1.12% 0.00% 0

Eukaryota 29.26% 40.32% 1.63

Opisthokonta 5.75% 9.68% 1.76

Eumetazoa 25.50% 29.03% 1.19

Vertebrata 13.87% 6.45% 0.43

Mammalia 12.17% 1.61% 0.12

The table compares the proportion of genes from various evolutionary stages within all human genes and those identified as oncology biomarkers in the

MarkerDB database. Fisher’s exact test was employed to calculate the odds ratios. The results indicate that the odds ratios for the eukaryota, opisthokonta,

and eumetazoa stages are more than 1, suggesting an enrichment of oncology biomarkers from these evolutionary stages compared to the overall distribution

of human genes.
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finding supported our grouping method, and the interference of clinicopathological features was excluded as much as possible when con-

structing the prognostic models.

Then, we performed survival analysis to identify the genes whose expression levels are significantly associated with survival time. We con-

ducted Cox proportional hazards regression models for each gene and filtered for survival-related genes. We used a smaller threshold for

some cancers to ensure their gene numbers were similar because of the remarkable heterogeneity between cancers.51 1,703, 1,896, 1,386,

and 1,896 significant survival-related genes were obtained for LUSC, LUAD, LIHC, and HNSC, respectively. Additionally, we calculated the

proportion of survival-related genes across various evolutionary stages. The outcomes of the Fisher’s exact test highlighted a notable

augmentation in the representation of these genes within the domains of eukaryota, opisthokonta, and eumetazoa, thereby substantiating

our argument (Table S4). We screened genes being Ohnolog and originating from the evolutionary stages of eukaryota, opisthokonta, and

eumetazoa, from survival-related genes as potential biomarkers. Finally, we identified 480, 545, 271, and 471 potential oncology prognostic

biomarkers for LUSC, LUAD, LIHC, and HNSC, respectively (Table S5). These potential biomarkers would be further analyzed for biological

enrichment analysis to evaluate their associations with cancer.

Biological enrichment analyses of potential oncology biomarkers

To explore the biology of potential oncology biomarkers, we performed Gene Ontology (GO) (Figure 2) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway (Figure 3) enrichment analyses. For HNSC, GO terms showed that its potential biomarkers were mainly en-

riched in cellular growth regulation, axonogenesis, and axon development. KEGG analysis showed they were majorly involved in axon guid-

ance, calcium signal pathway, and focal adhesion, which have been demonstrated to be associated with the growth and invasion of can-

cers.52–54 The GO enrichment analysis of LIHC indicated that its potential biomarkers were related to biomolecules and cell metabolism

regulation. These genes are enriched in pathways associated with bacteria, viral infections, and cancer. Both the GO and KEGG results

are relevant to the cell cycle. For LUAD, the potential biomarkers are mostly signal transduction and protein synthesis. Notably, these genes

are enriched in the Wnt pathway, the activation of which promotes the development, progression, and metastasis of cancers, including

LUAD,55,56 and some drugs targeting the Wnt pathway are already available for clinical use.57–59 KEGG for LUSC was also enriched for

some pathways associated with signal transduction, including the MAPK signaling pathway. MAPK pathway represents ubiquitous signal

transduction pathways and is often altered in human tumors and cancer cell lines.60–62 GO terms showed that the biological functions of

its biomarkers were more related to neuronal development and membrane potential. Overall, these oncology biomarkers are involved in

cell growth, neurological development, energy metabolism, protein expression, and signal transmission, and therefore associated with

cancer.

Furthermore, we performed consensus clustering to classify prognostically stratified subgroups based on the expression levels of potential

oncology biomarkers and found 3, 3, 4, and 4 molecular classifications for LUAD, LIHC, LUSC, and HNSC based on cumulative distribution

function plot and delta area plot, respectively (Figures S1–S4). Finally, the Kaplan-Meier survival analysis showed significant differences in

overall survival between classes for each cancer (Figure 4). These results indicate that the potential oncology biomarkers screened based

on the evolutionary features of genes are biologically significant and can be further used to construct prognostic models.

Construction of ESPMs

LASSO regression was utilized to screen gene signatures for cancer. As a result, 36, 57, 21, and 50 gene signatures were obtained for LUSC,

LUAD, LIHC, and HNSC, respectively (Table S6). The magnitude of the LASSO coefficients, whether positive, negative, or absolute, signifies

the impact of gene expression levels on patient survival. We found associations between the genes with the highest LASSO coefficients and

the cancer prognosis (Tables S7, S8, S9, and S10).
4 iScience 27, 109859, June 21, 2024



Table 3. Sample compositions of cancer cohorts

Cancer All samples Available samples Mean survival time (months) Negative samplea Positive samplea

HNSCb 520 378 25.50 155 223

LIHCb 370 234 22.95 81 153

LUADb 508 307 27.01 109 198

LUSCb 495 314 30.58 127 187

This study’s sample sizes for each of the four cancer types are detailed in Table 1. Exclusions were made for samples with incomplete data or follow-up periods

less than the calculated mean survival time, which was derived exclusively from the samples that experienced mortality. These criteria ensured the selection of

positive and negative samples to construct future predictive models.
aPositive and negative samples are divided according to mean survival time.
bHNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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Fatty acid-binding protein 6 (FABP6) had the highest coefficient for LUSC. It has been demonstrated to be overexpressed in bladder can-

cer, colorectal cancer, and glioblastoma.63–66 The negative coefficient for FABP6 suggested that overexpression of FABP6maybe detrimental

to patient survival, consistent with current findings.65,66 FABP6 also has been used to construct prognostic prediction models for many

cancers.67,68 For LUAD, protein kinase C delta (PRKCD) had the highest positive coefficient. PRKCD is a regulator of mitochondrial auto-

phagy69,70 and is associated with resistance to some cancer treatment regimens.71,72 This gene’s high expression benefits patient survival.73

For LIHC, two members of the annexin family, annexin A10 (ANXA10) and annexin A2 (ANXA2), were the top contributors with positive co-

efficients. They have been reported to inhibit the progression of certain types of cancer.74–76 ANXA10 may be a prognostic marker and an

inhibitor of LIHC.77 Conversely,ANXA10 andANXA2would impede survival in LUAD, which has been recognized to some extent.78 This result

suggested that the effects of the same biomarkermay vary considerably in different cancers.Muscleblind-like splicing regulator 1, the primary

contributor in the HNSC model, would inhibit tumor progression,79 as demonstrated again in our research. The aforementioned results sug-

gest that these genes are associated with patient prognosis, and their effects align with LASSO coefficients, offering new insights into the

impact of altered gene expression on patient prognosis. Although these genes may not have received widespread attention in the field

of cancer, our results demonstrate that their potential roles in cancer prognosis research still warrant further exploration for a deeper under-

standing of their biological significance.

We then sought to leverage the prognostic capability of the gene signatures into a clinical tool capable of estimating the five-year overall

survival probability of cancer patients. Neural networks have been widely used for cancer diagnosis, prognosis, and treatment selection with

favorable predictive results.80,81 Therefore, we constructed a binary classifier, ESPM, to predict the survival time of patients. The classification

labels depended on the mean survival time of patients (Table 3). It should be noted that the parameters and steps for the four cancers are

identical when constructing the models. We employed 5-fold cross-validation by dividing the data 100 times at random and using the mean

values of the model outputs to evaluate the model’s performance (Figure 5). The mean area under the curve (AUC) values for LUSC, LUAD,

LIHC, and HNSC were 0.70, 0.77, 0.77, and 0.69, respectively.

Portability of ESPMs

We further verify the portability of ESPMs across different cancer cohorts. We used genes without the evolutionary feature screening of what

we consider to be oncology biomarkers to construct conventional models. For each cancer, equal numbers of genes with oncology biomarker

evolutionary features were randomly selected. These genes were followed in the same steps and parameters when constructing models. The

mean AUC values for conventional models were 0.65 (LUSC), 0.72 (LUAD), 0.76 (LIHC), and 0.70 (HNSC). The results indicated that the ESPMs

performed better than the conventional models in three cancers: LIHC (from 0.76 to 0.77), LUAD (from 0.72 to 0.77), and LUSC (from 0.65 to

0.70). However, the performance of the ESPM model for HNSC showed a slight decrease (from 0.70 to 0.69) (Figure 6). Although the AUC of

the ESPMmodel for HNSC showed a slight decrease, its higher accuracy and specificity suggested a better classification of negative samples,

which would be equally relevant in guiding clinical treatment.

To demonstrate the prognostic value of these potential biomarkers, the dataset from the GEO database was analyzed (key resources ta-

ble). The overall survival time of cancer patients in the GEO dataset was predicted based on the model features obtained from TCGA. The

AUCs for LUSC, LUAD, LIHC, andHNSCwere 0.69, 0.75, 0.72, and 0.62, respectively. In addition, similar to the results of the TCGAcohorts, the

ESPMs outperformed the conventional models (Figure 6). Our results confirmed that the portability of the biomarkers screened using evolu-

tionary features facilitated the construction of cancer prognostic models.

DISCUSSION

Precision oncology aims to provide individualized treatment for cancer patients to more appropriately meet the specific treatment needs of

different patients. The identification of predictive biomarkers has the potential to significantly enhance treatment selection and improve pa-

tient outcomes, as well as reduce side effects associated with cancer treatment.82 With the availability of multi-omics data, an increasing num-

ber of novel markers are being proposed for the diagnosis, treatment, and prognostic survival assessment of tumors, driving personalized

therapy. However, the high background noise in omics data poses a challenge in distinguishing between clinically meaningful results and
iScience 27, 109859, June 21, 2024 5



Table 4. Clinicopathological characteristics of lung adenocarcinoma patients

Clinicopathological characteristics n Positive sample Negative sample p

Mean age 64.66

R 159 99 60 0.7184

< 138 89 49

AJCC pathologic stage

I 148 118 30 9.011e�08

II 81 46 35

III 55 22 33

IV 18 8 10

Pharmaceutical therapy

Yes 88 59 29 0.5992

No 219 139 80

Radiation therapy

Yes 46 25 21 0.1338

No 261 173 88

Mutation

TP53

Yes 134 85 49 0.8100

No 173 113 60

MUC16

Yes 116 74 42 0.9022

No 191 124 67

CSMD3

Yes 115 76 39 0.7121

No 192 122 70

Table 4 evaluates the impact of pathological characteristics on the positive and negative group samples among LUAD (lung adenocarcinoma) patients. These

characteristics encompass age, pathological stage, received treatment regimens, and the top three mutations identified in these patients. p values were derived

using the Fisher’s exact test to determine statistical significance.
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merely noisy results.83 Evolutionary information has shown potential in identifying oncology biomarkers and improving the accuracy of cancer

diagnosis and treatment selection.84,85 Incorporating additional biological information can improve prediction accuracy and reduce false

positives.

Ohnologs play a crucial role in the development and regulation of organisms.30,31,86 In this study, the statistical analysis results demon-

strated the association betweenOhnologs andbiomarkers. Indeed, the positive selection that genes have undergone during evolutionmakes

these genes often more meaningful for vertebrates, which could explain their associations with biomarkers. Moreover, the ability of cancer

cells to evolve rapidly and escape the control of cell division and programmed cell death allows them to spread rapidly, similar to the char-

acteristics in organisms of specific evolutionary stages.28,87,88 Many of the FDA oncology pharmacogenomic biomarkers in drug labeling orig-

inated from the evolutionary stages of eukaryota, opisthokonta, and eumetazoa. Furthermore, cancer driver genes are mainly enriched in

these three stages,36 suggesting that genes originating from these stages are more likely to be involved in critical biological processes

that cause cancer occurrence and progression.

Considering the close association between cancer and evolution, exploring biomarker features from an evolutionary perspective and

combining them with omics data may be an effective approach to screening high-quality oncology biomarkers. We screened genes with

needed evolutionary features as potential oncology biomarkers. To minimize the impact of tumor heterogeneity, we specifically selected

the mutations with the highest frequency in each tumor cohort for our high-frequency mutation statistics and separately identified poten-

tial tumor biomarkers for each cancer type. In LUAD and LUSC, we observed a substantial degree of similarity. TP53 exhibited the highest

mutation frequency in all four cancer cohorts (Table 3) and showed significant differences in the distribution of positive and negative sam-

ples in HNSC and LIHC. This suggests that its impact on the prognosis of these two cancers is worth further investigation.89,90 Although

cancer patients respond differently to treatments, this usually prolongs survival, thereby affecting prognosis.91 According to TCGA data,

the number of patients who had undergone prior treatment is seldom, making its impact on patient prognosis negligible. Furthermore, our

grouping method appears to have excluded the influence of subsequent treatment modalities on the positive and negative sample
6 iScience 27, 109859, June 21, 2024
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Figure 2. GO enrichment analyses of potential oncology biomarkers

(A) GO enrichment analysis results for HNSC.

(B) GO enrichment analysis results for LIHC.

(C) GO enrichment analysis results for LUAD.

(D) GO enrichment analysis results for LUSC. The vertical coordinate represents the biological function of gene enrichment, the bubble size represents the

number of genes enriched in the biological function, and the bubble colors represent the corrected p value.
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categorization. This result not only enhanced the reliability of our prognostic model but also further demonstrated the great potential of

using evolutionary information in the selection of oncology biomarkers. GO and KEGG analyses showed that these oncology biomarkers

were involved in biological processes that are consistent with the characteristics of cancer.39,41,92 We also noted that the enriched terms

and pathways vary considerably between different cancers (even LUAD and LUSC). This result may represent specific hallmarks of different

cancers. We generated molecular subtyping schemes based on the expression of these oncology biomarkers for each cancer and found

that these subtypes were associated with overall survival. Therefore, these signatures may provide clinically important information for

prognostication.

We constructed classifiers to predict patient survival time in different cancer cohorts. Comparing the results of the ESPMs with the con-

ventional models, higher AUCs were obtained because of the addition of evolutionary information. Furthermore, the stability of ESPMs is

greater than the conventional models, suggesting that ESPMs have a better predictive capability. The improved performance of ESPMs high-

lighted the value of evolutionary information in oncology biomarker screening. Heterogeneity manifests across all levels of tumor organiza-

tion, its quantification thus requiringmeasurements atmultiple scales.93 Although transcriptomic data are widely used in oncology because of

the marked differences in gene expression between cancer cells and normal cells, it cannot provide comprehensive information on other bio-

logical processes.94,95 Therefore, each histological platform’s specific limitations and noise may diminish the contribution of evolutionary in-

formation in oncology biomarker screening.96–98 While the expression levels of potential biomarkers could significantly differentiate samples

into subtypes with varying survival periods, this heterogeneity mightmagnify the differences in expression among samples when constructing
iScience 27, 109859, June 21, 2024 7
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Figure 3. KEGG enrichment analyses of potential oncology biomarkers

(A) KEGG enrichment analysis results for HNSC.

(B) KEGG enrichment analysis results for LIHC.

(C) KEGG enrichment analysis results for LUAD.

(D) KEGG enrichment analysis results for LUSC. The vertical coordinate represents the pathway of gene enrichment, the bubble size represents the number of

genes enriched in the pathway, and the bubble colors represent the corrected p value.
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more refined binary prognostic models, which affected the predictive effectiveness of the model. In the validation set (GEO dataset), the

model’s predictive performance was further compromised by the heterogeneity among different cohort samples. This accounted for the

less favorable outcomes observed in the validation set. However, within the same data context, the results of the ESPM were still superior

to traditional models, indicating that incorporating evolutionary information into tumor biomarker selection demonstrates a certain level

of stability.

In this study, we validated the potential application of evolutionary information in biomedicine and provided a paradigm for the

application of evolutionary information in precision oncology. Our approach is rooted in a biological perspective, aiming to uncover

the significant connections between cancer and genes that have been preserved with greater significance over the vast expanse of

evolutionary history. We posit that variations in these genes are likely to exert substantial impacts, thereby possessing the potential

to serve as biomarkers. Subsequently, we systematically validated our hypotheses using statistical and machine learning techniques

to ensure the reliability of our findings. The results showed that the performance of ESPM was better than other conventional models

in different cancer prognostic models, suggesting that incorporating evolutionary information may improve the efficiency of oncology

biomarker screening. Additionally, with the continuous development of new technologies and the deepening of clinical research,

we can foresee that more oncology biomarkers will be discovered and approved, which will help to explore the evolutionary

features of oncology biomarkers and assess the application potentials of evolutionary information in precision oncology more

comprehensively.
8 iScience 27, 109859, June 21, 2024
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Figure 4. Kaplan-Meier survival analysis of the molecular subtypes in different cancers

(A) Survival analysis of different subtypes for LUAD.

(B) Survival analysis of different subtypes for LIHC.

(C) Survival analysis of different subtypes for LUSC.

(D) Survival analysis of different subtypes for HNSC.
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Limitations of the study

Notably, there are few FDA-approved biomarkers, limiting us to exploring their evolutionary features from limited perspectives. Tumor het-

erogeneity is also reflected in the pathological stages of patients, which can alter patient’s gene expression patterns. In the TCGA-HNSC

dataset only, there was no significant difference in the stage distribution of patients. This lack of distinction may blur the boundaries between

positive and negative sample expression patterns during the model training process, leading to instability in the results. Single-cell

sequencing data, with its unique characteristics, offer a promising avenue for identifying biomarkers. However, single-cell technologies

are advancements made in recent years. There is a lack of sufficient clinical follow-up information and the accumulated data on cancer patient

survival rates. The pronounced batch effects can impact the integration of datasets, making the use of these technologies for predicting

oncology prognosis biomarkers a challenging endeavor. Moreover, neural networks require more sample data to improve accuracy, but

the currently available cancer databases do not adequately fulfill this requirement.99,100 In future research endeavors, we aim to examine

the applicability of evolutionary information across diverse datasets using variedmethodologies. This will enable us to corroborate and refine

our hypotheses from multiple perspectives.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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Figure 5. Performance comparison between ESPM and conventional model for each type of cancer

(A) Comparison of the performance between LUAD’s ESPM and the conventional model.

(B) Comparison of the performance between LIHC’s ESPM and the conventional model.

(C) Comparison of the performance between LUSC’s ESPM and the conventional model.

(D) Comparison of the performance between HNSC’s ESPM and the conventional model. The evaluation metrics of the model, including AUC, accuracy,

precision, specificity, and F1-score, are presented in the boxplots. ESPM, evolution-strengthened prognostic model; conventional model, the model

constructed by genes without evolutionary feature screening; AUC, area under the curve.
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Figure 6. AUC curves for prognostic models in different cancer cohorts

(A) AUC curves for LUAD prognostic models in different cohorts.

(B) AUC curves for LIHC prognostic models in different cohorts.

(C) AUC curves for LUSC prognostic models in different cohorts.

(D) AUC curves for HNSC prognostic models in different cohorts. AUC, area under the curve.

ll
OPEN ACCESS

iScience
Article
ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (grant number 32300545), Young Elite Scientists Sponsorship Program by CAST

(2023QNRC001), and the National Key R&D Program of China (2022YFA1304104) for grants.
AUTHOR CONTRIBUTIONS

Z.-W.Z.: writing – original draft, investigation, formal analysis, data curation, validation, and conceptualization. K.-X.Z.: writing – original draft,

validation, and conceptualization. X.L.: formal analysis, data curation, and conceptualization. Y.Q.: writing – review and editing, validation,

supervision, software, resources, project administration, methodology, and conceptualization. H.-Y.Z.: writing – review and editing, supervi-

sion, resources, project administration, investigation, and funding acquisition.
iScience 27, 109859, June 21, 2024 11



ll
OPEN ACCESS

iScience
Article
DECLARATION OF INTERESTS

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the

work reported in this paper.

Received: October 10, 2023

Revised: March 15, 2024

Accepted: April 27, 2024

Published: April 30, 2024
REFERENCES

1. Sung, H., Ferlay, J., Siegel, R.L., Laversanne,

M., Soerjomataram, I., Jemal, A., and Bray,
F. (2021). Global Cancer Statistics 2020:
GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185
Countries. CA A Cancer J. Clin. 71, 209–249.
https://doi.org/10.3322/caac.21660.

2. Siegel, R.L., Miller, K.D., Fuchs, H.E., and
Jemal, A. (2022). Cancer statistics, 2022. CA
A Cancer J. Clin. 72, 7–33. https://doi.org/
10.3322/caac.21708.

3. Bray, F., Laversanne, M., Weiderpass, E.,
and Soerjomataram, I. (2021). The ever-
increasing importance of cancer as a
leading cause of premature death
worldwide. Cancer 127, 3029–3030. https://
doi.org/10.1002/cncr.33587.

4. Ciardiello, F., Ciardiello, D., Martini, G.,
Napolitano, S., Tabernero, J., and
Cervantes, A. (2022). Clinical management
of metastatic colorectal cancer in the era of
precision medicine. CA A Cancer J. Clin. 72,
372–401. https://doi.org/10.3322/caac.
21728.

5. Di, Z., Zhou, S., Xu, G., Ren, L., Li, C., Ding,
Z., Huang, K., Liang, L., and Yuan, Y. (2022).
Single-cell and WGCNA uncover a
prognostic model and potential oncogenes
in colorectal cancer. Biol. Proced. Online 24,
13. https://doi.org/10.1186/s12575-022-
00175-x.

6. Hanna, T.P., King, W.D., Thibodeau, S.,
Jalink, M., Paulin, G.A., Harvey-Jones, E.,
O’Sullivan, D.E., Booth, C.M., Sullivan, R.,
and Aggarwal, A. (2020). Mortality due to
cancer treatment delay: systematic review
andmeta-analysis. BMJ 371, m4087. https://
doi.org/10.1136/bmj.m4087.

7. Tsimberidou, A.M., Fountzilas, E., Nikanjam,
M., and Kurzrock, R. (2020). Review of
precision cancer medicine: Evolution of the
treatment paradigm. Cancer Treat Rev. 86,
102019. https://doi.org/10.1016/j.ctrv.2020.
102019.

8. Sarhadi, V.K., and Armengol, G. (2022).
Molecular Biomarkers in Cancer.
Biomolecules 12, 1021. https://doi.org/10.
3390/biom12081021.

9. Picard, M., Scott-Boyer, M.P., Bodein, A.,
Périn, O., and Droit, A. (2021). Integration
strategies of multi-omics data for machine
learning analysis. Comput. Struct.
Biotechnol. J. 19, 3735–3746. https://doi.
org/10.1016/j.csbj.2021.06.030.

10. Tsimberidou, A.M. (2015). Targeted therapy
in cancer. Cancer Chemother. Pharmacol.
76, 1113–1132. https://doi.org/10.1007/
s00280-015-2861-1.

11. Xiao, Y., Bi, M., Guo, H., and Li, M. (2022).
Multi-omics approaches for biomarker
discovery in early ovarian cancer diagnosis.
EBioMedicine 79, 104001. https://doi.org/
10.1016/j.ebiom.2022.104001.
12 iScience 27, 109859, June 21, 2024
12. Goossens, N., Nakagawa, S., Sun, X., and
Hoshida, Y. (2015). Cancer biomarker
discovery and validation. Transl. Cancer Res.
4, 256–269. https://doi.org/10.3978/j.issn.
2218-676X.2015.06.04.

13. Rutledge, J., Oh, H., and Wyss-Coray, T.
(2022). Measuring biological age using
omics data. Nat. Rev. Genet. 23, 715–727.
https://doi.org/10.1038/s41576-022-
00511-7.

14. Swanson, K., Wu, E., Zhang, A., Alizadeh,
A.A., and Zou, J. (2023). From patterns to
patients: Advances in clinical machine
learning for cancer diagnosis, prognosis,
and treatment. Cell 186, 1772–1791. https://
doi.org/10.1016/j.cell.2023.01.035.

15. Luo, X.J., Zhao, Q., Liu, J., Zheng, J.B., Qiu,
M.Z., Ju, H.Q., and Xu, R.H. (2021). Novel
Genetic and Epigenetic Biomarkers of
Prognostic and Predictive Significance in
Stage II/III Colorectal Cancer. Mol. Ther. 29,
587–596. https://doi.org/10.1016/j.ymthe.
2020.12.017.

16. Cui, G., Cai, F., Ding, Z., and Gao, L. (2019).
MMP14 predicts a poor prognosis in
patients with colorectal cancer. Hum.
Pathol. 83, 36–42. https://doi.org/10.1016/j.
humpath.2018.03.030.

17. Tang, X., Pang, T., Yan, W.F., Qian, W.L.,
Gong, Y.L., and Yang, Z.G. (2020). A novel
prognostic model predicting the long-term
cancer-specific survival for patients with
hypopharyngeal squamous cell carcinoma.
BMC Cancer 20, 1095. https://doi.org/10.
1186/s12885-020-07599-2.

18. Chen, G., Luo, D., Zhong, N., Li, D., Zheng,
J., Liao, H., Li, Z., Lin, X., Chen, Q., Zhang, C.,
et al. (2022). GPC2 Is a Potential Diagnostic,
Immunological, and Prognostic Biomarker
in Pan-Cancer. Front. Immunol. 13, 857308.
https://doi.org/10.3389/fimmu.2022.
857308.

19. Yang, S., Ji, J., Wang, M., Nie, J., andWang,
S. (2023). Construction of Ovarian Cancer
Prognostic Model Based on the
Investigation of Ferroptosis-Related
lncRNA. Biomolecules 13, 306. https://doi.
org/10.3390/biom13020306.

20. Zhang, H., Xia, P., Liu, J., Chen, Z., Ma, W.,
and Yuan, Y. (2021). ATIC inhibits autophagy
in hepatocellular cancer through the AKT/
FOXO3 pathway and serves as a prognostic
signature for modeling patient survival. Int.
J. Biol. Sci. 17, 4442–4458. https://doi.org/
10.7150/ijbs.65669.

21. Graham, T.A., and Sottoriva, A. (2017).
Measuring cancer evolution from the
genome. J. Pathol. 241, 183–191. https://
doi.org/10.1002/path.4821.

22. Stearns, S.C., Nesse, R.M., Govindaraju,
D.R., and Ellison, P.T. (2010). Evolution in
health and medicine Sackler colloquium:
Evolutionary perspectives on health and
medicine. Proc. Natl. Acad. Sci. USA 107,
1691–1695. https://doi.org/10.1073/pnas.
0914475107.

23. Greaves, M. (2015). Evolutionary
determinants of cancer. Cancer Discov. 5,
806–820. https://doi.org/10.1158/2159-
8290.CD-15-0439.

24. Zhu, X., Li, S., Xu, B., and Luo, H. (2021).
Cancer evolution: A means by which tumors
evade treatment. Biomed. Pharma 133,
111016. https://doi.org/10.1016/j.biopha.
2020.111016.

25. Hanahan, D. (2022). Hallmarks of Cancer:
New Dimensions. Cancer Discov. 12, 31–46.
https://doi.org/10.1158/2159-8290.CD-
21-1059.

26. Cisneros, L., Bussey, K.J., Orr, A.J.,
Mio�cevi�c, M., Lineweaver, C.H., and Davies,
P. (2017). Ancient genes establish stress-
induced mutation as a hallmark of cancer.
PLoS One 12, e0176258. https://doi.org/10.
1371/journal.pone.0176258.

27. Lineweaver, C.H., Bussey, K.J., Blackburn,
A.C., and Davies, P.C.W. (2021). Cancer
progression as a sequence of atavistic
reversions. Bioessays 43, e2000305. https://
doi.org/10.1002/bies.202000305.

28. Domazet-Loso, T., and Tautz, D. (2010).
Phylostratigraphic tracking of cancer genes
suggests a link to the emergence of
multicellularity in metazoa. BMC Biol. 8, 66.
https://doi.org/10.1186/1741-7007-8-66.

29. Jacques, F., Baratchart, E., Pienta, K.J., and
Hammarlund, E.U. (2022). Origin and
evolution of animal multicellularity in the
light of phylogenomics and cancer genetics.
Med. Oncol. 39, 160. https://doi.org/10.
1007/s12032-022-01740-w.

30. Singh, P.P., Arora, J., and Isambert, H.
(2015). Identification of Ohnolog Genes
Originating from Whole Genome
Duplication in Early Vertebrates, Based on
Synteny Comparison across Multiple
Genomes. PLoS Comput. Biol. 11,
e1004394. https://doi.org/10.1371/journal.
pcbi.1004394.

31. Makino, T., and McLysaght, A. (2010).
Ohnologs in the human genome are dosage
balanced and frequently associated with
disease. Proc. Natl. Acad. Sci. USA 107,
9270–9274. https://doi.org/10.1073/pnas.
0914697107.

32. Xie, T., Yang, Q.Y., Wang, X.T., McLysaght,
A., and Zhang, H.Y. (2016). Spatial
Colocalization of Human Ohnolog Pairs
Acts to Maintain Dosage-Balance. Mol. Biol.
Evol. 33, 2368–2375. https://doi.org/10.
1093/molbev/msw108.

33. Singh, P.P., Affeldt, S., Cascone, I.,
Selimoglu, R., Camonis, J., and Isambert, H.
(2012). On the expansion of "dangerous"
gene repertoires by whole-genome
duplications in early vertebrates. Cell Rep. 2,

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21708
https://doi.org/10.1002/cncr.33587
https://doi.org/10.1002/cncr.33587
https://doi.org/10.3322/caac.21728
https://doi.org/10.3322/caac.21728
https://doi.org/10.1186/s12575-022-00175-x
https://doi.org/10.1186/s12575-022-00175-x
https://doi.org/10.1136/bmj.m4087
https://doi.org/10.1136/bmj.m4087
https://doi.org/10.1016/j.ctrv.2020.102019
https://doi.org/10.1016/j.ctrv.2020.102019
https://doi.org/10.3390/biom12081021
https://doi.org/10.3390/biom12081021
https://doi.org/10.1016/j.csbj.2021.06.030
https://doi.org/10.1016/j.csbj.2021.06.030
https://doi.org/10.1007/s00280-015-2861-1
https://doi.org/10.1007/s00280-015-2861-1
https://doi.org/10.1016/j.ebiom.2022.104001
https://doi.org/10.1016/j.ebiom.2022.104001
https://doi.org/10.3978/j.issn.2218-676X.2015.06.04
https://doi.org/10.3978/j.issn.2218-676X.2015.06.04
https://doi.org/10.1038/s41576-022-00511-7
https://doi.org/10.1038/s41576-022-00511-7
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1016/j.ymthe.2020.12.017
https://doi.org/10.1016/j.ymthe.2020.12.017
https://doi.org/10.1016/j.humpath.2018.03.030
https://doi.org/10.1016/j.humpath.2018.03.030
https://doi.org/10.1186/s12885-020-07599-2
https://doi.org/10.1186/s12885-020-07599-2
https://doi.org/10.3389/fimmu.2022.857308
https://doi.org/10.3389/fimmu.2022.857308
https://doi.org/10.3390/biom13020306
https://doi.org/10.3390/biom13020306
https://doi.org/10.7150/ijbs.65669
https://doi.org/10.7150/ijbs.65669
https://doi.org/10.1002/path.4821
https://doi.org/10.1002/path.4821
https://doi.org/10.1073/pnas.0914475107
https://doi.org/10.1073/pnas.0914475107
https://doi.org/10.1158/2159-8290.CD-15-0439
https://doi.org/10.1158/2159-8290.CD-15-0439
https://doi.org/10.1016/j.biopha.2020.111016
https://doi.org/10.1016/j.biopha.2020.111016
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1371/journal.pone.0176258
https://doi.org/10.1371/journal.pone.0176258
https://doi.org/10.1002/bies.202000305
https://doi.org/10.1002/bies.202000305
https://doi.org/10.1186/1741-7007-8-66
https://doi.org/10.1007/s12032-022-01740-w
https://doi.org/10.1007/s12032-022-01740-w
https://doi.org/10.1371/journal.pcbi.1004394
https://doi.org/10.1371/journal.pcbi.1004394
https://doi.org/10.1073/pnas.0914697107
https://doi.org/10.1073/pnas.0914697107
https://doi.org/10.1093/molbev/msw108
https://doi.org/10.1093/molbev/msw108


ll
OPEN ACCESS

iScience
Article
1387–1398. https://doi.org/10.1016/j.
celrep.2012.09.034.

34. Trigos, A.S., Pearson, R.B., Papenfuss, A.T.,
and Goode, D.L. (2017). Altered interactions
between unicellular and multicellular genes
drive hallmarks of transformation in a
diverse range of solid tumors. Proc. Natl.
Acad. Sci. USA 114, 6406–6411. https://doi.
org/10.1073/pnas.1617743114.

35. Liebeskind, B.J., McWhite, C.D., and
Marcotte, E.M. (2016). Towards Consensus
Gene Ages. Genome Biol. Evol. 8, 1812–
1823. https://doi.org/10.1093/gbe/evw113.

36. Chu, X.Y., Jiang, L.H., Zhou, X.H., Cui, Z.J.,
and Zhang, H.Y. (2017). Evolutionary Origins
of Cancer Driver Genes and Implications for
Cancer Prognosis. Genes 8, 182. https://doi.
org/10.3390/genes8070182.

37. Trigos, A.S., Pearson, R.B., Papenfuss, A.T.,
and Goode, D.L. (2018). How the evolution
of multicellularity set the stage for cancer.
Br. J. Cancer 118, 145–152. https://doi.org/
10.1038/bjc.2017.398.

38. Awad,M.M., Liu, S., Rybkin, I.I., Arbour, K.C.,
Dilly, J., Zhu, V.W., Johnson, M.L., Heist,
R.S., Patil, T., Riely, G.J., et al. (2021).
Acquired Resistance to KRASG12C
Inhibition in Cancer. N. Engl. J. Med. 384,
2382–2393. https://doi.org/10.1056/
NEJMoa2105281.

39. Uprety, D., and Adjei, A.A. (2020). KRAS:
From undruggable to a druggable Cancer
Target. Cancer Treat Rev. 89, 102070.
https://doi.org/10.1016/j.ctrv.2020.102070.

40. Wong, G.S., Zhou, J., Liu, J.B., Wu, Z., Xu, X.,
Li, T., Xu, D., Schumacher, S.E., Puschhof, J.,
McFarland, J., et al. (2018). Targeting wild-
type KRAS-amplified gastroesophageal
cancer through combined MEK and SHP2
inhibition. Nat. Med. 24, 968–977. https://
doi.org/10.1038/s41591-018-0022-x.

41. Punekar, S.R., Velcheti, V., Neel, B.G., and
Wong, K.K. (2022). The current state of the
art and future trends in RAS-targeted cancer
therapies. Nat. Rev. Clin. Oncol. 19,
637–655. https://doi.org/10.1038/s41571-
022-00671-9.

42. Du, Z., and Lovly, C.M. (2018). Mechanisms
of receptor tyrosine kinase activation in
cancer. Mol. Cancer 17, 58. https://doi.org/
10.1186/s12943-018-0782-4.

43. Talukdar, S., Emdad, L., Das, S.K., and
Fisher, P.B. (2020). EGFR: An essential
receptor tyrosine kinase-regulator of cancer
stem cells. Adv. Cancer Res. 147, 161–188.
https://doi.org/10.1016/bs.acr.2020.04.003.

44. Cheng, W.L., Feng, P.H., Lee, K.Y., Chen,
K.Y., Sun, W.L., Van Hiep, N., Luo, C.S., and
Wu, S.M. (2021). The Role of EREG/EGFR
Pathway in Tumor Progression. Int. J. Mol.
Sci. 22, 12828. https://doi.org/10.3390/
ijms222312828.

45. Levantini, E., Maroni, G., Del Re, M., and
Tenen, D.G. (2022). EGFR signaling pathway
as therapeutic target in human cancers.
Semin. Cancer Biol. 85, 253–275. https://doi.
org/10.1016/j.semcancer.2022.04.002.

46. Friedlaender, A., Subbiah, V., Russo, A.,
Banna, G.L., Malapelle, U., Rolfo, C., and
Addeo, A. (2022). EGFR and HER2 exon 20
insertions in solid tumours: from biology to
treatment. Nat. Rev. Clin. Oncol. 19, 51–69.
https://doi.org/10.1038/s41571-021-
00558-1.

47. Takahashi, M., Ritz, J., and Cooper, G.M.
(1985). Activation of a novel human
transforming gene, ret, by DNA
rearrangement. Cell 42, 581–588. https://
doi.org/10.1016/0092-8674(85)90115-1.
48. Salvatore, D., Santoro, M., and
Schlumberger, M. (2021). The importance of
the RET gene in thyroid cancer and
therapeutic implications. Nat. Rev.
Endocrinol. 17, 296–306. https://doi.org/10.
1038/s41574-021-00470-9.

49. Ding, S., Wang, R., Peng, S., Luo, X., Zhong,
L., Yang, H., Ma, Y., Chen, S., and Wang, W.
(2020). Targeted therapies for RET-fusion
cancer: Dilemmas and breakthrough.
Biomed. Pharmacother. 132, 110901.
https://doi.org/10.1016/j.biopha.2020.
110901.

50. Thein, K.Z., Velcheti, V., Mooers, B.H.M.,
Wu, J., and Subbiah, V. (2021). Precision
therapy for RET-altered cancers with RET
inhibitors. Trends Cancer 7, 1074–1088.
https://doi.org/10.1016/j.trecan.2021.
07.003.

51. Wang, S., Xiong, Y., Zhang, Q., Su, D., Yu, C.,
Cao, Y., Pan, Y., Lu, Q., Zuo, Y., and Yang, L.
(2021). Clinical significance and
immunogenomic landscape analyses of the
immune cell signature based prognostic
model for patients with breast cancer.
Briefings Bioinf. 22, bbaa311. https://doi.
org/10.1093/bib/bbaa311.

52. Jurcak, N.R., Rucki, A.A., Muth, S.,
Thompson, E., Sharma, R., Ding, D., Zhu, Q.,
Eshleman, J.R., Anders, R.A., Jaffee, E.M.,
et al. (2019). Axon Guidance Molecules
Promote Perineural Invasion and Metastasis
of Orthotopic Pancreatic Tumors in Mice.
Gastroenterology 157, 838–850.e6. https://
doi.org/10.1053/j.gastro.2019.05.065.

53. Patergnani, S., Danese, A., Bouhamida, E.,
Aguiari, G., Previati, M., Pinton, P., and
Giorgi, C. (2020). Various Aspects of Calcium
Signaling in the Regulation of Apoptosis,
Autophagy, Cell Proliferation, and. Int. J.
Mol. Sci. 21, 8323. https://doi.org/10.3390/
ijms21218323.

54. Lin, X., Zhuang, S., Chen, X., Du, J., Zhong,
L., Ding, J., Wang, L., Yi, J., Hu, G., Tang, G.,
et al. (2022). lncRNA ITGB8-AS1 functions as
a ceRNA to promote colorectal cancer
growth and migration through integrin-
mediated focal adhesion signaling. Mol.
Ther. 30, 688–702. https://doi.org/10.1016/j.
ymthe.2021.08.011.

55. Li, Y., Sheng, H., Ma, F., Wu, Q., Huang, J.,
Chen, Q., Sheng, L., Zhu, X., Zhu, X., and Xu,
M. (2021). RNA m6A reader YTHDF2
facilitates lung adenocarcinoma cell
proliferation and metastasis by targeting
the AXIN1/Wnt/b-catenin signaling. Cell
Death Dis. 12, 479. https://doi.org/10.1038/
s41419-021-03763-z.

56. Jiang, N., Zou, C., Zhu, Y., Luo, Y., Chen, L.,
Lei, Y., Tang, K., Sun, Y., Zhang, W., Li, S.,
et al. (2020). HIF-1ɑ-regulated miR-1275
maintains stem cell-like phenotypes and
promotes the progression of LUAD by
simultaneously activating Wnt/b-catenin
and Notch signaling. Theranostics 10, 2553–
2570. https://doi.org/10.7150/thno.41120.

57. Li, S., Yang, F., Wang, M., Cao, W., and
Yang, Z. (2017). miR-378 functions as an
onco-miRNA by targeting the ST7L/Wnt/
b-catenin pathway in cervical cancer. Int. J.
Mol. Med. 40, 1047–1056. https://doi.org/
10.3892/ijmm.2017.3116.

58. Duchartre, Y., Kim, Y.M., and Kahn, M.
(2016). TheWnt signaling pathway in cancer.
Crit. Rev. Oncol. Hematol. 99, 141–149.
https://doi.org/10.1016/j.critrevonc.2015.
12.005.

59. Xu, X., Zhang,M., Xu, F., and Jiang, S. (2020).
Wnt signaling in breast cancer: biological
mechanisms, challenges and opportunities.
Mol. Cancer 19, 165. https://doi.org/10.
1186/s12943-020-01276-5.

60. Lee, S., Rauch, J., and Kolch, W. (2020).
Targeting MAPK Signaling in Cancer:
Mechanisms of Drug Resistance and
Sensitivity. Int. J. Mol. Sci. 21, 1102. https://
doi.org/10.3390/ijms21031102.

61. Wagner, E.F., and Nebreda, A.R. (2009).
Signal integration by JNK and p38 MAPK
pathways in cancer development. Nat. Rev.
Cancer 9, 537–549. https://doi.org/10.1038/
nrc2694.

62. Zhu, H., Liu, Q., Yang, X., Ding, C.,Wang,Q.,
and Xiong, Y. (2022). LncRNA LINC00649
recruits TAF15 and enhances MAPK6
expression to promote the development of
lung squamous cell carcinoma via activating
MAPK signaling pathway. Cancer Gene
Ther. 29, 1285–1295. https://doi.org/10.
1038/s41417-021-00410-9.

63. Lian, W., Wang, Z., Ma, Y., Tong, Y., Zhang,
X., Jin, H., Zhao, S., Yu, R., Ju, S., Zhang, X.,
et al. (2022). FABP6 Expression Correlates
with Immune Infiltration and
Immunogenicity in Colorectal Cancer Cells.
J. Immunol. Res. 2022, 3129765. https://doi.
org/10.1155/2022/3129765.

64. Zhang, Y., Zhao, X., Deng, L., Li, X., Wang,
G., Li, Y., and Chen, M. (2019). High
expression of FABP4 and FABP6 in patients
with colorectal cancer. World J. Surg. Oncol.
17, 171. https://doi.org/10.1186/s12957-
019-1714-5.

65. Pai, F.C., Huang, H.W., Tsai, Y.L., Tsai, W.C.,
Cheng, Y.C., Chang, H.H., and Chen, Y.
(2021). Inhibition of FABP6 Reduces Tumor
Cell Invasion and Angiogenesis through the
Decrease in MMP-2 and VEGF in Human
Glioblastoma Cells. Cells 10, 2782. https://
doi.org/10.3390/cells10102782.

66. Lin, C.H., Chang, H.H., Lai, C.R., Wang, H.H.,
Tsai, W.C., Tsai, Y.L., Changchien, C.Y.,
Cheng, Y.C., Wu, S.T., and Chen, Y. (2022).
Fatty Acid Binding Protein 6 Inhibition
Decreases Cell Cycle Progression,
Migration and Autophagy in Bladder
Cancers. Int. J. Mol. Sci. 23, 2154. https://
doi.org/10.3390/ijms23042154.

67. Lin, J., Yang, J., Xu, X., Wang, Y., Yu, M., and
Zhu, Y. (2020). A robust 11-genes prognostic
model can predict overall survival in bladder
cancer patients based on five cohorts.
Cancer Cell Int. 20, 402. https://doi.org/10.
1186/s12935-020-01491-6.

68. Hu, B., Yang, X.B., and Sang, X.T. (2020).
Development of an immune-related
prognostic index associated with
hepatocellular carcinoma. Aging 12, 5010–
5030. https://doi.org/10.18632/aging.
102926.

69. Munson, M.J., Mathai, B.J., Ng, M.Y.W.,
Trachsel-Moncho, L., de la Ballina, L.R., and
Simonsen, A. (2022). GAK and PRKCD
kinases regulate basal mitophagy.
Autophagy 18, 467–469. https://doi.org/10.
1080/15548627.2021.2015154.

70. Munson, M.J., Mathai, B.J., Ng, M.Y.W.,
Trachsel-Moncho, L., de la Ballina, L.R.,
Schultz, S.W., Aman, Y., Lystad, A.H., Singh,
S., Singh, S., et al. (2021). GAK and PRKCD
are positive regulators of PRKN-
independent mitophagy. Nat. Commun. 12,
6101. https://doi.org/10.1038/s41467-021-
26331-7.

71. Chen, Y., Ke, G., Han, D., Liang, S., Yang, G.,
and Wu, X. (2014). MicroRNA-181a
enhances the chemoresistance of human
cervical squamous cell carcinoma to
iScience 27, 109859, June 21, 2024 13

https://doi.org/10.1016/j.celrep.2012.09.034
https://doi.org/10.1016/j.celrep.2012.09.034
https://doi.org/10.1073/pnas.1617743114
https://doi.org/10.1073/pnas.1617743114
https://doi.org/10.1093/gbe/evw113
https://doi.org/10.3390/genes8070182
https://doi.org/10.3390/genes8070182
https://doi.org/10.1038/bjc.2017.398
https://doi.org/10.1038/bjc.2017.398
https://doi.org/10.1056/NEJMoa2105281
https://doi.org/10.1056/NEJMoa2105281
https://doi.org/10.1016/j.ctrv.2020.102070
https://doi.org/10.1038/s41591-018-0022-x
https://doi.org/10.1038/s41591-018-0022-x
https://doi.org/10.1038/s41571-022-00671-9
https://doi.org/10.1038/s41571-022-00671-9
https://doi.org/10.1186/s12943-018-0782-4
https://doi.org/10.1186/s12943-018-0782-4
https://doi.org/10.1016/bs.acr.2020.04.003
https://doi.org/10.3390/ijms222312828
https://doi.org/10.3390/ijms222312828
https://doi.org/10.1016/j.semcancer.2022.04.002
https://doi.org/10.1016/j.semcancer.2022.04.002
https://doi.org/10.1038/s41571-021-00558-1
https://doi.org/10.1038/s41571-021-00558-1
https://doi.org/10.1016/0092-8674(85)90115-1
https://doi.org/10.1016/0092-8674(85)90115-1
https://doi.org/10.1038/s41574-021-00470-9
https://doi.org/10.1038/s41574-021-00470-9
https://doi.org/10.1016/j.biopha.2020.110901
https://doi.org/10.1016/j.biopha.2020.110901
https://doi.org/10.1016/j.trecan.2021.07.003
https://doi.org/10.1016/j.trecan.2021.07.003
https://doi.org/10.1093/bib/bbaa311
https://doi.org/10.1093/bib/bbaa311
https://doi.org/10.1053/j.gastro.2019.05.065
https://doi.org/10.1053/j.gastro.2019.05.065
https://doi.org/10.3390/ijms21218323
https://doi.org/10.3390/ijms21218323
https://doi.org/10.1016/j.ymthe.2021.08.011
https://doi.org/10.1016/j.ymthe.2021.08.011
https://doi.org/10.1038/s41419-021-03763-z
https://doi.org/10.1038/s41419-021-03763-z
https://doi.org/10.7150/thno.41120
https://doi.org/10.3892/ijmm.2017.3116
https://doi.org/10.3892/ijmm.2017.3116
https://doi.org/10.1016/j.critrevonc.2015.12.005
https://doi.org/10.1016/j.critrevonc.2015.12.005
https://doi.org/10.1186/s12943-020-01276-5
https://doi.org/10.1186/s12943-020-01276-5
https://doi.org/10.3390/ijms21031102
https://doi.org/10.3390/ijms21031102
https://doi.org/10.1038/nrc2694
https://doi.org/10.1038/nrc2694
https://doi.org/10.1038/s41417-021-00410-9
https://doi.org/10.1038/s41417-021-00410-9
https://doi.org/10.1155/2022/3129765
https://doi.org/10.1155/2022/3129765
https://doi.org/10.1186/s12957-019-1714-5
https://doi.org/10.1186/s12957-019-1714-5
https://doi.org/10.3390/cells10102782
https://doi.org/10.3390/cells10102782
https://doi.org/10.3390/ijms23042154
https://doi.org/10.3390/ijms23042154
https://doi.org/10.1186/s12935-020-01491-6
https://doi.org/10.1186/s12935-020-01491-6
https://doi.org/10.18632/aging.102926
https://doi.org/10.18632/aging.102926
https://doi.org/10.1080/15548627.2021.2015154
https://doi.org/10.1080/15548627.2021.2015154
https://doi.org/10.1038/s41467-021-26331-7
https://doi.org/10.1038/s41467-021-26331-7


ll
OPEN ACCESS

iScience
Article
cisplatin by targeting PRKCD. Exp. Cell Res.
320, 12–20. https://doi.org/10.1016/j.yexcr.
2013.10.014.

72. Ke, G., Liang, L., Yang, J.M., Huang, X., Han,
D., Huang, S., Zhao, Y., Zha, R., He, X., and
Wu, X. (2013). MiR-181a confers resistance
of cervical cancer to radiation therapy
through targeting the pro-apoptotic PRKCD
gene. Oncogene 32, 3019–3027. https://doi.
org/10.1038/onc.2012.323.

73. Yao, L., Wang, L., Li, F., Gao, X., Wei, X., and
Liu, Z. (2015). MiR181c inhibits ovarian
cancer metastasis and progression by
targeting PRKCD expression. Int. J. Clin.
Exp. Med. 8, 15198–15205.

74. Munksgaard, P.P., Mansilla, F., Brems
Eskildsen, A.S., Fristrup, N., Birkenkamp-
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA-HNSC\LIHC\LUAD\LUSC TCGA https://portal.gdc.cancer.gov/

GSE30219 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219

GSE65858 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65858

GSE74477 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74477

GSE116174 GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174

TTD-biomarkers TTD https://db.idrblab.org/ttd/

Pharmacogenomic biomarkers in drug

labeling

FDA https://www.fda.gov/

MarkerDB oncology biomarkers MarkerDB https://markerdb.ca/

Ohnologs Makino et al.31 https://doi.org/10.1073/pnas.0914697107

Evolutionary stages of genes Liebeskind et al.35 https://github.com/marcottelab/Gene-Ages/

Source Code This paper https://github.com/cdoebra/ESPMs

Software and algorithms

BioMart Ensembl http://asia.ensembl.org/biomart/martview/

TPM Li et al.105 https://doi.org/10.1186/1471-2105-12-323

R version 4.2.2 R software https://www.r-project.org/

Python version 3.6.8 Python software https://www.python.org/

clusterProfiler Bioconductor https://bioconductor.org/packages/clusterProfiler

Survival R-project https://cran.r-project.org/web/packages/survival/

Scikit-learn Sklearn package https://scikit-learn.org/stable/install.html

ConsensusClusterPlus Bioconductor https://bioconductor.org/packages/ConsensusClusterPlus

keras Keras software https://keras.io/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Hong-yu Zhang (e-mail: zhy630@

mail.hzau.edu.cn).

Materials availability

This study did not generate new unique reagents or materials.

Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
� Original codes have been deposited at Github, and are publicly accessible as of the date of publication. Open access link is listed in the

key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Biomarker information

The biomarker annotations utilized in this study were obtained from the Therapeutic Target Database version 7.1.01101 and the MarkerDB data-

base.102 The TTD database contains 1514 biomarkers, including 119 clinical biomarkers and 23 Food and Drug Administration (FDA)-approved

biomarkers. The types of biomarkers include classification, diagnosis, detection, prognosis, monitoring, theragnosis, and pharmacodynamics.

The list of FDA oncology pharmacogenomic biomarkers in drug labeling was downloaded from the website (key resources table).
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Evolutionary information of genes

Based on the work by Makino et al.,31 we downloaded 9,057 Ohnolog pairs and used the BioMart of the Ensembl database to convert the

Ensembl ID of the Ohnolog genes to corresponding gene symbol. After screening and de-duplication, 7,090 human genes were obtained.

The evolutionary stages corresponding to human genes were downloaded from the work of Liebeskind et al.35 They classified the origin of

human genes into eight evolutionary stages: cellular organisms, euk_archaea, eukaryota, opisthokonta, eumetazoa, vertebrata, mammalia,

and euk+bac, containing 813, 201, 5242, 1030, 4568, 2484, 2181, and 1396 genes, respectively.

RNA-seq and clinical data of cancer cohorts

The RNA-seq and clinical data used in this study were obtained from The Cancer Genome Atlas Project (TCGA) portal. We downloaded data

from cancer cohorts with sample sizes >300. We extracted the Transcripts Per KilobaseMillion (TPM) values of samples that met the following

criteria: (1) tissues were collected from primary cancer and (2) complete overall survival information, including follow-up time and vital sta-

tus,103,104 and survival time over 30 days. For a gene that had multiple Ensembl IDs, we calculated the average level as the final expression

level.105 For each cancer, the mean survival time of the dead samples was calculated and used to classify the samples into positive and nega-

tive samples. Only two types of patients were used for subsequent analysis: (1) survival status was ‘‘Alive’’ and follow-up time longer thanmean

survival; or (2) survival status was ‘‘Dead.’’ Prognostic predictions for rapidly progressing cancers may bemore meaningful, and these types of

cancers are relatively less influenced by environmental and external factors. Considering the reliability and practical significance of the results,

we selected cancers with an average survival time of about 36 months or less and with a ratio that did not exceed 1 to 2 between positive and

negative samples.

We obtained four cancers, head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma

(LUAD), and lung squamous cell carcinoma (LUSC), for further analysis. Four independent cancer cohorts, namely, GSE65858 (HNSC, n = 226),

GSE116174 (LIHC, n = 64), GSE30219 (LUAD, n = 83), andGSE74477 (LUSC, n = 107) were obtained from theGene ExpressionOmnibus (GEO)

database for portability validation of ESPMs. Low-quality and duplicate arrays were removed from each dataset based on the same criteria as

the TCGA data, and the expression values were log2-transformed and normalized using RMA. We converted gene expression to TPM for

model construction like TCGA datasets.106

TPMðxÞ =
Cx

�
Lx 3 106

PN
i = 1

Ci

�
Li

(Equation 1)

Where x can represent a gene, a transcript, or a specific region on the genome,Cx denotes the number of reads aligned to the exonic region

of gene x, Lx represents the number of bases included in the exonic region of gene x, andN indicates the total number of genes in the sample.

Identification of evolutionary features of biomarkers

All biomarkers downloaded from the TTD database are divided into two groups according to their research stage: FDA-approved and those

undergoing clinical trials. Correlations between biomarkers and Ohnolog genes were determined by hypergeometric distribution test. The

p-value can be computed using the formula as follows:

Pvalue = 1 �
Xx� 1

i = 0

�
Ci

K 3CN� i
M�K

�
CN

M

(Equation 2)

The number of approved or research biomarkers is K . The total number of biomarkers isM and the number of Ohnologs in all biomarkers is

N. x represents the number of Ohnologs in approved or in-research biomarkers. Results are considered significant when the p-value is less

than 0.05.

GO and KEGG enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis compare the functional annotation information known

froma species’ genomewith the gene list to determine which functions or pathways appearmore frequently in these genes than in the randomly

expected value. The enrichment analysis in this paper was implemented using the ‘‘clusterProfiler’’ package of R.107 The terms with an adjusted

p-value < 0.05 were considered significantly enriched genes, and only the top 10 GeneRatio were demonstrated for each cancer.

Identification of potential prognostic biomarkers

Patients were divided into two groups, high expression (top 25%) and low expression (bottom 25%), based on the expression levels of genes.

The Cox proportional hazards model was utilized to evaluate overall survival (OS) and survival status.108,109 The Cox regression analysis was

performed using the ‘‘Survival’’ package of R. The hazard ratio (HR) was calculated to quantify this correlation, as expressed below:

HRðtÞ =
h1ðtÞ
h0ðtÞ = eg1 (Equation 3)
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When only 1 exposure variable remains, the risk of the sample at time t is h1ðtÞ, and the baseline risk is h0ðtÞ. g1 is the coefficient by which

the gene expression value affects patient survival. Taking into account the inevitable heterogeneity among tumors and to prevent the discrep-

ancy between the number of input features and the sample size from adversely impacting the model’s performance, we have established

distinct significance thresholds for each type of cancer when selecting survival-significant genes (the p-values for LUSC, LUAD, LIHC, and

HNSC were set to be 0.05, 0.025, 0.001, and 0.025, respectively). Then, we selected genes with evolutionary features as potential biomarkers.
Unsupervised consensus clustering analysis

The unsupervised consensus clustering (k = 2 � 8) algorithm and visualization were conducted using the ‘‘ConsensusClusterPlus’’ package

in R110 to explore cancer molecular classification based on the expression matrix of the potential oncology biomarkers. The optimal numbers

of clusters for each cancer were identified by visual inspection and consideration of the cumulative distribution function (CDF) and the Delta

areas for each k group. We then performed the Kaplan–Meier survival curves from the ‘‘survival’’ R packages to explore the prognosis among

different cluster.
Construction of the evolution-strengthened prognostic model

To identify the most salient features, we used the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to further filter the

potential biomarkers. This process used a 10-fold cross-validation with 10000 iterations to determine the optimal a. The optimal a value

was employed to construct the most appropriate model by capturing the optimal features and their corresponding LASSO coefficients.

The entire process was executed through the ‘sklearn’ module of the Python software.

ESPMwas a supervised and gene expression level-basedmodel. The deep learning framework of ESPMwas implemented in Python using

the ‘keras’ module. The classifier is implemented by drawing references from DeepC.111 We built a fully trainable connected multilayer arti-

ficial neural network (ANN) perceptron with seven hidden layers. The SELU activation function was utilized in each hidden layer, whereas the

final output layer used SoftMax. The entire network is initialized using the Glorot uniform distribution method, and the optimizer can be

selected from either SDG or Adam.

Each neuron in a layer is connected to every neuron in the subsequent layer. We assume the current layer t of the neural network has k

neurons and layer t � 1 has l neurons. The information transfer between two neurons iði ˛ f1;/kgÞ, jðj ˛ f1;/kgÞ depends on the weight

wij and the bias value bj between them, which can be expressed as:

ht
j = f

 Xl

i = 1
wijh

t� 1
i + bj

!
(Equation 4)

Here, h and f denote the outputs of the neuron and the activation function, respectively. The output layer then maps these values to prob-

abilities for each category, enabling the model to make predictions about the data. To prevent overfitting, we employed 10-fold cross-vali-

dation and a callback function. Specifically, the ’auc’ and ’val_loss’ were chosen as monitoringmetrics. In addition, 5-fold cross-validation was

performed to promise the stability of the predictionmodel and was repeated for 100 cycles, with the data used for each cycle being extracted

randomly. It should be noted that we have constructed twomodels – ESPMand a traditionalmodel. These twomodels were the same in terms

of steps and parameter settings, the only difference being that the input features for the ESPMmodel were selected from survival-significant

genes that were Ohnologs and originated from eukaryota, opisthokonta, and eumetazoa. In contrast, the traditional model selected input

features from the remaining survival-significant genes. This approach maximized the demonstration of the effectiveness of evolutionary

information.
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