organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Hydroxy-3-(1'-methyl-2-oxo-4'-phenylspiro[indoline-3,2'-pyrrolidine]-3'-ylcarbonyl)quinolin-2(1H)-one

K. Revathi,^a + M. Sankaran,^b P. Ramesh,^a P. S. Mohan^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 15 March 2010; accepted 20 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.119; data-to-parameter ratio = 17.6.

In the title compound, C₂₈H₂₃N₃O₄, the dihedral angle between the quinoline and indole ring systems is $29.30 (5)^{\circ}$. The pyrrolidine ring adopts a twist conformation. An intramolecular $O-H \cdots O$ hydrogen bond generates an S(6) ring motif. A weak intramolecular C3-H3···O3 interaction is also observed. In the crystal, molecules are linked by two sets of N-H···O hydrogen bonds, forming centrosymmetric dimers containing two $R_2^2(8)$ ring motifs. The dimers are linked via $C-H\cdots\pi$ interactions.

Related literature

For general background to indole, quinoline and pyrrolidine derivatives, see: Amalraj et al. (2003); Cordell (1981); Suzuki et al. (1994). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

[‡] Parent department: Department of Chemistry, Thiagarajar College (Autonomous), Madurai 625 009, India.

Experimental

Crystal data

β

C ₂₈ H ₂₃ N ₃ O ₄	$\gamma = 66.410 \ (1)^{\circ}$
$M_r = 465.49$	V = 1163.93 (6) Å ³
Triclinic, P1	Z = 2
a = 9.6918 (3) Å	Mo $K\alpha$ radiation
b = 11.0258 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 12.9663 (4) Å	T = 293 K
$\alpha = 69.111 \ (1)^{\circ}$	$0.20 \times 0.20 \times 0.20$ mm
$\beta = 72.044 \ (2)^{\circ}$	

Data collection

Bruker SMART APEXII areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2008) $T_{\min} = 0.982, T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	
$wR(F^2) = 0.119$	
S = 1.03	
5795 reflections	
329 parameters	

H atoms treated by a mixture of independent and constrained

21655 measured reflections 5795 independent reflections

4635 reflections with $I > 2\sigma(I)$

refinement $\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.023$

Table 1

Hydrogen-bond geometry (Å, °).

Cg6 is the centroid of the C26-C31 ring.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$04 - H4A \cdots O2$ $N8 - H8 \cdots O3^{i}$ $N18 - H18 \cdots O1^{i}$ $C3 - H3 \cdots O3$ $C21 - H21 \cdots Cg6^{ii}$	0.99 (2) 0.89 (2) 0.90 (2) 0.98 0.93	1.56 (2) 1.92 (2) 1.95 (2) 2.21 2.72	2.4840 (14) 2.7837 (13) 2.8497 (14) 2.7944 (13) 3.5360 (18)	155 (2) 165 (2) 177 (2) 117 147

Symmetry codes: (i) -x, -y + 2, -z; (ii) -x + 1, -y + 2, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5061).

References

Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.

Acta Cryst. (2010). E66, o952 [doi:10.1107/S1600536810010500]

4-Hydroxy-3-(1'-methyl-2-oxo-4'-phenylspiro[indoline-3,2'-pyrrolidine]-3'-ylcarbonyl)quinolin-2(1*H*)-one

K. Revathi, M. Sankaran, P. Ramesh, P. S. Mohan and M. N. Ponnuswamy

Comment

Substituted pyrrolidine compounds possess antimicrobial and antifungal activities against various pathogens (Amalraj *et al.*, 2003). Several optically active pyrrolidine compounds are used as intermediates in controlled asymmetric synthesis (Suzuki *et al.*, 1994). The spiro- indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Against this background and to ascertain the detailed information on its molecular conformation, the X-ray structure determination of the title compound has been carried out.

The pyrrolidine ring (N1/C2-C5) in the molecule adopts a twist conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are $q_2 = 0.426$ (1) Å, $\varphi = 335.5$ (2)° and Δ_2 (C3) = 6.8 (2)°. The sum of the bond angles around atom N1 (337.3°) of the pyrrolidine ring indicates sp³ hybridization. The indole and quinoline ring systems are planar and keto atoms O1 and O3 deviate from the attached ring system by 0.011 (1) and -0.122 (1) Å, respectively. The dihedral angle between the indole and quinoline ring systems is 29.30 (5)°. An intramolecular O4—H4···O2 hydrogen bond generates an S(6) ring motif (Bernstein *et al.*, 1995). A weak intramolecular C3—H3···O3 interaction is also observed.

The molecules at (x, y, z) and (-x, 2-y, -z) are linked by two sets of N8—H8···O3 and N18—H18···O1 hydrogen bonds to form a centrosymmetric dimer containing two $R_2^2(8)$ ring motifs (Fig. 2).

Experimental

A mixture of 3-cinnamoyl-4-hydroxyquinolin-2(1H)-one (0.5 mmol), isatin (0.5 mmol) and sarcosine (0.55 mmol) was refluxed in methanol until the disappearance of the starting materials as evidenced by the TLC. After completion of the reaction, the solvent was removed in vacuo and the residue was chromatographed on silica gel using hexane-ethyl acetate mixture (7:3) as eluent to give the title compound. The compound was recrystallized in DMF-methanol (3:7 v/v).

Refinement

N- and O-bound H atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93-0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

4-Hydroxy-3-(1'-methyl-2-oxo-4'-phenylspiro[indoline-3,2'-pyrrolidine]-3- ylcarbonyl)quinolin-2(1H)-one

Crystal data C28H23N3O4 Z = 2 $M_r = 465.49$ F(000) = 488 $D_{\rm x} = 1.328 \text{ Mg m}^{-3}$ Triclinic, PT Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71073$ Å *a* = 9.6918 (3) Å Cell parameters from 1865 reflections b = 11.0258 (3) Å $\theta = 1.7 - 28.4^{\circ}$ c = 12.9663 (4) Å $\mu = 0.09 \text{ mm}^{-1}$ $\alpha = 69.111 (1)^{\circ}$ T = 293 K $\beta = 72.044 \ (2)^{\circ}$ Block, colourless $\gamma = 66.410 \ (1)^{\circ}$ $0.20\times0.20\times0.20~mm$ V = 1163.93 (6) Å³

Data collection

Bruker SMART APEXII area-detector diffractometer	5795 independent reflections
Radiation source: fine-focus sealed tube	4635 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ω and ϕ scans	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2008)	$h = -12 \rightarrow 12$
$T_{\min} = 0.982, \ T_{\max} = 0.982$	$k = -14 \rightarrow 14$
21655 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.119$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0596P)^{2} + 0.2023P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5795 reflections	$(\Delta/\sigma)_{\rm max} = 0.008$
329 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.12393 (11)	0.84110 (9)	0.20477 (8)	0.0513 (2)
O2	0.31591 (12)	0.88012 (10)	0.35337 (8)	0.0540 (2)
O3	0.17428 (11)	0.93755 (10)	0.06203 (7)	0.0489 (2)
O4	0.43677 (12)	1.06028 (12)	0.24273 (9)	0.0577 (3)
N1	-0.11028 (12)	0.89412 (11)	0.41897 (8)	0.0438 (2)
C2	-0.03598 (13)	0.94481 (12)	0.30309 (9)	0.0377 (2)
C3	0.13212 (13)	0.83758 (11)	0.29618 (9)	0.0362 (2)
Н3	0.1534	0.7989	0.2334	0.043*
C4	0.12577 (14)	0.72173 (12)	0.40670 (9)	0.0398 (3)
H4	0.1635	0.7380	0.4609	0.048*
C5	-0.04598 (15)	0.74471 (13)	0.44758 (10)	0.0451 (3)
H5A	-0.0828	0.7067	0.4086	0.054*
H5B	-0.0702	0.7047	0.5280	0.054*
C6	-0.27726 (17)	0.95032 (17)	0.44161 (13)	0.0608 (4)
H6A	-0.3175	0.9223	0.3981	0.091*
H6B	-0.3085	1.0488	0.4214	0.091*
H6C	-0.3159	0.9170	0.5202	0.091*
C7	-0.10803 (14)	0.94192 (12)	0.21255 (9)	0.0405 (3)
N8	-0.15228 (13)	1.07050 (11)	0.14433 (9)	0.0465 (3)
C9	-0.11390 (14)	1.16162 (12)	0.17404 (10)	0.0437 (3)
C10	-0.13151 (19)	1.29824 (14)	0.12047 (13)	0.0604 (4)
H10	-0.1705	1.3416	0.0546	0.072*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	-0.0888(2)	1.36838 (15)	0.16859 (15)	0.0669 (4)
H11	-0.0970	1.4600	0.1332	0.080*
C12	-0.03449 (19)	1.30537 (14)	0.26777 (14)	0.0594 (4)
H12	-0.0103	1.3559	0.2997	0.071*
C13	-0.01539 (15)	1.16707 (13)	0.32065 (11)	0.0480 (3)
H13	0.0216	1.1243	0.3874	0.058*
C14	-0.05276 (14)	1.09499 (12)	0.27148 (9)	0.0395 (2)
C15	0.25320 (13)	0.90191 (11)	0.27531 (9)	0.0378 (2)
C16	0.29296 (13)	0.99495 (11)	0.16590 (9)	0.0363 (2)
C17	0.24039 (13)	1.01026 (11)	0.06679 (9)	0.0377 (2)
N18	0.26902 (12)	1.11132 (10)	-0.02685 (8)	0.0419 (2)
C19	0.34942 (13)	1.19400 (12)	-0.03571 (10)	0.0408 (3)
C20	0.37500 (16)	1.29242 (13)	-0.13735 (12)	0.0515 (3)
H20	0.3361	1.3035	-0.1986	0.062*
C21	0.45814 (18)	1.37192 (15)	-0.14509 (13)	0.0597 (4)
H21	0.4756	1.4372	-0.2122	0.072*
C22	0.51668 (19)	1.35655 (16)	-0.05436 (14)	0.0624 (4)
H22	0.5725	1.4117	-0.0613	0.075*
C23	0.49284 (16)	1.26065 (15)	0.04533 (13)	0.0533 (3)
H23	0.5326	1.2506	0.1058	0.064*
C24	0.40805 (13)	1.17747 (12)	0.05590 (10)	0.0412 (3)
C25	0.37906 (13)	1.07426 (12)	0.15761 (10)	0.0403 (3)
C26	0.22252 (15)	0.58092 (12)	0.38987 (10)	0.0435 (3)
C27	0.33649 (18)	0.49550 (14)	0.45126 (13)	0.0590 (4)
H27	0.3503	0.5229	0.5064	0.071*
C28	0.4310 (2)	0.36850 (16)	0.43128 (17)	0.0739 (5)
H28	0.5078	0.3124	0.4726	0.089*
C29	0.4112 (2)	0.32639 (15)	0.35130 (16)	0.0695 (4)
H29	0.4755	0.2426	0.3373	0.083*
C30	0.29633 (18)	0.40778 (15)	0.29184 (14)	0.0594 (4)
H30	0.2814	0.3783	0.2385	0.071*
C31	0.20241 (16)	0.53399 (13)	0.31095 (11)	0.0492 (3)
H31	0.1245	0.5883	0.2703	0.059*
H4A	0.405 (3)	0.985 (2)	0.301 (2)	0.106 (7)*
H8	-0.1719 (19)	1.0831 (17)	0.0782 (15)	0.065 (5)*
H18	0.2265 (18)	1.1249 (15)	-0.0844 (14)	0.054 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0677 (6)	0.0516 (5)	0.0457 (5)	-0.0282 (4)	-0.0212 (4)	-0.0070 (4)
O2	0.0656 (6)	0.0651 (6)	0.0408 (5)	-0.0325 (5)	-0.0224 (4)	-0.0019 (4)
O3	0.0688 (6)	0.0569 (5)	0.0340 (4)	-0.0363 (5)	-0.0133 (4)	-0.0061 (4)
O4	0.0679 (6)	0.0729 (7)	0.0496 (5)	-0.0398 (5)	-0.0200 (5)	-0.0094 (5)
N1	0.0470 (6)	0.0469 (6)	0.0327 (5)	-0.0145 (4)	-0.0058 (4)	-0.0078 (4)
C2	0.0430 (6)	0.0406 (6)	0.0306 (5)	-0.0140 (5)	-0.0105 (4)	-0.0075 (4)
C3	0.0437 (6)	0.0344 (5)	0.0303 (5)	-0.0128 (4)	-0.0101 (4)	-0.0060 (4)
C4	0.0495 (6)	0.0391 (6)	0.0311 (5)	-0.0170 (5)	-0.0125 (4)	-0.0029 (4)

C5	0.0527 (7)	0.0478 (6)	0.0328 (5)	-0.0211 (5)	-0.0077 (5)	-0.0036 (5)
C6	0.0495 (8)	0.0672 (9)	0.0528 (8)	-0.0153 (7)	-0.0008 (6)	-0.0134 (7)
C7	0.0427 (6)	0.0456 (6)	0.0346 (5)	-0.0155 (5)	-0.0099 (4)	-0.0088 (5)
N8	0.0553 (6)	0.0470 (6)	0.0392 (5)	-0.0141 (5)	-0.0214 (5)	-0.0065 (4)
C9	0.0465 (6)	0.0416 (6)	0.0411 (6)	-0.0093 (5)	-0.0138 (5)	-0.0102 (5)
C10	0.0755 (10)	0.0439 (7)	0.0574 (8)	-0.0109 (7)	-0.0311 (7)	-0.0028 (6)
C11	0.0842 (11)	0.0372 (7)	0.0783 (11)	-0.0144 (7)	-0.0298 (9)	-0.0087 (7)
C12	0.0701 (9)	0.0455 (7)	0.0703 (9)	-0.0146 (6)	-0.0219 (7)	-0.0222 (7)
C13	0.0535 (7)	0.0459 (7)	0.0469 (7)	-0.0106 (5)	-0.0150 (5)	-0.0169 (5)
C14	0.0420 (6)	0.0387 (6)	0.0355 (5)	-0.0098 (4)	-0.0089 (4)	-0.0100 (4)
C15	0.0423 (6)	0.0371 (5)	0.0345 (5)	-0.0112 (4)	-0.0100 (4)	-0.0097 (4)
C16	0.0380 (6)	0.0364 (5)	0.0350 (5)	-0.0115 (4)	-0.0076 (4)	-0.0102 (4)
C17	0.0409 (6)	0.0386 (6)	0.0331 (5)	-0.0138 (4)	-0.0059 (4)	-0.0093 (4)
N18	0.0495 (6)	0.0438 (5)	0.0344 (5)	-0.0199 (4)	-0.0101 (4)	-0.0058 (4)
C19	0.0386 (6)	0.0362 (5)	0.0431 (6)	-0.0114 (4)	-0.0028 (5)	-0.0110 (5)
C20	0.0535 (8)	0.0456 (7)	0.0473 (7)	-0.0178 (6)	-0.0058 (6)	-0.0046 (5)
C21	0.0603 (8)	0.0479 (7)	0.0601 (8)	-0.0249 (6)	0.0001 (7)	-0.0038 (6)
C22	0.0618 (9)	0.0573 (8)	0.0727 (10)	-0.0348 (7)	-0.0006 (7)	-0.0157 (7)
C23	0.0503 (7)	0.0564 (8)	0.0598 (8)	-0.0265 (6)	-0.0044 (6)	-0.0179 (6)
C24	0.0374 (6)	0.0399 (6)	0.0462 (6)	-0.0137 (5)	-0.0034 (5)	-0.0142 (5)
C25	0.0389 (6)	0.0436 (6)	0.0408 (6)	-0.0134 (5)	-0.0077 (5)	-0.0142 (5)
C26	0.0488 (7)	0.0377 (6)	0.0413 (6)	-0.0192 (5)	-0.0094 (5)	-0.0012 (5)
C27	0.0668 (9)	0.0463 (7)	0.0622 (9)	-0.0177 (6)	-0.0276 (7)	-0.0006 (6)
C28	0.0695 (10)	0.0471 (8)	0.0905 (12)	-0.0093 (7)	-0.0319 (9)	0.0010 (8)
C29	0.0670 (10)	0.0402 (7)	0.0916 (12)	-0.0172 (7)	-0.0074 (9)	-0.0137 (7)
C30	0.0652 (9)	0.0512 (8)	0.0671 (9)	-0.0294 (7)	-0.0005 (7)	-0.0204 (7)
C31	0.0530 (7)	0.0451 (7)	0.0511 (7)	-0.0209 (6)	-0.0090 (6)	-0.0102 (5)

Geometric parameters (Å, °)

O1—C7	1.2232 (15)	C12—H12	0.93
O2—C15	1.2412 (14)	C13—C14	1.3797 (17)
O3—C17	1.2360 (14)	С13—Н13	0.93
O4—C25	1.3210 (15)	C15—C16	1.4679 (15)
O4—H4A	0.99 (2)	C16—C25	1.3908 (16)
N1—C6	1.4572 (18)	C16—C17	1.4559 (15)
N1—C5	1.4577 (16)	C17—N18	1.3666 (15)
N1—C2	1.4645 (15)	N18—C19	1.3748 (16)
C2—C14	1.5092 (16)	N18—H18	0.900 (16)
C2—C7	1.5546 (16)	C19—C24	1.3950 (17)
C2—C3	1.5824 (16)	C19—C20	1.4035 (17)
C3—C15	1.5123 (16)	C20—C21	1.371 (2)
C3—C4	1.5466 (15)	С20—Н20	0.93
С3—Н3	0.98	C21—C22	1.388 (2)
C4—C26	1.5124 (17)	C21—H21	0.93
C4—C5	1.5265 (18)	C22—C23	1.371 (2)
C4—H4	0.98	С22—Н22	0.93
С5—Н5А	0.97	C23—C24	1.4068 (18)
С5—Н5В	0.97	С23—Н23	0.93

С6—Н6А	0.96	C24—C25	1.4389 (17)
С6—Н6В	0.96	C26—C27	1.3840 (18)
С6—Н6С	0.96	C26—C31	1.3907 (18)
C7—N8	1.3526 (16)	C27—C28	1.397 (2)
N8—C9	1.3999 (17)	C27—H27	0.93
N8—H8	0.886 (18)	C28—C29	1.366 (3)
C9—C10	1.3791 (18)	C28—H28	0.93
C9—C14	1.3922 (16)	C29—C30	1.369 (2)
C10-C11	1.385 (2)	С29—Н29	0.93
C10—H10	0.93	C30—C31	1.385 (2)
C11—C12	1.379 (2)	С30—Н30	0.93
C11—H11	0.93	C31—H31	0.93
C12—C13	1.3915 (19)		
C25—O4—H4A	102.8 (13)	C14—C13—H13	120.9
C6—N1—C5	115.61 (11)	С12—С13—Н13	120.9
C6—N1—C2	115.01 (10)	C13—C14—C9	120.22 (11)
C5—N1—C2	106.72 (9)	C13—C14—C2	131.02 (10)
N1—C2—C14	113.47 (9)	C9—C14—C2	108.75 (10)
N1—C2—C7	113.94 (10)	O2—C15—C16	119.22 (11)
C14—C2—C7	101.31 (9)	O2—C15—C3	119.46 (10)
N1—C2—C3	102.76 (8)	C16—C15—C3	121.25 (9)
C14—C2—C3	117.72 (10)	C25—C16—C17	119.02 (10)
C7—C2—C3	107.99 (9)	C25—C16—C15	118.98 (10)
C15—C3—C4	114.61 (9)	C17—C16—C15	121.97 (10)
C15—C3—C2	112.81 (9)	O3—C17—N18	118.80 (10)
C4—C3—C2	105.06 (9)	O3—C17—C16	124.44 (10)
С15—С3—Н3	108.0	N18—C17—C16	116.76 (10)
С4—С3—Н3	108.0	N18—C19—C24	119.67 (11)
С2—С3—Н3	108.0	N18—C19—C20	119.99 (12)
C26—C4—C5	115.35 (10)	C24—C19—C20	120.32 (12)
C26—C4—C3	112.53 (9)	C21—C20—C19	119.04 (14)
C5—C4—C3	102.87 (9)	C21—C20—H20	120.5
С26—С4—Н4	108.6	С19—С20—Н20	120.5
С5—С4—Н4	108.6	C20—C21—C22	121.10 (13)
C3—C4—H4	108.6	C20-C21-H21	119.4
N1—C5—C4	102.03 (10)	C22—C21—H21	119.4
N1—C5—H5A	111.4	C23—C22—C21	120.47 (14)
C4—C5—H5A	111.4	C23—C22—H22	119.8
N1—C5—H5B	111.4	C21—C22—H22	119.8
C4—C5—H5B	111.4	C22—C23—C24	119.78 (14)
H5A—C5—H5B	109.2	С22—С23—Н23	120.1
N1—C6—H6A	109.5	С24—С23—Н23	120.1
N1—C6—H6B	109.5	C19—C24—C23	119.28 (12)
H6A—C6—H6B	109.5	C19—C24—C25	117.81 (11)
N1—C6—H6C	109.5	C23—C24—C25	122.91 (12)
Н6А—С6—Н6С	109.5	O4—C25—C16	121.98 (11)
H6B—C6—H6C	109.5	O4—C25—C24	116.49 (11)
O1—C7—N8	125.56 (11)	C16—C25—C24	121.52 (11)
O1—C7—C2	126.01 (10)	C27—C26—C31	117.78 (13)

N8—C7—C2	108.42 (10)	C27—C26—C4	120.84 (12)
C7—N8—C9	111.31 (10)	C31—C26—C4	121.36 (11)
C7—N8—H8	119.7 (11)	C26—C27—C28	120.68 (15)
C9—N8—H8	125.8 (11)	С26—С27—Н27	119.7
C10-C9-C14	121.77 (12)	С28—С27—Н27	119.7
C10C9N8	128.28 (12)	C29—C28—C27	120.29 (15)
C14—C9—N8	109.94 (10)	С29—С28—Н28	119.9
C9—C10—C11	117.42 (13)	C27—C28—H28	119.9
C9—C10—H10	121.3	C28—C29—C30	119.90 (15)
C11-C10-H10	121.3	С28—С29—Н29	120.0
C12-C11-C10	121.45 (14)	С30—С29—Н29	120.0
C12—C11—H11	119.3	C29—C30—C31	120.13 (15)
C10-C11-H11	119.3	С29—С30—Н30	119.9
C11—C12—C13	120.76 (13)	С31—С30—Н30	119.9
C11—C12—H12	119.6	C30—C31—C26	121.18 (13)
C13—C12—H12	119.6	С30—С31—Н31	119.4
C14—C13—C12	118.27 (12)	C26—C31—H31	119.4
C6—N1—C2—C14	67.51 (14)	C4—C3—C15—O2	-14.08 (15)
C5—N1—C2—C14	-162.83 (10)	C2—C3—C15—O2	106.11 (12)
C6—N1—C2—C7	-47.74 (15)	C4—C3—C15—C16	168.83 (10)
C5—N1—C2—C7	81.91 (12)	C2—C3—C15—C16	-70.98 (13)
C6—N1—C2—C3	-164.29 (11)	O2—C15—C16—C25	-10.92 (17)
C5—N1—C2—C3	-34.63 (11)	C3-C15-C16-C25	166.18 (10)
N1—C2—C3—C15	-116.48 (10)	O2—C15—C16—C17	171.31 (11)
C14—C2—C3—C15	9.00 (13)	C3—C15—C16—C17	-11.59 (16)
C7—C2—C3—C15	122.80 (10)	C25-C16-C17-O3	173.82 (11)
N1—C2—C3—C4	9.05 (11)	C15—C16—C17—O3	-8.41 (18)
C14—C2—C3—C4	134.53 (10)	C25-C16-C17-N18	-5.28 (16)
C7—C2—C3—C4	-111.68 (10)	C15-C16-C17-N18	172.49 (10)
C15—C3—C4—C26	-93.05 (12)	O3—C17—N18—C19	-175.84 (11)
C2—C3—C4—C26	142.55 (10)	C16-C17-N18-C19	3.31 (17)
C15—C3—C4—C5	142.18 (10)	C17—N18—C19—C24	-0.20 (18)
C2—C3—C4—C5	17.79 (11)	C17—N18—C19—C20	178.42 (11)
C6—N1—C5—C4	176.30 (10)	N18-C19-C20-C21	-178.69 (12)
C2—N1—C5—C4	46.99 (11)	C24—C19—C20—C21	-0.08 (19)
C26—C4—C5—N1	-161.42 (9)	C19—C20—C21—C22	-0.1 (2)
C3—C4—C5—N1	-38.53 (11)	C20-C21-C22-C23	0.2 (2)
N1—C2—C7—O1	-56.11 (16)	C21—C22—C23—C24	-0.2 (2)
C14—C2—C7—O1	-178.34 (12)	N18-C19-C24-C23	178.72 (11)
C3—C2—C7—O1	57.35 (15)	C20-C19-C24-C23	0.10 (18)
N1—C2—C7—N8	123.09 (11)	N18—C19—C24—C25	-0.94 (16)
C14—C2—C7—N8	0.87 (12)	C20-C19-C24-C25	-179.56 (11)
C3—C2—C7—N8	-123.44 (11)	C22—C23—C24—C19	0.0 (2)
O1—C7—N8—C9	-178.42 (12)	C22—C23—C24—C25	179.67 (13)
C2—C7—N8—C9	2.37 (14)	C17—C16—C25—O4	-176.49 (11)
C7—N8—C9—C10	175.61 (14)	C15—C16—C25—O4	5.67 (17)
C7—N8—C9—C14	-5.01 (15)	C17—C16—C25—C24	4.40 (17)
C14—C9—C10—C11	-1.3 (2)	C15—C16—C25—C24	-173.44 (10)
N8—C9—C10—C11	178.02 (15)	C19—C24—C25—O4	179.58 (11)

C9—C10—C11—C12	-1.6 (3)	C23—C24—C25—O4	-0.07 (18)
C10-C11-C12-C13	2.4 (3)	C19—C24—C25—C16	-1.26 (17)
C11—C12—C13—C14	-0.2 (2)	C23—C24—C25—C16	179.10 (12)
C12—C13—C14—C9	-2.6 (2)	C5—C4—C26—C27	-118.66 (13)
C12—C13—C14—C2	175.60 (13)	C3—C4—C26—C27	123.74 (13)
C10-C9-C14-C13	3.5 (2)	C5-C4-C26-C31	62.68 (15)
N8—C9—C14—C13	-175.95 (11)	C3—C4—C26—C31	-54.92 (15)
C10-C9-C14-C2	-175.11 (13)	C31—C26—C27—C28	2.1 (2)
N8—C9—C14—C2	5.46 (14)	C4—C26—C27—C28	-176.58 (14)
N1-C2-C14-C13	55.29 (17)	C26—C27—C28—C29	-0.6 (3)
C7—C2—C14—C13	177.84 (13)	C27—C28—C29—C30	-1.2 (3)
C3—C2—C14—C13	-64.72 (17)	C28—C29—C30—C31	1.4 (2)
N1—C2—C14—C9	-126.32 (11)	C29—C30—C31—C26	0.2 (2)
C7—C2—C14—C9	-3.78 (12)	C27—C26—C31—C30	-2.0 (2)
C3—C2—C14—C9	113.66 (11)	C4-C26-C31-C30	176.74 (12)

Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C26–C31 ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O4—H4A…O2	0.99 (2)	1.56 (2)	2.4840 (14)	155 (2)
N8—H8···O3 ⁱ	0.89 (2)	1.92 (2)	2.7837 (13)	165 (2)
N18—H18…O1 ⁱ	0.90 (2)	1.95 (2)	2.8497 (14)	177 (2)
С3—Н3…О3	0.98	2.21	2.7944 (13)	117
C21—H21···Cg6 ⁱⁱ	0.93	2.72	3.5360 (18)	147

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*+1, -*y*+2, -*z*.

Fig. 1

