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Abstract: Heart disease is the leading cause of death for men and women globally. The residual
network (ResNet) evolution of electrocardiogram (ECG) technology has contributed to our under-
standing of cardiac physiology. We propose an artificial intelligence-enabled ECG algorithm based
on an improved ResNet for a wearable ECG. The system hardware consists of a wearable ECG with
conductive fabric electrodes, a wireless ECG acquisition module, a mobile terminal App, and a
cloud diagnostic platform. The algorithm adopted in this study is based on an improved ResNet for
the rapid classification of different types of arrhythmia. First, we visualize ECG data and convert
one-dimensional ECG signals into two-dimensional images using Gramian angular fields. Then,
we improve the ResNet-50 network model, add multistage shortcut branches to the network, and
optimize the residual block. The ReLu activation function is replaced by a scaled exponential linear
units (SELUs) activation function to improve the expression ability of the model. Finally, the images
are input into the improved ResNet network for classification. The average recognition rate of this
classification algorithm against seven types of arrhythmia signals (atrial fibrillation, atrial premature
beat, ventricular premature beat, normal beat, ventricular tachycardia, atrial tachycardia, and sinus
bradycardia) is 98.3%.

Keywords: biomedical monitoring; cloud computing; ECG science popularization; fabric electrodes;
residual network

1. Introduction

With the development of society, individuals are focusing more on maintaining their
health. A growing number of people are relying on timely and effective technical ap-
proaches to safeguard their health and safety [1,2]. Although currently available medical
monitoring devices exhibit certain advantages in terms of professionalism and accuracy,
their monitoring time and scenarios are subject to certain restrictions. Furthermore, the
ECG signals from the human body are relatively weak, low-frequency signals, which places
a higher requirement for hardware acquisition equipment to obtain real-time and accurate
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ECG data. Consequently, effective long-term continuous monitoring cannot be achieved
at any time and anywhere. With the popularization of smartphones, telemedicine service
systems combined with smartphones are gradually emerging. The George Washington
University in the United States developed a handheld electrocardiogram (ECG) recorder
based on microelectronics. This recorder can record three-lead ECG data and display ECG
in real time [3]. Although research on remote intelligent medical technology started late in
China, relevant theoretical research is actively advancing. In 2019, Liu Chengyu et al. [4] of
Southeast University developed a new type of wearable 12-lead ECG smart vest system
based on the Internet of Things (IoT). This vest can be used for the early detection of heart
diseases. Furthermore, the traditional ECG classification algorithm usually extracts and
selects features manually, and this condition is not conducive to real-time detection. Lih et
al. [5] proposed a system based on the combination of long and short-term memory (LSTM)
and the convolution neural network (CNN) and obtained good results in the classification
of five types of ECG signals. On the basis of all of the above-mentioned deep learning
methods, ECG signals as 1D time series are input into a 1D-CNN. During this period, the
gradient will disappear. Although LSTM alleviates this problem to a certain extent, it does
not solve this problem completely.

The factors mentioned above gave us grounds to propose a wearable ECG monitoring
and diagnosis system based on a cloud-computing platform. The system can continuously
monitor the ECG activity of the body and transmit ECG data to a cloud-computing plat-
form in real time. This system does not rely on a doctor to determine ECG status. In the
cloud-computing platform, a set of heart rhythm recognition algorithms is designed on the
basis of Python and MatLab (MathWorks, Portola Valley, CA, USA). This set of algorithms
has high performance in terms of the precision and convergence of ECG signal classification
and can discriminate and diagnose seven types of common arrhythmias in real time and
send the diagnosis results to a mobile terminal App for display. Using this system, users
can understand their heart conditions and receive timely and effective treatment, which
is highly significant for the long-term monitoring of patients with chronic diseases. In
addition, a display function for ECG science popularization is provided in this system,
enabling users to gain information about ECGs by using the App. An in-depth understand-
ing of cardiovascular and cerebrovascular disease prevention and health guidance could
considerably improve the self-prevention level of patients.

2. Materials and Methods

The wearable ECG monitoring and diagnosis system described in this study is pri-
marily composed of wearable equipment, a mobile terminal App, and a cloud diagnostic
platform. The overall structure of the system is shown in Figure 1. ECG signals are mea-
sured via a single-lead method in this design. The user’s ECG data are collected through
the ECG acquisition module and processed by amplifying and filtering. Then, the pro-
cessed data are sent to the mobile phone App through Bluetooth® in real time. The App
further processes the data and displays a dynamic ECG in real time. Meanwhile, the data
are transmitted to the cloud diagnosis platform through a wireless network. The cloud
diagnosis platform uses a heart rate recognition algorithm to classify and diagnose the data
and then sends the diagnosis results to the App for display.

Figure 1. Schematic of overall system structure.
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2.1. ECG Acquisition Module

ECG signals from the human body are relatively weak, low-frequency signals. Thus,
designing an efficient hardware acquisition device is necessary to obtain real-time and
accurate ECG data. The ECG signal acquisition circuit designed in this study is shown in
Figure 2a. It is primarily composed of conductive fabric electrodes and an ECG acquisition
circuit. In Figure 2b, the uppermost layer is the signal acquisition circuit, the sub-layer
is the fabric electrode sheet, the third layer is the clothing, and the fourth layer is the
user’s skin.

Figure 2. Signal acquisition module: (a) ECG signal acquisition circuit. (b) Exploded image of ECG
acquisition module showing signal acquisition circuit, fabric electrodes, clothing, and skin.

2.1.1. Conductive Fabric Electrodes

Traditional electrodes are irritating and cannot be reused. Thus, conductive fabric
electrodes measuring 2.5 cm × 1.8 cm were designed and fabricated under the capacitive
coupling principle, as shown in Figure 2b. The conductive fabric is laid over polyester fiber
and then plated with nickel. Then, a high-conductivity copper layer is placed on the surface
of the nickel. The copper layer is again plated with anti-oxidation and anti-corrosion nickel.
The conductive fabric produced in this manner can provide excellent conductivity. The
conductive fabric electrode is extremely flexible because its thickness is only approximately
0.11 mm. Thus, it is suitable for human skin, providing an effective method for achieving
long-term continuous real-time monitoring. Moreover, preparation operations are not
required for skin monitoring if the conductive fabric electrode is used. No symptoms, such
as those due to allergies, will manifest on human skin. This electrode can be implanted
into clothes, considerably improving patient comfort.

2.1.2. ECG Acquisition Circuit

In this study, ECG signals were measured via a single-lead method. ECG signals
are relatively weak, and thus they are susceptible to electromagnetic waves and other
interference factors during the signal acquisition process. Accordingly, an ECG signal
acquisition circuit is required to filter and amplify ECG signals. The signal acquisition
circuit described in this paper has five modules: signal acquisition, signal filtering and
amplification, signal processing, power supply, and Bluetooth®. The principal block
diagram of this circuit is provided in Figure 3.

Figure 3. Block diagram of signal acquisition circuit.
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The ECG acquisition circuit uses ADI’s ADuCM361 chip as its primary control chip.
The ADuCM361 chip exhibits the advantages of low power consumption, high real-time
performance, rich on-chip peripherals, and large storage space. The second-order Butter-
worth low-pass filter of the voltage-controlled voltage source is used as the low-pass filter
of the circuit, and the cutoff frequency is 1.5 Hz. Meanwhile, a voltage-controlled voltage
source second-order Butterworth high-pass filter is used as the high-pass filter of the circuit.
A notch filter is designed with a symmetrical double-T active filter network with a cutoff
frequency of 50 Hz.

The amplitude of ECG signals is extremely small, and thus amplifying ECG sig-
nals is necessary. Moreover, given that the collected ECG signals are analog signals,
analog-to-digital conversion (ADC) is necessary. The ECG signal acquisition circuit uses
ADI’s low-power, five-channel ECG signal-dedicated ADAS1000 chip for ADC. This chip
can simultaneously perform signal gain and ADC, simplifying the design of the ECG
acquisition circuit.

After completing ECG data collection and signal processing operations, the ECG
signals are sent to the mobile phone client via Bluetooth®, and then the App shows a
real-time ECG waveform diagram and saves the data; at the same time, the App receives
ECG data uploaded to the cloud, which uses Python to receive and process data, where the
processing relies on the MatLab rhythm of diagnosis. Finally, the diagnostic report is fed
back to the App for users to view. To ensure that the ECG acquisition system has sufficient
battery life, Bluetooth® Low Energy (BLE) is used as the communication bridge between
the wearable devices and mobile phone clients. Moreover, a light-emitting diode status
indicator is added to the Bluetooth® module. When the App is successfully paired, the
indicator always remains on, and ECG data can be collected and transmitted in real time.

2.2. ECG Classification Algorithm

We propose an ECG signal classification method based on the combination of Gramian
angular fields (GAFs) and an improved deep residual network (ResNet) to provide an
accurate and rapid diagnosis for the sensors. In this work, a one-dimensional (1D) ECG
signal was converted into polar coordinates using this algorithm based on the data vi-
sualization method of GAFs. Then, the coordinates were encoded to a 2D image using
angle information. Thereafter, an improved ResNet structure was built, and five groups of
shortcut connections were added into the original ResNet-50 model to adjust the structure
of the residual block. The downsampling operation in the trunk path of the residual block
was placed in the convolution layer with the size of 3 × 3. Batch normalization (BN) and
activation operations in the bottleneck block in the residual structure were pre-positioned.
The average pool layer was added to the bypass of the residual block. A SELU activation
function was also used to replace the ReLu activation function. Finally, a good result
was achieved by testing seven kinds of ECG data extracted from the MIT-BIH arrhythmia
database, long-term AF (LTAF) database, and Prosim2 vital sign simulator.

Deep learning can extract effective features from the original data and output the
classification results. It has achieved good results in the fields of computer vision and
speech recognition [6]. The data processing method of GAFs [7] was adopted to encode a
1D ECG signal into a 2D image in the present work to fully utilize the advantages of deep
learning in image classification.

Figure 4 shows the seven types of original ECG data that were extracted. Gramian
Summation Angular Field (GASF) images converted through GAF data processing are
shown in Figure 5. Compared with original data, GASF has two advantages. First, GASF
provides a way to maintain time dependence. Time increases as the position moves from
the upper left-hand corner to the lower right-hand corner. Second, GASF contains time
correlation. The diagonal is composed of the original values of the normalized time series.
The main diagonal can be used to reconstruct time series from the advanced features of
deep neural network learning.
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Figure 4. Seven types of original ECG data.

Figure 5. GASF images.

2.2.1. Deep ResNet and Its Improvement

K. He [8] proposed ResNet. This network can directly transfer the current output
to the next layer of the network by adding identity mapping. No additional parameters
are added due to the one-to-one transmission. At the same time, the gradient of the
next-layer network is directly transferred to the upper-layer network in the process of back-
propagation. This approach solves the problem that the deep neural network degrades
with the deepening of network convolution layers. A BN algorithm is used to accelerate the
convergence of the network and improve training speed. This ResNet structure can expand
the network to more than 1000 layers, and the final classification effect is also good. The
structure of the residual block is shown in Figure 6. If the output is set to x and the expected
relation is mapped as H(x), then the output result is H(x) = F(x) + x. If F(x) = 0, then
H(x) = x; that is, so-called identity mapping. ResNet changes the learning objectives. F(x)
is used as the target value; that is, the so-called residual F(x) = H(x)− x. As a result, the
gradient transmission of identity transformation and back-propagation can be ensured,
which alleviates the network degradation.
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Figure 6. Residual structure.

In the proposed improved scheme, multi-layer shortcut branches are added [9] on the
basis of ResNet-50 to improve the structure of the residual block. The structural framework
is shown in Figure 7. After passing through 7 × 7 convolution and pooling layers, this
model passes through four groups of residual blocks composed of Conv2_x, Conv3_x,
Conv4_x, and Conv5_x. The four groups of residual blocks contain three, four, six, and
three residual blocks, respectively.

Figure 7. Improved ResNet structure.

The specific structure of the residual block is shown in the right-hand part of Figure 7.
This structure changes the downsampling block of the main path of the residual block. The
step length in the original 1 × 1 convolution layer is set to 1 from 2, and the step length in
the 3 × 3 convolution layer is set from 1 to 2. The convolution kernel of the first convolution
layer in the original residual block is 1 × 1. A step length of 2 will lead to three-quarters
of information loss after convolution. Therefore, the downsampling operation is applied
to the 3 × 3 convolution layer. Similarly, the step length of the 1 × 1 convolution layer in
the bypass of the residual block is also set to 1. A 2 × 2 average pooling layer is added in
the bypass 1 × 1 convolution layer with a step length of 2 to keep the output dimension
of the bypass and trunk path consistent. The input dimension of Conv2_x is the same as
the output dimension. Thus, the average pooling layer is not added in the bypass of the
Conv2_x residual block, but the average pooling layer is added in only the bypass of the
first residual block of Conv3_x, Conv4_x, and Conv5_x. Inspired by [10], the BN layer
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in the trunk path of the residual block and activation operation are pre-positioned. This
approach eases the back-propagation and optimization of the gradient. The use of BN in
pre-activation can also improve the regularization of the model.

Multi-layer shortcut branches are added in each group of the residual block in the
entire network. Specifically, a layer of shortcut connections is added in addition to three
residual blocks of Conv2_x. The step length is set to 1 to ensure consistency with the
output dimension of the trunk path of the network. A layer of shortcut connections is also
added in Conv3_x, Conv4_x, and Conv5_x with a step length of 2. A layer of shortcut
connections is also added outside the entire residual block with a step length of 8. The
size of the convolution kernel in the newly added multi-layer shortcut branches is 1 × 1.
Learning objectives can be transformed into learning residual-to-residual mapping by
adding multi-layer shortcut branches. This mapping is simpler and easier to learn than the
original network. It can also spread information in different residual blocks. This approach
can alleviate the problem that the gradient disappears to a certain extent and facilitate the
better training and classification of the network.

2.2.2. SELU Activation Function

In most CNNs, ReLu is used as the activation function. However, the gradient of ReLu
is 0 in x < 0, and this function easily causes neuron death. A ReLu activation function is
defined as follows:

f (x) =
{

x, (x ≥ 0)
0, (x < 0)

(1)

Figure 8 shows that, when x > 0, the derivative of ReLu is always 1, which can
hinder the attenuation of the gradient at x > 0. As a result, the problem that the gradient
disappears is solved. However, when x < 0, the gradient of ReLu is 0. During the period
of training, the negative gradient is set to zero on ReLu, which results in the corresponding
neurons never being activated. As a result, the corresponding weight cannot be updated;
that is, neuron death occurs.

Figure 8. ReLu and SELU activation functions.

The convergence rate of the SELU activation function is faster than that of the ReLu
activation function. After the activation function, the sample distribution is automatically
normalized to 0 mean and unit variance to ensure that the gradient will not explode or
disappear in the training process [11]. The SELU activation function is defined as follows:

SELU(x) = λ

{
x, (x ≥ 0)
αex − α, (x < 0)

(2)

where α ≈ 1.6733 and λ ≈ 1.0507. The SELU activation function is gentle on the negative
half-axis. In this way, it can be reduced when the variance is too large in the activation
operation to prevent gradient explosion. In contrast, the slope of the positive half-axis
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in ReLu is λ, which is a number greater than 1. It can be increased when the variance is
too small to prevent the disappearance of the gradient at the same time. As a result, the
activation function produces a fixed point. Even if the network deepens, the output of each
layer is 0 mean and 1 variance. Therefore, the SELU activation function is used to replace
the ReLu activation function to optimize network training.

In this study, the PyTorch deep learning framework was adopted to construct the net-
work. Python was adopted for programming. The operating environment was Windows 7,
with 32 GB of memory, an Intel E5-2620 processor, and an NVIDIA Geforce GTX 1080Ti
graphics card.

2.2.3. Source of Dataset and Evaluation Index

The data in this experiment used to verify the effectiveness of the constructed model
were taken from the aforementioned MIT-BIH arrhythmia database, LTAF database, and
Prosim2 vital sign simulator. Three types of ECG—namely, premature atrial contraction
(PAC), premature ventricular contraction (PVC), and normal (N)—were extracted from
the MIT-BIH arrhythmia database. Three types of ECG—namely, atrial fibrillation (AF),
ventricular tachycardia (VT), and sinus bradycardia (SBR)—were extracted from the LTAF
database. Atrial tachycardia (AT) was extracted from the Prosim2 vital sign simulator. A
total of 11,724 groups of data were extracted. The training and testing sets were randomly
allocated in the ratio of 8:2. The distribution of experimental sample data is shown in
Table 1.

Table 1. Distribution of experimental sample data.

Types Samples Training Set Testing Set

AF 1841 1472 369
AT 500 400 100
N 4800 3840 960

PAC 328 262 66
PVC 2106 1684 422
SBR 1855 1484 371
VT 294 235 59

Total 11,724 9377 2347

The precision rate (Ppr), sensitivity (Sen), specificity (Spe), F1 score, and recognition
accuracy (Acc) are used as evaluation indexes in this work to facilitate the performance
evaluation of ECG signal classification. The calculations are as follows:

Ppr =
TP

TP + FP
(3)

Sen =
TP

TP + FN
(4)

Spe =
TN

TN + FP
(5)

F1 =
2 × Ppr × Sen

Ppr + Sen
(6)

Acc =
TP + TN

TN + FP + TP + FN
(7)

where TP refers to true positive, which represents the number of samples corresponding to
the correct classification of Y-type ECG signals; TN refers to true negative, which represents
the number of samples corresponding to the correct classification of non Y-type ECG signals;
FP refers to false positive, which represents the number of samples corresponding to the
false classification of other types of ECG signals into Y-type ECG signals; FN refers to false
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negative, which represents the number of samples corresponding to the false classification
of Y-type ECG signals into other types of ECG signals. The precision rate represents the
proportion of correct predictions of Y-type ECG signals to all predictions of Y-type ECG
signals; sensitivity represents the proportion of correct predictions of Y-type ECG signals
to all Y-type ECG signals; specificity represents the proportion of correct predictions of
non Y-type ECG signals to all non Y-type ECG signals; the accuracy rate represents the
proportion of all correctly predicted samples to total samples; and the F1 score represents
the weighted average of the precision rate and sensitivity, for which the best value is 1
and the worst 0. The F1 score was introduced as a comprehensive index to balance the
influence of precision rate and recall. It can reflect the overall classification ability of the
system on the whole. If its value is greater, the classification result is better.

2.2.4. Comparative Network Experiment

In this experiment, the original ResNet-50 model, improved ResNet-ReLu model, and
improved ResNet-SELU model were used to test the ECG data. Adam was selected as an
optimizer. The initial learning rate was set to 0.0001 and the batch size to 32. In other words,
32 images and corresponding tags were selected from the input images each time as a
batch for network training. A total of 150 epochs were trained in the network. The training
result is shown in Figure 9. With the increase of iterations, the loss value of the network
dropped rapidly and tended to be stable, and the loss value of the improved ResNet
network was smaller than that of the original ResNet network. In the training process, the
test accuracy rate of the network increasesd rapidly with an increasing number of iterations
and gradually tended to be stable. The recognition accuracy rate of the improved ResNet
network was higher than that of the original network. Moreover, the classification effect
of the SELU activation function was better than that of the ReLu activation function (as
shown in Table 2). Notably, the ECG signal recognition system based on the improved
ResNet showed good performance.

Figure 9. Training results: (a) Loss curve. (b) Accuracy curve.

Table 2. Comparison of test results of different network models.

Network Accuracy

Resnet50-ReLu 95.4%
Improved Resnet50-ReLu 97.5%
Improved Resnet50-SELU 98.3%

2.2.5. Confusion Matrix and Indicators

The classification confusion matrix of seven types of ECG signals produced by the
algorithm proposed in this study is shown in Table 3. Each row of the matrix represents
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the real category of data, each column represents the predicted category, the total data
in each row represent the actual number of test data of this category, and the numerical
value of each column represents the number of real data predicted as this category. The
precision rate, sensitivity, specificity, accuracy rate, and F1 score can be calculated based
on the confusion matrix. The calculation results are shown in Table 4. As observed, the
precision rate, sensitivity, specificity, F1 score, and recognition accuracy rate obtained by
the proposed algorithm were all greater than 97%. This result shows that the algorithm has
high stability and accuracy.

Table 3. Confusion matrix classified by proposed algorithm.

Real Category Categories of Prediction
AF AT N PAC PVC SBR VT Total

AF 357 0 4 1 3 2 2 369
AT 0 100 0 0 0 0 0 100
N 3 0 950 3 4 0 0 960

PAC 1 0 1 62 0 2 0 66
PVC 1 0 3 1 415 2 0 422
SBR 4 0 0 0 0 366 1 371
VT 2 1 1 0 0 0 55 59

Total 368 101 959 67 422 372 58 2347

Table 4. Performance metrics for each category.

Categories Ppr Sen Spe F1 Score

AF 96.7% 97.0% 99.3% 96.8%
AT 99.0% 100.0% 100.0% 99.5%
N 99.1% 98.6% 99.5% 98.8%

PAC 95.4% 95.4% 99.9% 95.4%
PVC 98.6% 98.6% 99.6% 98.6%
SBR 98.7% 98.9% 99.7% 98.8%
VT 94.8% 95.0% 99.9% 94.9%

Average 98.1% 97.6% 99.7% 97.6%

2.3. Mobile Terminal App

To improve users’ understanding of their ECG activity, a mobile App based on the
Android OS was developed in this study. The major functions of the App can be divided
into four parts as follows (Figure 10):

1. User information management;
2. ECG signal receiving and display;
3. Historical measurement information recording;
4. ECG science knowledge display functions.

After the user registers and logs in, Bluetooth® pairing is first performed, and the ECG
data sent by the ECG acquisition module are further processed. Then, the ECG waveform
diagram of the processed data is drawn, and finally the ECG data are transmitted to the
cloud diagnosis platform for diagnosis and the diagnosis results are sent to the App. A
display function for ECG science popularization has been added to this App, allowing
users to gain scientific knowledge by using it.
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Figure 10. Block diagram of App function module.

2.3.1. User Registration and Login

To protect the safety of the user’s personal information and provide personalized
health monitoring services, a user information management module was designed. The
module is divided into three functions: user registration, login, and password modification.
The RxJava + Retrofit2 + OkHttp3 framework is used in the network request function
involved in this process. The following components of the framework have their respective
responsibilities: Retrofit uses an interface method to define the requested URL and return
the value type; OkHttp is responsible for the request process, such as the GET and POST
request methods; and RxJava is responsible for asynchronous operations and switching
between threads. The combination of the three components makes network requests in
Android development simple and well-designed. The user’s basic information is saved in
a MySQL database. Finally, the user’s login password is encrypted with MD5 to improve
user information security.

2.3.2. Reception and Display of ECG Signals

ECG measurement is one of the most important functions of the App, which requires
the realization of the real-time monitoring of the user’s heart condition. During mea-
surement, the user must first use the BLE communication function to connect the App to
the front-end ECG acquisition device. After clicking “Receive Data”, Bluetooth® begins
to receive ECG data, and the dynamic ECG waveform is displayed in real time on the
mobile phone. Given that the application window is not required to be redrawn when the
SurfaceView window is refreshed, the key technologies adopted for realizing the Holter
waveform are Android SurfaceView and Canvas. After receiving data for a certain period,
“Stop Receiving” is clicked. At this time, the ECG data and Holter waveform are saved in
the database, and the ECG data are sent to the cloud diagnostic platform for heart rhythm
recognition and diagnosis through the network via socket communication technology.
Finally, the cloud diagnostic platform sends the diagnosis results to the App.

2.3.3. Record of Historical Measurement Information

To enable users to understand their recent ECG activity, each bit of ECG information
measured by the App is stored in a SQLite database and displayed to users in a list.
An open-source framework—i.e., GreenDao—is used in the App to manage the SQLite
database. The adoption of GreenDao enables the database to operate more quickly and
saves development time. In this module, users can choose to retain or delete each record in
accordance with their needs. They can also browse the Holter and diagnosis records again
when necessary.
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2.3.4. Popularization of ECG Knowledge

To strengthen the user’s personal monitoring, a method of displaying popular ECG
science knowledge is introduced in this work. The main technologies used for this include
the Tomcat container and Servlet technology, using Tencent Cloud as the server and finally
realizing the network communication between the mobile App and server. Web and An-
droid hybrid development technology is used for this part, and WebView control is added
to the Android layout to load HTML5 pages for display (Figure 11). Web development
primarily uses JSP as the view, the Servlet as the controller, and JavaBeans as the model.
JSP enables the interaction with the App. The Servlet is the communication bridge between
JSP and JavaBeans, and it is used for data interaction with the App. JavaBeans realizes the
business logic of the system; i.e., it encapsulates the attributes of objects and connects to
the database.

Figure 11. JSP, JavaBean, and Servlet model.

The specific steps of the ECG popular science module receiving a URL and retrieving
data from the database for display are as follows. Servlets are used to handle HTTP requests.
First, parameters (categories of popular science knowledge) are obtained on request:

String category = request.getParameter(“category”)
All popular science knowledge items of this category in the database are obtained by

the specified category and saved in a set:
List<Knowledge> knowledgeList = service.getByCate(“category”)
Then, the collection is put into the request domain and forwarded to the page for

display. The page takes out the collection in the request domain and traverses it through
JSTL and EL expressions, finally showing the popular science content to users.

The click event of each popular science message is the same, but the parameters are
different. Thus, different popular science information corresponds to a different HTML5
interface. First, JavaScript is used in the background to set the click event of the popular
science button, and then a JavaScript interface is added to the WebView on the mobile
terminal to implement the toDetail() method. After calling this method, the page will jump
to Guid1Activity, and the parameter “id” is received on this page to determine the details
of the popular science information corresponding to each topic.

As shown in Figure 12, the popular science knowledge module first displays basic
heart knowledge, basic ECG knowledge, and ECG and clinical knowledge. Second, it
provides guidance on prevention, misunderstanding, psychological, medication, special
population, diet, defecation, recovery, exercise, and other cardiovascular and cerebrovascu-
lar disease. Finally, it displays heart-related video lectures, such as promotional videos,
basic heart knowledge, and basic ECG knowledge.
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Figure 12. System content structure diagram.

2.4. Implementation of Cloud Diagnostic Platform

The ECG data of the mobile phone client are displayed through the ECG acquisition
module. It is necessary for the collected ECG signals to be analyzed and diagnosed; then,
the diagnosis results are sent back to the App. The results require more complex calculation
methods, such as data pre-processing, feature extraction, and classification diagnosis.
However, the mobile phone client App is only suitable for simple data processing, and
it cannot realize the aforementioned complicated calculations. Therefore, the algorithm
for ECG diagnosis is transferred to the cloud, and the environment and code required
to execute the algorithm are built in the cloud server. The monitoring system designed
in this study was based on Tencent Cloud’s Windows Server 2012. Although Python
has been popular in recent years and exhibits good scientific computing capabilities, a
Python/MatLab mixed programming method is used to calculate and diagnose ECG data
because MatLab is a conventional and powerful mathematical simulation software with
machine-learning libraries and other artificial intelligence algorithm resources. However,
MatLab cannot perform network communication. In this approach, Python is responsible
for data communication between the network interface and the App. Meanwhile, MatLab
is used to implement the ECG classification method. The Python terminal calls MatLab
functions or scripts after receiving ECG data. Thereafter, the ECG classification method
based on the improved ResNet in MatLab is used to perform the pre-processing, feature
extraction, and classification diagnosis of ECG data.The hit rate of the proposed algorithm
is 98.3%. Finally, the diagnosis results are sent to the App.

2.4.1. Python Internet Modules

The Python Internet module is implemented through the Python network socket
library, which is typically included in other major programming languages, such as C++
and Java. Socket network programming has several major functions, such as bind(), listen(),
accept(), send(), and receive(). Python is relatively flexible and easy to study. It has been
widely used in recent years and has become popular. For the system developed in this
work, the Python socket module provides an interface for receiving ECG data from the
mobile terminal App and returning calculation results to the App.

2.4.2. Python/MatLab Mixed Programming

Python/MatLab mixed programming is used to process and analyze the collected ECG
signals. Python is responsible for data communication with mobile terminals, while MatLab
is responsible for data calculation and diagnosis. Python and MatLab can be connected
and called through the official driver “matlab.engine”. Thus, the built-in functions of
MatLab can be directly called in their original form in the Python environment. The specific
achieving logic is as follows.
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First, the corresponding IP address and port number are set through the socket to
receive the data sent by the mobile terminal, and the received data are saved as data.txt.
Then, every 2000 pieces of data are processed separately, and the SVMPSO3 ECG classifi-
cation approach in MatLab is called by executing the ret = matlab.engine.start_matlab().
SVMPSO3(matlab.double()) code is used to classify and diagnose the data and assign the
result to ret. Finally, the processed data diagnosis result is sent to the mobile terminal
through socket.send(). The specific ECG signal processing and diagnosis flowchart is
shown in Figure 13.

Figure 13. Specific process of the cloud server’s signal processing.

2.5. Experimental Tests

The ECG signals of patients were collected by wearable ECG devices to verify the
practicability of the algorithm. The data were sent to the mobile App through Bluetooth®,
and the data were then sent to the server by the mobile App. The proposed algorithm was
adopted to test ECG signals in the server.

To verify the practicability of the developed ECG monitoring and diagnosis system,
the research team organized personnel to visit the outpatient department of the Department
of Cardiology of Tianjin Chest Hospital to provide free consultations to patients (Figure 14).
The collected ECGs of four patients are shown in Figure 14a. Table 5 shows the diagnosis
results. Patient No. 1 was a patient with AF. The results of algorithmic diagnosis showed
two types of ECG signals—namely N and AF—in the patient’s ECG signal. Patient No.
2 was a patient with incidental PAC. The patient did not have symptoms of PAC in the
examination, and the test result was N. Patient No. 3 was a patient with frequent PAC. The
test results showed N and PAC in this patient’s ECG signals. Patient No. 4 was a patient
with PVC and AF. On the day of the examination, the patient took drugs, and thus no
symptom of PVC was observed. The result showed two types of ECG signals: N and AF.
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Figure 14. Clinical data collection and the deep neural network results: (a) Collected ECGs of four
patients, (b) App real-time monitoring and diagnosis, (c) Clinical test of hospital patients.

Table 5. Diagnosis results.

Patient ID Age Height Weight Past Medical History Test Results

a 68 170 cm 90 kg AF N, AF
b 45 170 cm 85 kg Incidental PAC N
c 40 168 cm 70 kg PAC N, PAC
d 43 167 cm 85 kg PVC, AF N, AF

In summary, the diagnosis result using the algorithm was consistent with the doctor’s
diagnosis result. This consistency further verifies the good performance of the proposed
algorithm for ECG signal classification.

3. Discussion

An artificial intelligence-enabled ECG algorithm based on improved ResNet for a
wearable ECG device is proposed in this paper. First, a GAF is adopted to convert 1D ECG
signals into 2D images, which retains time dependence and strengthens the advantages of
deep learning in ECG signal classification. Second, the ResNet-50 network is improved.
Multi-layer shortcut branches are added to improve the structure of the residual block. At
the same time, a SELU activation function is used to replace the ReLu activation function in
the original network, which improves the nonlinear expression of the network and inhibits
the death of neurons to a certain extent. In the experiment, 12,447 groups of ECG data were
extracted from the database to train and test the network. The accuracy rate reached 98.3%.

In terms of the accuracy rate, the comparison of the ECG signal classification results
between the proposed method and those in other studies is shown in Table 6. In [12], an
ECG signal classification algorithm based on a spiking neural network (SNN) is proposed.
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The learning rules of Spike Timing Dependent Plasticity (STDP) and the inhibition layer
are optimized, and the accuracy rate is 97.9% and the F1 score is 88.0%. Compared with
the accuracy rate and F1 score of this method, the results of the proposed method are
improved by 0.4% and 9.1%, respectively. In [13], an ECG signal-classification-algorithm-
based multi-layer perception (MLP) is proposed. Compared with the accuracy rate and
F1 score of this method, the results of the proposed method are improved by 3.5% and
19.8%, respectively. In [14], a wavelet transform is adopted for feature extraction first; then,
principal component analysis is used for dimension reduction; finally, a MLP optimized by
particle swarm optimization is used for classification. By recognizing five types of ECG
signals, the accuracy rate and F1 score obtained are 95.4% and 96.8%, respectively. In [15],
a classification algorithm based on the combination of a 16-layer CNN and short-term
memory network is proposed. The accuracy rate achieved by the proposed algorithm is
increased by 2.9% and the F1 score is increased by 0.3% compared with this method. The
results show that the proposed algorithm has a high accuracy rate and a certain clinical
application value. In terms of the computational power, in [16], a multi-sequential approach
with four stages is proposed to discriminate among various malignant arrhythmias, with
an accuracy rate of more than 95% for VF, AF, and PVC. In [17], a novel density Poincare
plot-based machine learning method to detect AF from PAC/PVCs using ECG recordings
is proposed, and the accuracy rate of AF detection from PAC/PVCs recorded by ECG was
97.45%. In Ref. [18], a robust algorithm is proposed for automatic detection of AF based
on the randomness, variability, and complexity of heart beat interval time series, with
an accuracy rate of 90.2%. Although the performance of these three methods is almost
as good as that of the method in this paper, the computational power is significantly
lower. The method based on an improved ResNet proposed in this paper can directly
identify seven types of ECG signals of AF, AT, N, PAC, PVC, SBR, and VT with higher
computational power.

Table 6. Comparison with other methods.

Methods Numbers ACC Ppr Sen Spe F1

SNN [12] 4 97.9% 97.3% 80.2% 99.8% 88.0%
MLP [13] 4 94.8% 75.8% 78.9% 96.8% 77.3%

Wavelet-MLP [14] 5 97.6% 87.4% 83.4% 98.1% 85.4%
CNN-LSTM [15] 2 95.4% 95.2% 98.2% 86.5% 96.8%

Proposed 7 98.3% 97.1% 97.2% 99.7% 97.1%

Although the research content in this paper has achieved good results in both a simu-
lation experiment and actual human body detection, there are still some study limitations.
Firstly, the algorithm adopts a convolutional neural network, which needs to convert the
input data into images. Using too many samples will occupy a great deal of memory space.
Secondly, if popular science application software for ECG monitoring wants to realize
the diagnosis of ECG signals, it must be realized by calling the MatLab algorithm with a
Python background, which may be limited by the network. Therefore, we plan to embed
ECG diagnosis algorithm into the App in the future. In this way, intra-App ECG signal
diagnosis can be realized across network constraints.

4. Conclusions

The ECG monitoring approach detailed in this study achieved the collection and
management of user ECG signals; particularly, the long-term and real-time collection of
ECG signals. Moreover, the ECG data in the system were analyzed and diagnosed, and
the corresponding diagnosis results obtained using an ECG de-noising method based on
an improved ResNet. The accuracy rate reached 98.3%. In addition, the actual tests were
conducted in a hospital. The results are consistent with the type of arrhythmia diagnosed
by doctors and show that the proposed network model has high performance in terms
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of the precision and convergence of ECG signal classification. The proposed method
also performs better than the traditional deep ResNet, and this performance proves its
effectiveness and practicability.
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