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ABSTRACT The protozoan parasites that cause malaria infect a wide variety of ver-
tebrate hosts, including birds, reptiles, and mammals, and the evolutionary pressures
inherent to the host-parasite relationship have profoundly shaped the genomes of
both host and parasite. Here, we report that these selective pressures have resulted
in unexpected alterations to one of the most basic aspects of eukaryotic biology, the
maintenance of genome integrity through DNA repair. Malaria parasites that infect
humans continuously generate genetic diversity within their antigen-encoding gene
families through frequent ectopic recombination between gene family members, a
process that is a crucial feature of the persistence of malaria globally. The continu-
ous generation of antigen diversity ensures that different parasite isolates are anti-
genically distinct, thus preventing extensive cross-reactive immunity and enabling
parasites to maintain stable transmission within human populations. However, the
molecular basis of the recombination between gene family members is not well un-
derstood. Through computational analyses of the antigen-encoding, multicopy gene
families of different Plasmodium species, we report the unexpected observation that
malaria parasites that infect rodents do not display the same degree of antigen di-
versity as observed in Plasmodium falciparum and appear to undergo significantly
less ectopic recombination. Using comparative genomics, we also identify key mo-
lecular components of the diversification process, thus shedding new light on how
malaria parasites balance the maintenance of genome integrity with the require-
ment for continuous genetic diversification.

IMPORTANCE Malaria remains one of the most prevalent and deadly infectious dis-
eases of the developing world, causing approximately 228 million clinical cases and
nearly half a million deaths annually. The disease is caused by protozoan parasites of
the genus Plasmodium, and of the five species capable of infecting humans, infec-
tions with P. falciparum are the most severe. In addition to the parasites that infect
people, there are hundreds of additional species that infect birds, reptiles, and other
mammals, each exquisitely evolved to meet the specific challenges inherent to sur-
vival within their respective hosts. By comparing the unique strategies that each
species has evolved, key insights into host-parasite interactions can be gained, in-
cluding discoveries regarding the pathogenesis of human disease. Here, we describe
the surprising observation that closely related parasites with different hosts have
evolved remarkably different methods for repairing their genomes. This observation
has important implications for the ability of parasites to maintain chronic infections
and for the development of host immunity.
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The coevolution of host and parasite, continuously adapting to each other for
survival, is described by the Red Queen hypothesis in which “it takes all the running

you can do, to keep in the same place” (1). This dynamic interaction is exemplified by
malaria parasites, which are thought to have exerted the strongest known selective
pressure on the human genome over the last 10,000 years (2), including numerous
polymorphisms of red blood cell genes (3, 4). Different species of Plasmodium infect a
broad range of vertebrate hosts, enabling a comparative analysis of adaptations
particular to each specific host. Such comparisons have revealed unexpected changes
in basic aspects of cell biology, from components of transcriptional machinery (5) to
chromatin modifiers (6) and lipid metabolism (7–9), providing deep insights into the
evolutionary pressures shaping these parasites, including aspects important for the
human disease including pathogenesis, immune evasion, and transmission dynamics.

One unanticipated adaptation of all malaria parasites is the loss of classical nonho-
mologous end joining (cNHEJ), a fundamental mechanism responsible for repair of DNA
double-strand breaks (DSBs). Malaria parasites depend almost entirely on homologous
recombination (HR) to maintain genome integrity, despite spending most of their life
cycle as haploid organisms and thus lacking the homologous chromosomes typically
used for repair by HR (10). The loss of cNHEJ has been described in multiple parasitic
lineages with several hypotheses put forward for how this may impact genome
evolution and pathogenesis (11). We recently proposed a possible selective advantage
for the loss of cNHEJ in the human malaria parasite Plasmodium falciparum (12). Within
their vertebrate host, parasites avoid antibody-mediated clearance by varying the
antigens that they express on the red cell surface, thus greatly extending the length of
infections. This process, called antigenic variation, is dependent on extensive variability
within the multigene families that encode these surface antigens (13). Furthermore, to
enable reinfection of a previously infected host, different parasite strains must encode
different repertoires of variant antigens. Thus, the capacity to generate new variants
enables persistence within a host population even when most potential host organisms
have developed clinical immunity, as is observed for P. falciparum infections in humans.
The primary driving force for variant gene diversification is recombination between
gene copies (14). In addition to sexual recombination, recombination can also occur
between nonsyntenic genes (genes in different positions of the genome; this is also
called ectopic recombination) during asexual replication when the parasites are haploid
(15–17). This occurs when DNA DSBs arise in multigene family members. In the absence
of NHEJ, such breaks must be repaired by HR using alternative members of the family
from other positions in the genome as the template for repair (15, 16, 18). Thus,
recombination between genes is not limited by genomic position, and diversification is
greatly accelerated, resulting in an extraordinary degree of sequence diversity (19, 20).
The selective pressure to continuously derive new variants through HR could provide
a selective advantage for the loss of efficient NHEJ.

Given the importance of the parasite’s ability to shuffle sequences between multi-
gene family members, we were interested in defining the molecular basis underlying
this process. We were therefore intrigued to find that, in stark contrast to the high
degree of sequence divergence observed in P. falciparum, multigene family members
in specific genomic positions were often nearly identical in different isolates of the
rodent parasite Plasmodium chabaudi (Fig. 1A and B). A previous study similarly found
that the multigene repertoires are often conserved between these two isolates (21),
suggesting that recombination events are somehow more constrained in P. chabaudi
than in P. falciparum. We were therefore curious if this observation could possibly
provide clues to the underlying mechanism of diversification. For a more comprehen-
sive study of recombination within these multigene families, we expanded our analysis
to examine the genome assemblies of 16 P. falciparum isolates and five isolates from
two subspecies of P. chabaudi (22). The availability of long-read sequencing of these
genomes enabled our comparisons of gene variability with particular attention to
syntenic genes, of multicopy gene families. For each gene with a mapped position, we
systematically searched for the ortholog in the reference genome (3D7 for P. falciparum
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FIG 1 Comparison of variant antigen diversity in human and rodent malaria parasites. (A) (Left) Schematically shown are four
members of the multicopy variant antigen var gene family of the human parasite P. falciparum. Genes from two geographical isolates
(3D7 and IT) are shown from a syntenic region of chromosome 7, and the percentage of nucleotide identity between each gene is
provided in the gray box enclosing each gene pair. Annotation numbers corresponding to the Eukaryotic Pathogen Genomics
Database Resource (Release 45, EuPathDB, eupathdb.org [35]) are included above each arrow. (Right) A similar schematic shows the
near-complete sequence identity observed for single-copy housekeeping genes. (B) A similar analysis as shown in panel A for two
isolates (CB and AS) of the rodent parasite P. chabaudi. (Left) Members of the variant gene families fam-a, fam-b, and pir. (Right)
Single-copy housekeeping genes. Sequence identities were calculated using Needleman-Wunsch alignment of two sequences (36). (C)
Assessment of recombination within the multigene families. Individual genes from 15 independent isolates of P. falciparum (top, blue
text) were compared to the 3D7 reference genome to identify the ortholog with the highest-scoring sequence alignment. For
single-copy housekeeping genes, isolate-to-reference gene pairs were in the syntenic position of the genome nearly 100% of the time
(right); such pairs for members of the var, rifin, stevor, and Pfmc-2TM variant gene families were seldom syntenic (left), indicating
extensive recombination throughout these families. Similarly, 4 isolates of the rodent malaria parasite P. chabaudi (bottom, red) were
compared to the AS reference genome and demonstrated that a large majority of the fam-a, fam-b, and fam-d multigene family
members maintained synteny, even across two subspecies. Diamonds represent percent synteny with 95% confidence intervals shown
by error bars. See Text S1 in the supplemental material for details of sequence analysis.
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and AS for P. chabaudi) with the highest-scoring alignment and then determined
whether the paired sequences were located at comparable positions of their respective
genomes. For single-copy housekeeping genes in both species, we found nearly
universal synteny, as expected (Fig. 1C). For the multigene families var, rifin, stevor, and
Pfmc-2TM of P. falciparum (23–25), gene pairs with the highest sequence identity were
seldom syntenic (Fig. 1C, top), suggesting that recombination between nonsyntenic
family members is common. In contrast, for the P. chabaudi isolates, the majority of
fam-a, fam-b, and fam-d gene family members displayed the greatest sequence simi-
larity to genes at the same genomic position (Fig. 1C, bottom), indicating relatively
infrequent recombination between nonsyntenic genes. This pattern held even though
the rodent parasite isolates examined represent two different subspecies of P. chabaudi.
The trend was less pronounced for the pir gene family, which includes the fam-c
subfamily and has been observed to display greater overall heterogeneity than the
other variant gene families (26).

Given that both P. chabaudi and P. falciparum similarly lack cNHEJ and depend on
HR for DNA double-strand break repair, an additional hypothesis is required to explain
why members of the variant antigen gene families of rodent parasites appear to
undergo significantly less extensive recombination among nonsyntenic genes. Gener-
ally among eukaryotes, translesion polymerases are required for efficient HR when the
recombining sequences differ substantially (27), as they typically do when two non-
identical variant antigen genes recombine. We observed that two translesion poly-
merases (orthologs of Rev1 and Pol �) and two accessory proteins (an SNF2 helicase and
a RING finger/E3 ubiquitin ligase) are encoded in the genomes of most Plasmodium
species and several related parasites spanning a range of vertebrate hosts (Fig. 2).
Remarkably, all four of these genes are missing from the genomes of rodent malaria
parasites, providing a likely explanation for the reduced degree of recombination and
diversification that we detected within their multigene families. This led us to question
what selective pressures could have resulted in the loss of this highly conserved DNA
repair pathway specifically within the rodent malaria evolutionary lineage. Although
many multigene family members of rodent parasites have been presumed to encode
variant surface antigens as in primate malaria species, recent reports offer a different
model in which different gene family members instead evolved distinct functions (28).
If at least a subset of these genes perform distinct functions, these functions could be
disrupted by recombination, thus favoring a mechanism to suppress recombination
between nonsyntenic gene copies, such as through the observed loss of translesion
polymerases. The reduction of antigenic diversity between isolates, as we found in
rodent parasites, would presumably impair reinfection of hosts that have previously
harbored an infection. However, several aspects of rodent parasite infections could
influence the need for continuous diversification of antigen-encoding gene families,
including the length and chronicity of infections, rates of transmission and the likeli-
hood of reinfection, and the virulence of infections as well as the average life span of
the hosts and their typical number of offspring. In addition, further analysis of rodent
parasite genomes could reveal potential alternative mechanisms for DNA repair that
perhaps partially compensate for the loss of translesion polymerases. For example, it is
not clear how the pir/fam-c gene family members have acquired a much higher degree
of diversity than the largely conserved fam-a, fam-b, and fam-d gene families, partic-
ularly considering that these families consist of similar numbers of genes and are
located interspersed with one another within the parasite’s genome.

Taken together, our observations suggest a key role for translesion polymerases in
diversification of malaria parasite antigens. In model eukaryotes, these enzymes inter-
face with nucleotide excision (29), base excision (30), and mismatch repair pathways
(30), which are thought to be a major source of mutations leading to drug resistance
in naturally circulating malaria parasites (31–34). Translesion polymerases may there-
fore play an underappreciated role in the continued threat of malaria to human health
globally. This work underscores the power of comparative evolutionary studies to
advance our understanding of parasite gene function and host-parasite interactions.
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