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In response to violent market competition and demand for low-carbon economy, cold chain logistics companies have to pay
attention to customer satisfaction and carbon emission for better development. In this paper, a biobjective mathematical model is
established for cold chain logistics network in consideration of economic, social, and environmental benefits; in other words, the
total cost and distribution period of cold chain logistics are optimized, while the total cost consists of cargo damage cost,
refrigeration cost of refrigeration equipment, transportation cost, fuel consumption cost, penalty cost of time window, and
operation cost of distribution centres. One multiobjective hyperheuristic optimization framework is proposed to address this
multiobjective problem. In the framework, four selection strategies and four acceptance criteria for solution set are proposed to
improve the performance of the multiobjective hyperheuristic framework. As known from a comparative study, the proposed
algorithm had better overall performance than NSGA-II. Furthermore, instances of cold chain logistics are modelled and solved,
and the resulting Pareto solution set offers diverse options for a decision maker to select an appropriate cold chain logistics
distribution network in the interest of the logistics company.

1. Introduction

Cold chain logistics are developing rapidly with constant
improvement of living standard of the people and increasing
demand for fresh food [1]. In order to lower distribution cost
of cold chain logistics effectively, some researchers began to
study optimization of cold chain logistics distribution net-
work [2]. However, when optimizing cold chain logistics
distribution network, one has to consider economic benefit
of logistics distribution, distribution-derived carbon emis-
sion and other environmental benefits, and timeliness of the
logistics network.

In a practical cold chain logistics network, more than one
objective may be considered in the system, including the
minimum total cost, the smallest number of vehicles, the
maximum customer satisfaction, the shortest travel path,
and the least distribution time. Numerous researchers have

studied multiobjective logistics optimization problem. With
the shortest travel path and carbon dioxide emission as
optimization objectives, Jemai et al. [3] established a vehicle
routing problem (VRP) based on green logistics and solved it
by NSGA-II optimization. Based on optimization objective
functions of the minimum cost and the maximum customer
satisfaction, Liu et al. [4] developed a mathematical model
for multiobjective location-routing problem (LRP). Molina
et al. [5] developed a heterogeneous fleet VRP model with
the minimized cost and emission as objectives. Golmo-
hammadi et al. [6] proposed a mathematical model for
multiobjective LRPs with the minimum storage distribution
cost and difference in vehicle-traveled distance as optimi-
zation objective functions. ,e above literatures are related
to multiobjective logistics distribution network, but multiple
performance metrics of logistics network are not taken into
account: economic benefit, environmental benefit, and
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timeliness. Moreover, there are a dearth of literatures on
LRP-based models for cold chain logistics. Wang et al. [1]
proposed developing a single-objective model in consider-
ation of carbon emission for cold chain logistics and solving
it using hybrid genetic algorithm. However, logistics net-
work timeliness has not yet been considered.

Hence, in this paper, properties of cold chain logistics are
considered from the perspective of LRP-based model; not
only economic and environmental benefits but also distri-
bution timeliness are taken into account; thereby a bio-
bjective LRP of cold chain logistics considering fuel
consumption and distribution period is proposed, and one
multiobjective hyperheuristic (MOHH) is proposed to
model and solve this problem. ,erefore, main contribu-
tions of this paper are described as follows:

(i) Problem model: with logistics cost and distribution
period as objective functions, a multiobjective
mathematical model for cold chain logistics is de-
veloped considering environmental benefit arising
from fuel consumption and social benefits like
customer satisfaction arising from customer time
window.

(ii) Solution algorithm: for the above model, MOHH is
designed. Based on the framework nature of
hyperheuristics, four selection strategies for low-
level heuristics (LLHs) and four solution acceptance
criteria are proposed.

(iii) Management suggestions and comments: based on
experimental results, several insights and sugges-
tions about logistics distribution are provided from
management perspective.

2. Methodology

2.1. Multiobjective Optimization Problem (MOP). One typ-
ical MOP normally contains more than 2 conflicting or
contradictory objectives and is also called multicriteria
optimization problem [7]. Without loss of generality, one
minimized MOP having D-dimensional decision variables
and m-dimensional subobjectives can be expressed as

min
X∈Ω

F(X) � f1(X), f2(X), . . . , fm(X)( 
T

s.t.
gi(X) ≤ 0, i � 1, 2, . . . , q

hi(X) � 0, i � 1, 2, . . . , p,


(1)

where X � (x1, x2, . . . , x D) ∈ RD is a D-dimensional de-
cision vector and F(X) ∈ Rm is an m-dimensional objective
vector, defining m mapping functions of decision space
towards objective space; RD and Rm are decision space and
objective space, respectively; gi(X)≤ 0(i � 1, 2, . . . , q) are q
inequality constraints; and hi(X)� 0 (i� 1, 2, . . ., p) are p
equality constraints.

On this basis, the following related definitions are given [7].

Definition 1 (feasible solution). For one X ∈RD, if two
classes of constraints in equation (1) are satisfied, then X will
be deemed as a feasible solution.

Definition 2 (feasible solution set). A set of all feasible so-
lutions is referred to as feasible solution set, that is, Xf.

Definition 3 (Pareto dominant). Suppose thatXA andXB are
two feasible solutions in the feasible solution set. When and
only when the following constraints are satisfied,

∀i � 1, 2, . . . , m, fi XA( ≤fi XB( ,

∃j � 1, 2, . . . , m, fj XA( <fj XB( .

⎧⎨

⎩ (2)

where XA dominate XB; in other words, compared with XB,
XA is a Pareto dominant, which can be expressed asXB≻XA.

Definition 4 (Pareto optimal solution). One solution
X∗ ∈ Xf is referred to as Pareto optimal solution (or
nondominated solution), when and only when the following
condition is satisfied:

∃X ∈ Xf: X≻X∗. (3)

Definition 5 (Pareto optimal solution set). As a set of all
Pareto optimal solutions, Pareto optimal solution set is
defined as follows:

P
∗ ≜ X∗ |∃X ∈ Xf: X≻X∗ . (4)

Definition 6 (Pareto front). A curved surface, composed of
objective function values corresponding to all Pareto opti-
mal solutions in Pareto optimal solution set P∗, is called
Pareto front and denoted as PF∗:

PF
∗ ≜ F X∗(  � f1 X∗( , f2 X∗( , . . . , fm X

∗
( ( 

T
|X∗ ∈ P

∗
 .

(5)

2.2. Hyperheuristics. Metaheuristics (e.g., grey wolf opti-
mization algorithm [8], nature-inspired optimization algo-
rithm [9, 10], and quantum-behaved particle swarm
optimization [11]) have been widely applied in optimization
problems. However, to find solutions of bespoke nature in a
new problem-based domain, it takes huge efforts and
lengthy time to have a good command of effectiveness of
domain operator combination [12]. Moreover, it is difficult
to select the promising optimal parameters [13]. Although
the machine learning methods have also been used to solve
the above dilemmas, such as obstacle recognition based on
machine learning [14], this paper focuses on the another
strategy, namely, hyperheuristics, which are capable of
solving the above problems effectively. Cowling et al. [15]
defined “hyperheuristic” as “heuristics to choose heuristics”
for the first time. Later, Burke et al. [16] expanded its
definition: (i) heuristic selection and (ii) heuristic genera-
tion. ,erefore, selection of optional LLHs is generally
decided from indicators of spread or convergence for a
candidate solution versus parent solution. As known from
the above literature, an LLH can be defined as an operator
(crossover or mutation operator) or a metaheuristic (e.g.,
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NSGA-II and SPEA2). For a selective heuristic, there exists
one universal simple framework, as shown in Figure 1.

,e black zone is a domain barrier for isolating high-
level heuristics (HLHs) from LLHs. ,e low-level problem
domain contains data information of the real problem,
LLHs used to search directly for problem space, and
population information of the problem domain (chro-
mosome, fitness, etc.). In high-level control domain, there
are two strategies with different objectives: operator se-
lection strategy and solution acceptance mechanism. ,e
selection strategy is used to search for LLH-based space
and monitor history information of LLH performance so
as to select high-quality operators (for isolating any in-
formation related to the real problem), while the accep-
tance criteria judge whether parent solution Sp should be
replaced depending on quality of children solution (or
solution set) Sc or not and control search direction and
convergence speed of the algorithm, where Scu is the
current solution. In addition, between HLHs and LLHs,
there are information transmitters used to exchange and
transmit information irrelevant to the problem domain,
including choice information, acceptance strategy judg-
ment information, improvement rate contributed by LLH,
operator runtime and frequency, and number of con-
secutive improvement failures of current solution.
Moreover, it is to highlight that any decision for high-level
domain (selection or acceptance strategy) has to be iso-
lated from real problem domain (such as encoding,
crossover, and mutation methods); otherwise, hyper-
heuristic principles and objectives will be disrupting; in
other words, generality and transplantability of the high-
level control strategy are improved in order to apply to any
problem domain.

Although there are plenty of multiobjective algorithms
(such as NSGA-II, SPEA2, and multiobjective optimization
based on an improved cross-entropy method [17]) for
solving the practical problems in the real-world applications,
this paper focuses on the MOHH, which has critical
problems in the following aspects in its design:

(1) Design of high-level selection strategy: perfor-
mance of LLH may exhibit phased feature, that is,
varying with search progress; for example, oper-
ator performance has inconsistent manifestations
in the early and late phases of search. On this basis,
researchers have designed different selection
strategies depending on demand, such as choice
function [18, 19] and sliding window-based FRR-
MAB [20]

(2) Approach to children solution evaluation: for a
single-objective problem, it suffices to acquire fitness
improvement rate (FIR) of children relative to
parent. But, for an MOP, objective space is expanded
to two or more dimensions, so FIR cannot be used
directly to characterize an approach of replacing
parent with children. Dominance relationship of
children versus parent is utilized [20]. Two-stage
sorting method is used to evaluate children solutions
and reward corresponding LLHs [18, 19]

(3) Solution acceptance mechanism: quality of solution
acceptance mechanism has immediate impact on
population diversification and intensification, thus
influencing whether an algorithm is able to obtain
satisfactory solutions. For single-objective problems,
there are deterministic acceptance mechanisms such
as All Moves (AM), Only Improving (OI), and
noninferior solution acceptance and probabilistic
(nondeterministic) acceptance mechanisms such as
great deluge (GD), delay acceptance, simulated
annealing (SA), and Monte Carlo

(4) Domain barrier and information transmitter control:
hyperheuristics are aimed at improving algorithm
universality and transplantability so that the algo-
rithm can be applied to real problems in different
domains. So, there is crucial information in multi-
objective problem domain: chromosome fitness; in
other words, chromosome fitness can be used by
high-level control strategy during multiobjective
optimization likewise

,erefore, design methods are given in this paper for the
above problems in MOHH design, respectively, so as to
satisfy effectiveness and high performance of solving a
biobjective LRP of cold chain logistics considering fuel
consumption and distribution period.

2.3. Mathematical Model of Biobjective LRP of Cold
Chain Logistics considering Fuel Consumption and
Distribution Period

2.3.1. Problem Formulation, Assumptions, and Definitions of
Variables. LRP of cold chain logistics studied in this paper is
a distribution centre-to-customer supply chain. Suppose
that the cold chain logistics network is a directed network
composed of distribution centres and customer points; that
is, N� {NC, ND} represents a set of all points on the logistics
network, whereNC represents a set of customer points; it is a
weighted directed network where point-to-point distances
are the weights, including the distance between a distri-
bution centre and a customer and the distance between
customers. Optimization of a logistics network consists of
two major aspects: reasonable distribution centre selection
and vehicle routing. To study instances of cold chain logistics
network reasonably, the following assumptions are made:

(1) Urban Traffic Status Is Relatively Stable During Distri-
bution Period. Changes in urban road traffic status are not
chaotic; in general, roads will be congested during morning
and evening peak hours in a day if no accident occurs;
congestion status lasts for about two hours, while during
other hours, roads will not be so congested, and road traffic
does not vary much.

(2) <e Distribution Vehicle Remains in Uniform Speed State.
Suppose that urban road congestion status is constant; it is
very difficult to predict vehicle speed in LRP and VRP, as the
speed varies somewhat with time interval, and it is very hard
to describe the speed variation model with mathematical
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functions; therefore, in this study of LRP of cold chain
logistics, speed of the distribution vehicle is deemed
uniform.

(3) Other Assumptive Conditions. Each distribution centre is
equipped with vehicles; a distribution vehicle transports cold
chain logistics products from each distribution centre to
various customers and returns to the original distribution
centre. ,e maximum load weight of each vehicle is Q, no
demand of one customer exceeds the maximum load weight
of each vehicle, demand of one customer can be satisfied by
one vehicle only through distribution service, and one ve-
hicle is able to serve many times. If drivers have the same
driving habit and driving skill and each distribution centre
has abundant inventory, then cargo shortage will not occur.

Notations and variables of the model are defined as
follows: candidate distribution centre set ND � {1, 2, . . ., m},
customer set NC � {1, 2, . . ., n}, available vehicle set K� {1, 2,
. . ., φ}, all-point set N � ND ∪NC, and edge set E� {(i, j):
i ∈V, j ∈V, i≠ j}\{(i, j): i ∈ J, j ∈ J, i≠ j}; transportation dis-
tance corresponding to each edge is dij and travel speed is vij;
customer i ∈NC has nonnegative cargo allocation demandDi
and time window requirement (ETi, LTi), while wi is cus-
tomer service time; vehicle type is the same and the max-
imum capacity is CV; distribution centre i ∈ND has an
enabling cost of Oi and the maximum capacity of CDi.

,e following are decision variables: xijk is 1 if edge (i, j)
serves vehicle k; otherwise xijk is 0; yj is 1 when distribution
centre j is enabled; otherwise yj is 0; zij is 1 when customer i is
served by distribution centre j; otherwise zij is 0.

,e following are additional variables: Lijk represents
dynamic load of vehicle k on edge (i, j); ATik is the time point
at which vehicle k arrives at node i.

,erefore, based on the above model assumptions and
definitions of notations and variables, a multiobjective
mathematical model can be given in this paper.

2.3.2. Model Composition. ,e biobjective model in this
paper is designed to optimize total logistics cost and dis-
tribution period; the total logistics cost consists of fuel
consumption cost, cargo damage cost, transportation cost,
refrigeration cost of refrigerated trucks, penalty cost of time
window, and operation cost of distribution centres, as de-
tailed below.

(1) Fuel Consumption Cost. According to a report on the
website of the government of Japan [21], fuel consumption
of one type of vehicles is directly proportional to load weight.
In light of this, Xiao et al. [22] assumed that a vehicle runs at
a constant speed, only considered impacts of load weight and
traveled distance on vehicle fuel emission, and split vehicle
weight into dead weight M0 and load weight M1; then Fuel
Consumption Rate (FCR) can be calculated using the fol-
lowing formula:

ρ M1(  � α M0 + M1(  + b. (6)

,emaximum load weight that can be borne by a vehicle
is defined as CV; then, FCRs at zero load and full load can be
expressed as ρ0 � αM0 + b and ρ∗ � α(M0 +CV) + b, respec-
tively. ,us, FCR per unit distance is

ρ M1(  � ρ0 + ρ∗ − ρ0(  ×
M1

CV
. (7)

,erefore, the fuel consumption generated by vehicle k
under load Lijk is
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FCijk � ρ0 + ρ∗ − ρ0(  ×
Lijk

CV
  × dijxijk, (8)

and, for this problem mentioned, fuel consumption cost is
C1 � c0 

i∈N

j∈N


k∈K

FCijk, (9)

where c0 represents unit fuel cost (Yuan/L).

(2) Cargo Damage Cost of Cold Chain Logistics. Based on the
rationale of previous studies on cold chain logistics products,
researchers incorporated cargo damage cost analysis into
distribution routing optimization of cold chain logistics
network. To facilitate the study, suppose that cold chain
logistics products in the whole cold chain logistics distri-
bution network are stored at a constant temperature in stable
environment. ,e top consideration is quality degradation
of cold chain logistics products over time, and according to
food science principles combined with deterioration rate
function of cold chain logistics products, Qi [23] induced a
mathematical relationship between product quality change
∆Q and original quality Q0 as follows:

lqm �
ΔQ
Q0

× 100% � 1 − ei∈Nj∈N − S·tije− Ea/RT( )( 
  × 100%,

(10)

where tij � dij/vij. Cargo damage of cold chain logistics is
related to logistics distribution time only, and cargo damage
cost is expressed as follows:

C2 � 
i∈N


j∈N


k∈K

Lijk 1 − e
− φ dij/vij( 

 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
× 100%. (11)

Let φ be time sensitivity coefficient; its expression is

φ � S · e
− Ea/RT( ). (12)

(3) Refrigeration Cost of Refrigeration Equipment. In the
course of distribution in cold chain logistics, a refriger-
ation equipment is not fully closed; its external factors
such as solar radiation will result in a temperature gra-
dient between inner and outer surfaces so as to increase
thermal load inside the refrigeration equipment. ,e
evaporator in the refrigeration equipment will refrigerate
the cargo until overall thermal load is balanced, and
eventually, constant temperature is achieved. Fu [24]
performed thermal equilibrium analysis by thermal
equilibrium method frequently used in energy con-
sumption analysis of building system, and in cold chain
logistics distribution, additional heat of refrigeration
equipment arises from such factors as heat exchange
between internal and external walls of refrigeration
equipment, heat diffusion of products and equipment in
cold chain logistics, and hot air soaking. For the brevity of
study, only heat load H1 due to high-ratio heat exchange
between internal and external walls of refrigeration
equipment and heat load H2 due to high-ratio heat

exchange upon door opening are considered. H1 is
expressed as

H1 � R1S T − T0( , (13)

where R1 is the thermal conductivity of refrigeration
equipment in W/(m2·K); S is the heat transfer area in m2 of
refrigeration equipment on a refrigerated truck; T is the
temperature outside refrigeration equipment in K; and T0 is
the product storage temperature of cold chain logistics in K.
H2 is expressed as follows:

H2 � R2Sd T − T0( , (14)

where R2 is the thermal conductivity of air in W/(m2·K), Sd
represents the door area of refrigeration equipment in m2,
and w2 is a parameter of unit refrigeration cost; the re-
frigeration cost during cold chain logistics network distri-
bution can be expressed as

C4 � w2 H1 
i∈N


j∈N


k∈K

dij

vij

xijk + H2 
i∈N


k∈K

wiyik
⎛⎝ ⎞⎠. (15)

(4) Transportation Cost. When cold chain logistics products
are distributed from a distribution centre to a customer,
transportation cost will be generated, including manage-
ment cost of distribution vehicle drivers and transportation
staff, toll, and vehicle loss cost, while unit transportation cost
per vehicle is assumed to be known and fixed in the logistics
system. Transportation cost of all vehicles is related to
transportation distance and calculated using the following
formula:

C3 � φ 
i∈N


j∈N


k∈K

xijkdij, (16)

where φ is the cost per traveling distance.

(5) Penalty Cost of Time Window. As products in cold chain
logistics are perishable, the customer demands that the
logistics company distribute cold chain logistics products in
a specified time frame. To improve logistics service level and
customer satisfaction, penalty cost of time window is in-
corporated into cold chain logistics distribution routing
objective function as follows:

Pk(i) �

α ETi − ATik( , ATik <ETi,

0, ETi ≤ATik ≤ LTi,

β ATik − LTi( , LTi <ATik.

⎧⎪⎪⎨

⎪⎪⎩
(17)

where Pk(i) represents penalty cost of time window that may
be paid when vehicle k is serving customer i; ATik represents
the time point at which vehicle k arrives at customer point i;
α is a penalty coefficient for the case that a distribution
vehicle arrives at a customer point at a time earlier than the
start time of time window; β is a penalty coefficient for the
case that a distribution vehicle arrives at a customer point at
a time later than the start time of time window; ETi and LTi
represent the start time and end time of time window,
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respectively. ,erefore, penalty cost of time window can be
expressed as

C5 � 
i∈NC


k∈K

Pk(i). (18)

(6) Operation Cost of Distribution Centres. To ensure normal
operation of cold chain logistics network, labour cost,
equipment maintenance cost, and utilities have to be
invested; the above costs altogether constitute operation cost
of distribution centres in cold chain logistics. It is assumed
that daily investment is basically unchanged in practical
operation; thus distribution centres and operation costs are
assumed to be fixed known conditions. Hence operation cost
of distribution centres can be expressed as

C6 � 
i∈ND

OiYi. (19)

2.3.3. Location-Routing Optimization Modelling for Cold
Chain Logistics. Based on the above model assumptions and
definitions of notations and variables, a mathematical model
was developed as follows:

minCost � C1 + C2 + C3 + C4 + C5 + C6, (20)

minTT � max
i∈K

Ti , (21)


i∈N

xijk � 1, ∀j ∈ NC, k ∈ K, (22)


i∈N

xihk − 
j∈N

xhjk � 0, ∀h ∈ NC, k ∈ K,
(23)


j∈ND

zij � 1, ∀i ∈ NC, (24)

zij ≤Yj, ∀i ∈ NC, j ∈ ND, (25)


i∈NC

xik ≤Yk, ∀k ∈ ND, (26)

xink + zij + 
m∈ND ,m≠ j

znm ≤ 2, ∀i, n ∈ NC, i≠ n, j ∈ ND,

(27)


i∈NC


k∈ND

Dizik ≤CDkYk, ∀k ∈ ND,
(28)


i∈NC


j∈N

Dixijk ≤CV, (29)

ATik � ATjk + tij + wjk, ∀i, j ∈ NC,

(30)

ETi ≤ATik ≤ LTi, ∀i ∈ NC, k ∈ K. (31)

Equations (20) and (21) are objective functions. Ob-
jective (20) represents minimization of total cost during
optimization of cold chain logistics LRP, including fuel
consumption cost, cargo damage cost, transportation cost,
refrigeration cost of refrigerated truck, penalty cost of time
window, and operation cost of distribution centre; objective
(21) represents the shortest vehicle distribution time.
Constraint (22) ensures that each customer is served once;
constraint (23) ensures that the vehicle has to leave after
serving a customer; constraint (24) indicates that each
customer can be assigned to one distribution centre only;
constraints (25)–(27) indicate that the enabled distribution
centre has to serve a customer; constraint (28) ensures that
total demand of customers served by each distribution
centre is not more than capacity of the distribution centre;
constraint (29) ensures that total volume of cargoes carried
by each vehicle is not more than its loading capacity;
constraint (30) represents temporal connection between two
consecutive customer points in a vehicle distribution path;
and constraint (31) indicates that the time when a vehicle
arrives at a customer point may not be out of the permissible
time interval.

2.4. MOHH. Conventional methods for solving MOP in-
clude weighting method, constraint method, and hybrid
method. In recent years, Multiobjective Evolutionary Al-
gorithms (MOEAs), as one kind of new methods for solving
MOP, have been developed gradually. ,e most frequently
used MOEAs are Genetic Algorithms (GAs), or multi-
objective GAs, and representative GAs include VEGA,
HLGA, MOGA, NPGA, and NSGA [25]. In this paper,
MOHH is proposed for solving cold chain logistics-based
multiobjective LRP model and distribution routing for cold
chain logistics and is compared with Nondominated Sorting
Genetic Algorithm II (NSGA-II) often used to solve MOP
using elitist strategy [26]. NSGA-II employs simple yet ef-
ficient nondominated sorting mechanism so as to capture
Pareto front and Pareto solution set with good distribution.

Problem domain and algorithm domain are designed
below.,e problem domain involves chromosome encoding
and LLHs for optimization, while in high-level domain, four
high-level selection strategies and acceptance mechanisms
are designed; and finally, a multiobjective hyperheuristic
framework is given.

2.4.1. Problem Domain

(1) Chromosome Encoding. Direct encoding is used. If there
are three distribution centres and 10 customers, 0 represents
the distribution centre, and 1–10 represent customer
numbers; then a distribution centre can be represented by
11–13. Customer sequence is generated randomly, for ex-
ample, 9-5-3-2-4-1-6-8-7-10, and sequence location order
represents the order of a vehicle arriving at a customer.
,ereafter, according to principles “customer demand
served by a vehicle may not exceed load weight of the
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vehicle” and “customer demand served by a distribution
centre may not exceed capacity of the distribution centre,”
distribution centres are allocated by centroid method; hence
initialization path is converted to the following: 12-9-5-3-12;
11-2-4-1-6-11; 13-8-7-10-13. ,e first path represents that a
vehicle departs from distribution centre no. 2 and distributes
goods to customers nos. 9, 5, and 3 and then returns to the
original distribution centre.

(2) LLHs. LLHs can be classified into mutation heuristic,
ruin-recreate heuristic, local search heuristic, and crossover
heuristic. LLHs are used to manipulate solution space di-
rectly as follows:

(i) Mutation heuristic:

LLH1: 2-opt: select arbitrarily one path from parent
solution and swap locations of adjacent customer
points so as to generate a new children solution
LLH2: Or-opt: select arbitrarily one path from
parent solution and insert two adjacent customer
points into other locations so as to generate a new
children solution
LLH3: interchange: select randomly two paths
from parent solution and swap locations of any
two customer points so as to generate a new
children solution
LLH4: replace: select randomly one path and swap
locations of any two customer points
LLH5: shift: select randomly one path from parent
solution while enabling a new distribution centre
for this path so as to generate a new children
solution
LLH6: interchange: select randomly two paths
from parent solution and swap their distribution
centres so as to generate a new children solution

(ii) Ruin-recreate heuristic:

LLH7: location-based radial ruin: select any one
customer point as “reference customer,” and
remove other customers at a probability of 1%–
10% according to a rule of approaching “reference
customer” in location, so as to generate a new
children solution

(iii) Local search heuristic:

LLH8: interchange: as in the case of LLH4, but this
operator returns the improved children solution
only
LLH9: shift: the operation is basically the same as
that of LLH3, except that LLH9 selects a customer
point according to “the best improvement” cri-
terion, inserts the customer point into random
location of the original path or any other path, and
returns an improved children solution only
LLH10: 2-opt∗: select randomly two paths from
parent solution, choose one location according to
“the best improvement” criterion, swap all cus-
tomer points behind the location, and return an
improved solution only

LLH11: GENI: calculate the distance between any
two customers on different paths in parent solu-
tion, select the shortest distance as reference dis-
tance, remove customer points nearest to the
reference distance, rearrange these customers into
a new path, and return an improved children
solution only

(iv) Crossover heuristic:

LLH12: combine: select randomly two parent
paths, copy one of the parent paths at a probability
of 25%–75% to generate a subpath, add paths that
originate from another parent path and are not
contradictory against this subpath, and eventually
arrange arbitrarily the remaining customer points
LLH13: longest combine: select randomly two
parent paths, sort all paths in descending order of
number of customer points served, add all paths
without repeated customers to generate a subpath,
and eventually arrange arbitrarily the remaining
customer points

2.4.2. High-Level Selection Strategies

(1) Simple Random (SR). SR selects randomly LLHs in each
iteration and is usually used as a reference for comparison
with any other strategy.

(2) Tabu Search (TS). TS is to prohibit repeating previous
operation. To address a defect that local neighbourhood
search algorithm gets readily trapped in local optimal points,
TS algorithm formulates a tabu list to record searched local
optimal points and not to search or search selectively ele-
ments in the tabu list in next iteration; thereby trap in local
optimum is eliminated and global optimization objective is
achieved. TS algorithm is an extension of local neigh-
bourhood search and a heuristic for global neighbourhood
search and gradual optimization.

As an HLH strategy for MOHH, TS scores performance
of each LLH and thereby selects an operator for current
iteration and updates scores using Reinforcement Learning
mechanism; in other words, if a children solution arising
from manipulation of the LLH improves parent solution,
then score of this LLH will be added; otherwise it will be
deducted.

(3) Choice Function (CF). CF selects an LLH based on three
different metrics; the first metric records previous perfor-
mance of each LLH, denoted as f1, and LLH performance of
each LLH can be expressed as

f1 � 
n

ηn− 1 In LLHj 

Tn LLHj 
, (32)

where In(LLHj) and Tn(LLHj) are the improvement value of
each previously called heuristic and time to call the heuristic,
respectively, and η is a coefficient ranging from 0 to 1.
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,e second metric attempts to capture connection be-
tween LLHs and can be expressed using the following
formula:

f2 LLHk, LLHj  � 
n

μn− 1 In LLHk, LLHj 

Tn LLHk, LLHj 
, (33)

where In(LLHk, LLHj) and Tn(LLHk, LLHj) represent FIR of
LLHj following LLHk and call time of LLHj following LLHk,
respectively. Likewise, μ is a coefficient ranging from 0 to 1.

,e third metric is the time period since CF selects the
last LLHj:

f3 LLHj  � τ LLHj . (34)

To rank LLHs, a score is given to each LLH:

F LLHj  � e × f1 LLHj  + f × f2 LLHj  + g × f3 LLHj ,

(35)

where e, f, and g represent weights of three metrics,
respectively.

(4) Ant-Inspired Selection (AS) [27]. Ant colony opti-
mization algorithm is a native heuristic of ant behaviour or
ant population behaviour, used to solve hard combinatorial
optimization problem. Ant colony algorithm applied in
hyperheuristics is able to provide an HLH strategy so as to
construct good LLH sequence. Each ant determines the next
fixed point based on the pheromone in each path (each
vertex represents an LLH), and once the ant arrives at a new
vertex, it will apply the LLH corresponding to the vertex.
Unlike the ant colony algorithm in combinatorial optimi-
zation problem solving mode, an ant colony manipulates
LLHs; thus each ant is permitted to visit one point with
multiple times, indicating that each heuristic may operate
multiple times in one iteration. Details of the design are
described in literature [27].

2.4.3. High-Level Acceptance Mechanisms. Acceptance cri-
teria are used to judge whether a children solution can
replace parent solution or not, and its performance has
immediate impact on convergence speed and optimization
accuracy of a hyperheuristic [28]. It is therefore very im-
portant to determine superiority or inferiority of a children
solution to parent solution in design of acceptance criteria.
,e following strategy is used in this paper: in a randomly
selected objective function, as long as a children solution has
a smaller fitness than parent solution, this children solution
will be regarded to be superior to the parent solution and can
go to the next iteration in place of the parent solution. ,is
strategy is also used in the above three selection strategies.

(1) All moves (AM): all solutions are accepted regardless
of improvement

(2) Simulated annealing (SA): it is similar to SA algo-
rithm. Set initial temperature T and cooling coeffi-
cient, and update annealing temperature T�T× λ
after each iteration. Apply an LLH to each iteration,
accept an improved solution if any, and accept an
unimproved solution at a certain probability

expressed as p� e∆/T, where ∆ represents the change
of objective function

(3) Great deluge (GD) [28]: set a lower bound (LB)
which is an optimal solution in current iteration.
Apply an LLH to each iteration, accept an improved
solution if any, and accept an unimproved solution
in presence of the following case:
ftemp< LB+ (f0 − LB)× (1 − iter/Tmax), where ftemp
represents a children solution, f0 represents initial
solution, iter represents number of current itera-
tions, and Tmax represents the maximum number of
iterations

(4) Only improving (OI): accept improved solution only
and eliminate all inferior solutions

2.4.4. MOHH Framework. In a LRP model, the method
focuses on designing distribution centres and customer
groups, and the first job is to address distribution path
between customers. ,e process is detailed as follows:

Step 1: initialize the population by encoding customers
directly: suppose each chromosome has 10 customer
points and 3 distribution centres, 1–10 represent
customer numbers, and 0 represents a distribution
centre. Distribution centres can be represented by 0(1)-
0(3), respectively.
Step 2: initialize parameters of an HLH strategy.
Step 3: optimize population P:

Step 3.1: select one of two objectives (f1, f2) at an equal
probability randomly.
Step 3.2: select an LLH based on its performance.
Step 3.3: calculate the value of the selected objective
function fn.
Step 3.4: calculate the value of another objective
function.
Step 3.5: update performance metrics of the LLH.

Step 4: update Pareto solution set by nondominated
sorting.
Step 5: evaluate a children solution according to an
acceptance mechanism in acceptance criteria and opt to
accept the children solution or not.
Step 6: update parameters related to HLH strategy and
LLH score.
Step 7: judge whether termination condition is satisfied
or not; if yes, then stop iteration and output optimal
solution; otherwise, return to step 3.
Step 8: generate Pareto front.

3. Simulation Results and Analysis

3.1. Parameter Configurations. ,e MOHH was coded in
parallel in MATLAB 2015b using a 2.60GHz Intel Core i5-
3230K with 4GB of RAM and running Windows 10.

,e parameter configurations were set as follows. ,e
size of population was set to 100; the maximum number of
iterations was set to 5000. In the choice function, three
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weights were 0.5, 0.2, and 0.3. In the ant-inspired selection,
we followed the default values proposed by Wang et al. [27]:
length of route LP� 11; number of ants m� 15; factors
ε� 0.001 and σ � 1.001.

3.2. Performance Metrics. To validate performance of the
proposed MOHH algorithm, the following three metrics
were used:

(1) Number of Pareto solutions (NPS): this metric is
used to determine the number of Pareto solutions
obtained by the algorithm.

(2) Spacingmetric (SM): this metric is used to determine
distribution uniformity of Pareto solution set:

S �
1
n



n

i�1
d − di 

2⎡⎣ ⎤⎦
1/2

, (36)

where di represents the Euclidean distance from
Pareto solution i to the nearest point in real Pareto
solution set and d represents mean of all di values.
,e real Pareto solution set refers to nondominated
solution set consisting of all Pareto solutions.

(3) Diversification metric (DM): this metric is used to
measure diversity of Pareto solution set:

D �

�������������



n

i�1
max x

i
t − y

i
t

����
����




, (37)

where ‖xi
t − yi

t‖ represents the Euclidean distance be-
tween nondominated solutions xi

t and yi
t.

3.3. Experimental Comparison of HLH Strategies. To obtain
better results in solving a biobjective LRP of cold chain
logistics, MOHH algorithm was optimized by HLH strategy
first; in other words, the best combination of selection
strategy and acceptance criteria was found by comparing
experimental results. One of Solomon reference instances
was chosen for model solving, and as a standard LRP
problem has neither refrigeration cost nor cargo damage
cost, the total cost calculated in this section excludes re-
frigeration cost and cargo damage cost. Model solving re-
sults of HLH strategies are shown in Table 1.

Statistics NPS, SM, and DM are compared in Table 2. As
can be found in Tables 1 and 2, AS-GD and TS-SA gave rise
to more Pareto solutions than other combinations of HLH
strategies; HLH strategy combination TS-SA resulted in
smaller SMmetric of nondominated solution set and smaller

Table 1: Experimental results of HLH strategies in solving biobjective LRP.

Selection strategy Acceptance criteria NPS
Distribution time Total cost

Min. Max. Min. Max.

AS

AM 4 1152.2 1256.2 13978.5 16646.6
GD 7 1103.7 1444.9 14524.0 16105.5
OI 5 1045.2 1138.8 14419.8 14849.3
SA 5 1058.4 1131.2 14234.3 16076.0

CF

AM 4 1085.3 1124.2 14748.2 16377.2
GD 5 1072.6 1225.7 14975.8 16379.2
OI 4 1068.9 1206.7 15217.9 16170.7
SA 6 1113.3 1149.2 14941.1 16424.2

SR

AM 4 1058.2 1109.2 13857.2 15345.4
GD 3 1276.4 1323.0 17630.1 19780.0
OI 3 1041.8 1183.0 13479.0 14590.0
SA 5 1061.0 1211.8 14588.0 15708.7

TS

AM 6 1056.3 1186.6 14147.4 14642.1
GD 5 1145.0 1215.0 14800.5 17415.9
OI 6 1222.2 1437.5 16453.1 19246.3
SA 7 1042.6 1172.3 13316.7 13316.7

Table 2: Comparison of performance metrics of different HLH
strategies for MOHH.

Selection strategy Acceptance criteria NPS SM DM

AS

AM 4 147.3 97.8
GD 7 206.7 101.0
OI 5 134.7 46.8
SA 5 155.6 90.2

CF

AM 4 629.4 78.6
GD 5 393.0 80.6
OI 4 292.1 58.8
SA 6 303.0 84.0

SR

AM 4 424.8 81.5
GD 3 315.9 76.5
OI 3 29.1 56.8
SA 5 269.6 71.7

TS

AM 6 58.9 57.0
GD 5 134.1 105.3
OI 5 217.9 114.9
SA 7 26.3 101.1
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spacing, indicating that HLH strategy TS-SA results in more
uniform distribution of nondominated solution set, as
compared with other HLH strategies; in comparison, TS-
GD, TS-OI, TS-SA, and AS-GD metrics had better DM
values than other HLH strategy combinations.

Figure 2 shows Pareto fronts obtained when selection
strategies AS, CF, SR, and TS are combined with four dif-
ferent acceptance criteria, respectively. As can be found in
the figure, when TS acts as a selection strategy, more Pareto
solutions were obtained in more uniform distribution, and
when SA acts as acceptance criteria, solution metrics NPS,
SM, and DM were superior to other acceptance criteria.

In summary, when MOHH was applied to biobjective
LRP optimization, the Pareto solution set obtained subject to
selection strategy TS and acceptance criteria SA gave rise to
good values of various evaluation metrics; thus TS-SA as a
HLH strategy has better effect of solving biobjective LRPs.

3.4. MOHH Validation Analysis

3.4.1. Statistical Analysis of LLH Utilization. Two new LLHs
were added to improve solving biobjective problems by
optimization, utilization data and acceptance rates of LLHs
were statistically analysed during algorithm optimization,
and performances of HLH strategies and LLHs in

optimization were analysed in order to study the impact of
MOHH algorithm framework on multiobjective optimiza-
tion. Figure 3 shows the statistical results of LLH utilization.

Figure 3 shows that, among all LLHs, LLH6 had the
highest utilization with a mean utilization of 11.3%; utili-
zation of LLH8 reached high values, too, with a mean uti-
lization of 10.2%, whereas mean utilization of LLH7 was
merely 5.8%; except that LLHs were randomly selected in SR
selection strategy, LLHs were selected by probability in all
the remaining selection strategies, and the probability was
determined based on performance of an LLH during al-
gorithm iteration; it can therefore be inferred that LLH6 and
LLH8 have better performance than other LLHs. In utili-
zation statistics of LLH6, selection strategy TS showed the
highest utilization of LLH6; thus it can be inferred that TS
enables better performance of LLH6, a LLH7 utilization of
just 4.6%, and lower utilization of worse-performance LLHs;
therefore, in solving biobjective LRP, selection strategy TS is
superior to three other selection strategies, which also val-
idates experimental conclusions in this paper.

3.4.2. Statistical Analysis of Acceptance Rates in LLHs.
To study effects of acceptance criteria on solution results,
acceptance rates of LLHs as per four acceptance criteria
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Figure 2: Profiles of Pareto solution set in four selection strategies. Pareto front under (a) AS, (b) CF, (c) SR, and (d) TS.
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Figure 3: Mean operator utilization data of four selection strategies. Usage rate of operators under (a) AS, (b) CF, (c) SR, and (d) TS.
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Figure 4: Continued.
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using selection strategy TS were statistically analysed (shown
in Figure 4).

As can be found in Figure 4, according to acceptance
criterion AM, all solutions are accepted, so all acceptance
rates were 1; as per acceptance criteria GD and SA, good-
performance LLHs (LLH6 and LLH8) had mean acceptance
rates above 0.9; according to acceptance criterion OI, only
improved solutions are accepted and higher acceptance rates
of high-quality LLHs were achieved, but acceptance rates of
ordinary-performance LLHs were lower and readily trapped
in local optimum. For poor-performance LLH (LLH7), ac-
ceptance rates as per acceptance criteria SA and GD were
0.50 and 0.53, respectively. According to acceptance crite-
rion SA, it is easier to reject poor-performance LLHs and
accept good-performance LLHs; therefore, acceptance cri-
terion SA has more positive impact on improvement of

solutions to a biobjective LRP, which validates experimental
conclusions in this paper.

3.5. Experimental Comparison between Algorithms MOHH
and NSGA-II. To further illustrate effectiveness of MOHH
algorithm in solving biobjective LRPs, TS-SA serves as an
HLH strategy combination of MOHH for instance solving,
as compared with algorithm NSGA-II. For the sake of
fairness, NSGA-II adopts the same heuristic that MOHH
adopts (Table 3), while multiobjective performance metrics
were used to assess the resulting Pareto fronts (Table 4).

In nine instances, MOHH had 5.2 Pareto solutions on
average, while NSGA-II obtained 4.6 Pareto solutions. In
terms of performance metrics, MOHH was slightly superior
to NSGA-II in NPS and mean SM of MOHH-derived Pareto
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Figure 4: Operator acceptance rates under (a) AM, (b) GD, (c) OI, and (d) SA.

Table 3: Comparison between algorithms MOHH and NSGA-II in solution results.

Instance Solution algorithm NPS
Distribution time Total cost

Min. Max. Min. Max.

R101 MOHH 6 1222.1 1374.3 16523.0 18479.0
NSGA-II 5 2045.7 2343.5 17410.5 18215.5

R102 MOHH 6 1193.8 1339.0 16525.1 18208.2
NSGA-II 6 2113.9 2222.7 16868.0 17499.2

R103 MOHH 5 1179.2 1336.0 16310.7 18164.6
NSGA-II 4 2173.3 2241.7 16920.8 18929.3

R104 MOHH 5 1166.0 1262.8 16108.6 18826.3
NSGA-II 3 2127.3 2149.9 19552.7 19915.6

R105 MOHH 5 1157.3 1301.6 16927.0 17444.0
NSGA-II 4 2137.2 2222.7 17760.5 18476.2

R106 MOHH 6 1207.8 1288.9 15714.2 16235.3
NSGA-II 5 2248.8 2603.4 17007.0 17393.8

R107 MOHH 6 1178.8 1312.7 15500.9 17250.4
NSGA-II 5 2106.4 2134.6 15368.0 16041.6

R108 MOHH 3 1135.0 1184.1 13818.2 15053.1
NSGA-II 5 2135.2 2472.4 15600.0 16038.5

R109 MOHH 5 1229.4 1406.0 16358.5 18889.2
NSGA-II 4 2053.3 2383.1 15302.5 15932.8
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solution set was 65.2, while mean SM of NSGA-II-derived
Pareto solution set was 79.5; therefore, MOHH-derived
Pareto solution set had smaller mean scheme spacing and
more uniform distribution. MOHH-derived Pareto solution
set had a mean DM of 86.5, while NSGA-II-derived Pareto
solution set had a mean DM of 59.7; therefore MOHH-
derived solutions are superior to NSGA-II-derived solutions
in diverse metrics.

3.6. Practical Instances of Cold Chain Logistics. It has been
validated that MOHH is effective in solving biobjective
LRPs. ,e cold chain logistics model was solved by MOHH
using selection strategy TS according to acceptance criterion

SA. In cold chain logistics network programming, there are
usually more than one decision objective; optimization of
cost alone would fail to meet benefits of the logistics
company and customers; therefore, it is essential to perform
multiobjective optimization of cold chain logistics.

,is section focuses on the cold chain logistics of seafood
of a supermarket in Hangzhou City, and the subbranches of
the supermarket have a wide distribution and range of
services. ,e distribution of subbranches (i.e., customers) is
shown in Figure 5.

Aiming at improving competitiveness of cold chain
logistics, the supermarket selected five distribution centres
in Hangzhou. Five distribution centres met the requirements
of the cold chain. In this paper, 30 subbranches are selected:

Table 4: Comparison between MOHH and NSGA-II in performance metrics.

Instance Solution algorithm NPS SM DM

R101 MOHH 6 53.8 101.1
NSGA-II 5 56.9 77.2

R102 MOHH 6 94.3 90.9
NSGA-II 6 79.2 60.0

R103 MOHH 5 22.7 94.9
NSGA-II 4 76.3 89.6

R104 MOHH 5 60.3 110.6
NSGA-II 3 81.2 32.2

R105 MOHH 5 49.0 52.2
NSGA-II 4 31.3 53.8

R106 MOHH 6 54.9 63.5
NSGA-II 5 162.4 52.3

R107 MOHH 6 107.5 97.8
NSGA-II 5 111.8 52.9

R108 MOHH 3 70.9 61.8
NSGA-II 5 83.5 60.2

R109 MOHH 5 73.2 106.0
NSGA-II 4 32.5 59.2

Figure 5: Partial distribution map of supermarket in Hangzhou.
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1, 2, 3, . . ., 30, and the distribution centres are represented by
31, 32, 33, 34, and 35. ,e demand and time windows are
known, and the distance between each distribution centre
and each subbranch is known. Each distribution centre is
equipped with a dedicated refrigerated truck for distribu-
tion. ,e maximum capacity of each vehicle is 5 tons. ,e
average traveling speed is 40 km/h on urban roads. ,e unit
cooling cost w2 is 2 Yuan/Kcal. ,e unit penalty cost α of the
satisfaction time window is 2 Yuan/h, and the unit penalty
cost β is 3 Yuan/h later than the customer satisfaction time;
the external temperature T is 77K, and the temperature T0 in
the refrigerator is 35.6 K. ,e thermal conductivity R1 of the
compartment is 80, the thermal conductivity R2 is 0.03, the
heat transfer area S of the refrigerated truck is 17.25m2, the
door area Sd is 5.75m2, the transportation cost per kilometre
φ is 4 Yuan/km, and ρ∗/ρ0 is 0.415/0.155 L/km; diesel price of
Zhejiang province is 7.4 Yuan/L; cargo damage cost c is
2.0 Yuan/kg; time sensitivity coefficient φ is 0.005. ,e
distribution information of distribution centres and sub-
branches is provided in Tables 5 and 6.

Experimentally obtained Pareto solutions are shown in
Figure 6. Solving biobjective cold chain logistics LRP by
MOHH resulted in a total of 12 Pareto optimal solutions.
Distribution time and costs corresponding to Pareto solu-
tions were analysed in Table 7, where Cost1 represents path
cost, Cost2 represents fuel cost, Cost3 represents refrigera-
tion cost of the refrigerated truck, Cost4 represents cargo
damage cost of cold chain logistics, Cost5 represents penalty
cost of time window, and Cost6 represents operation cost of
each distribution centre.

As described in Table 7, all the above 12 distribution
schemes are Pareto optimal solutions. Pareto No. 1 corre-
sponds to a solution with the shortest distribution time
(4.2 h), but corresponding total cost reached 22126.0 Yuan;
Pareto No. 12 corresponds to a solution with the minimum
total cost (5522.0 Yuan), but its distribution time reached
7.5 h.

To validate the effect of MOHH in solving instances,
LLH utilization during algorithm iteration was statistically
analysed, as shown in Figure 7. Based on Figure 7, in se-
lection strategy TS, utilization rates of LLH6 and LLH8 were

Table 5: Information of distribution centres.

No. Location Capacity Fixed cost
31 (120.213287, 30.316118) 50 4.0
32 (120.108078, 30.254743) 40 3.5
33 (120.217886, 30.172352) 70 7.0
34 (120.177067, 30.243263) 55 4.0
35 (120.160395, 30.311877) 60 5.5

Table 6: Information of subbranches.

No. Location Demand Service
time

Time
windows

1 (120.217936,
30.296719) 0.8 0.3 [0.0, 2.0]

2 (120.201977,
30.263709) 1.1 0.3 [1.0, 2.0]

3 (120.123652,
30.290270) 0.8 0.3 [0.0, 2.0]

4 (120.217219,
30.206380) 1.3 0.3 [3.0, 5.0]

5 (120.190461,
30.341832) 1.1 0.3 [3.0, 5.0]

6 (120.169804,
30.282714) 1.3 0.3 [3.0, 6.0]

7 (120.046035,
30.263151) 0.6 0.3 [2.0, 5.0]

8 (120.195807,
30.185674) 0.9 0.3 [3.0, 6.0]

9 (120.234088,
30.197576) 0.5 0.3 [4.0, 6.0]

10 (120.272501,
30.334870) 1.3 0.3 [2.0, 4.0]

11 (120.125605,
30.313614) 1.3 0.3 [3.0, 6.0]

12 (120.102611,
30.300304) 0.9 0.3 [2.0, 4.0]

13 (120.284870,
30.150627) 1.4 0.3 [1.0, 4.0]

14 (120.182657,
30.264054) 1.2 0.3 [0.0, 2.0]

15 (120.166853,
30.269039) 0.5 0.3 [2.0, 4.0]

16 (120.207953,
30.249617) 1.2 0.3 [3.0, 5.0]

17 (120.282055,
30.169434) 1.1 0.3 [1.0, 3.0]

18 (120.156923,
30.280374) 0.7 0.3 [3.0, 5.0]

19 (120.174242,
30.196310) 1.2 0.3 [0.0, 2.0]

20 (120.176285,
30.219921) 1.9 0.3 [2.0, 6.0]

21 (120.093142,
30.340724) 1.5 0.3 [3.0, 5.0]

22 (120.232744,
30.209315) 1.6 0.3 [0.5, 2.0]

23 (120.178319,
30.283681) 0.8 0.3 [1.0, 2.0]

24 (120.201109,
30.208160) 0.6 0.3 [1.0, 3.0]

Table 6: Continued.

No. Location Demand Service
time

Time
windows

25 (120.191338,
30.355956) 1.6 0.3 [3.0, 6.0]

26 (120.180049,
30.252984) 1.4 0.3 [0.5, 2.0]

27 (120.166303,
30.309546) 0.5 0.3 [1.0, 3.0]

28 (120.238472,
30.358900) 0.8 0.3 [3.0, 6.0]

29 (120.177225,
30.249727) 1.1 0.3 [0.5, 2.0]

30 (120.220017,
30.315313) 1.4 0.3 [1.0, 3.0]
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Figure 6: Pareto front of distribution in cold chain logistics.

Table 7: Analysis of cost versus distribution time.

No. Delivery time (h) Cost1 Cost2 Cost3 Cost4 Cost5 Cost6 Total cost (Yuan)
1 4.2 304.0 516.9 624.3 109.2 71.6 20500 22126.0
2 4.4 288.3 515.2 642.1 119.9 69.2 8000 9565.5
3 4.5 253.1 412.6 446.2 79.5 73.4 8000 9264.8
4 4.9 302.9 541.1 592.1 125.9 65.9 7500 9127.9
5 5.0 308.0 542.0 579.7 122.5 64.6 7500 9116.8
6 5.1 281.2 518.0 605.0 126.8 61.8 7500 9092.8
7 5.4 350.2 635.2 770.1 151.7 60.3 4000 5967.5
8 5.5 281.3 510.5 625.7 122.0 64.7 4000 5604.2
9 5.6 273.3 520.5 602.7 134.3 65.8 4000 5596.6
10 5.7 279.0 507.7 616.3 121.9 69.4 4000 5594.3
11 6.2 278.5 501.5 599.1 118.4 63.7 4000 5561.2
12 7.5 275.7 499.1 565.7 118.8 62.7 4000 5522.0
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Figure 7: (a) Usage rate of operators. (b) Acceptance rate.
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the highest (13.1% and 12.1%, respectively), while utilization
rates of LLH3 and LLH7 were only 5.1% and 5.5%, re-
spectively. Moreover, according to acceptance criterion SA,
acceptance rate of LLH6 was more than 0.9, while acceptance
rates of LLH3 and LLH7 were 0.53 and 0.52, respectively.
According to statistical analysis in Section 3.3, LLH6 and
LLH8 had the best optimization effect, while LLH7 had worse
performance. In process of solving cold chain logistics in-
stances, in MOHH, LLH6 and LLH8 were still utilized and
accepted at higher rates, while LLH7 was utilized and ac-
cepted at lower rates; it can therefore be concluded that
MOHH has better utilization of good-performance LLHs
and better improvement of solution quality.

Practicality of MOHHwas validated by instance analysis.
For multiobjective LRPs, difference in objective preference
will result in difference in distribution scheme and great
differences in distribution centre selection and routing.
Nonetheless, multiobjective optimization is capable of bal-
ancing between the logistics company and customer de-
mand, and to meet different demands, different distribution
schemes can be used to enable balance of interests between
the logistics company and customers where possible. Fur-
thermore, with total cost and distribution time as study
objectives, it is in favour of decision maker of the logistics
company in offering diverse path options.

4. Conclusions

In this paper, one biobjective mathematical model is
established for cold chain logistics distribution system and is
used to improve economic benefit, environmental benefit,
timeliness, and customer satisfaction of the logistics dis-
tribution system. ,e first primary objective of the estab-
lished multiobjective model is to optimize logistics
distribution cost, consisting of path cost, fuel cost, refrig-
eration cost of the refrigerated truck, cargo damage cost of
cold chain logistics, penalty cost of time window, and op-
eration cost of distribution centres, while the second primary
objective is to optimize timeliness of the distribution system
or distribution time. To address this problem, MOHH al-
gorithm was designed for model solving. As to HLH strategy
for MOHH, the best HLH strategy combination was ob-
tained from combinations of four selection strategies and
four acceptance criteria.

Based on experimental results, TS-SA was the best HLH
strategy. Further comparison with solution results of classic
multiobjective solving algorithm NSGA-II validated effec-
tiveness of MOHH, and, finally, solving instances of cold
chain logistics by MOHH validated practicality of the al-
gorithm, while the resulting Pareto solution set offers diverse
options for a decision maker to select an appropriate dis-
tribution scheme depending on actual demand.

,e next study will focus on considering the use of more
actual constraints in cold chain logistics such as heteroge-
neous vehicle [29] and simultaneous pickup and delivery
[30], so that the problem can be more realistic. Higher-
performance HLH strategy will be designed to improve
solution quality and stability of the currently proposed
MOHH. Moreover, we will focus on the alternative

frameworks of MOHH like [31, 32] and the framework that
has a digital twin to repatriate at runtime [33]. In addition,
consideration of other carbon emission models will become
one of the focuses in the next work.
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