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Abstract: Suaeda vermiculata, an edible halophytic plant, used by desert nomads to
treat jaundice, was investigated for its hepatoprotective bioactivity and safety profile on
its mother liquor aqueous-ethanolic extract. Upon LC-MS (Liquid Chromatography-Mass
Spectrometry) analysis, the presence of several constituents including three major flavonoids,
namely quercetin, quercetin-3-O-rutinoside, and kaempferol-O-(acetyl)-hexoside-pentoside
were confirmed. The aqueous-ethanolic extract, rich in antioxidants, quenched the DPPH
(1,1-diphenyl-2-picrylhydrazyl) radicals, and also showed noticeable levels of radical
scavenging capacity in ABTS (2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) assay. For the
hepatoprotective activity confirmation, the male rat groups were fed daily, for 7 days (n = 8/group, p.o.),
either carboxyl methylcellulose (CMC) 0.5%, silymarin 200 mg/kg, the aqueous-ethanolic extract of
the plant Suaeda vermiculata (100, 250, and 500 mg/kg extract), or quercetin (100 mg/kg) alone,
and on day 7 of the administrations, all the animal groups, excluding a naïve (250 mg/kg
aqueous-ethanolic extract-fed), and an intact animal group were induced hepatotoxicity by
intraperitoneally administering carbon tetrachloride (CCl4). All the animals were sacrificed after 24 h,
and aspartate transaminase and alanine transaminase serum levels were observed, which were noted
to be significantly decreased for the aqueous-ethanolic extract, silymarin, and quercetin-fed groups
in comparison to the CMC-fed group (p < 0.0001). No noticeable adverse effects were observed on
the liver, kidney, or heart’s functions of the naïve (250 mg/kg) group. The aqueous-ethanolic extract
was found to be safe in the acute toxicity (5 g/kg) test and showed hepatoprotection and safety at
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higher doses. Further upon, the cytotoxicity testings in HepG-2 and HepG-2/ADR (Adriamycin
resistant) cell-lines were also investigated, and the IC50 values were recorded at 56.19 ± 2.55 µg/mL,
and 78.40 ± 0.32 µg/mL (p < 0.001, Relative Resistance RR 1.39), respectively, while the doxorubicin
(Adriamycin) IC50 values were found to be 1.3 ± 0.064, and 4.77 ± 1.05 µg/mL (p < 0.001, RR 3.67),
respectively. The HepG-2/ADR cell-lines when tested in a combination of the aqueous-ethanolic
extract with doxorubicin, a significant reversal in the doxorubicin’s IC50 value by 2.77 folds (p < 0.001,
CI = 0.56) was noted as compared to the cytotoxicity test where the extract was absent. The mode
of action for the reversal was determined to be synergistic in nature indicating the role of the
aqueous-ethanolic extract.

Keywords: Suaeda vermiculata; halophyte; aqueous-ethanolic extract; antioxidant; liver toxicity;
cytotoxicity; hepatoprotective; liver disorders; mass spectrometry; LC-MS; HepG-2; HepG-2/ADR

1. Introduction

The liver is a vital organ that regulates both metabolic and detoxification processes.
Disorders pertaining to the liver lead to 2 million deaths annually on a global scale [1].
The liver-related mortalities account for the top 15 leading causes of deaths in the United States. In the
middle-eastern regions, nearly 10% of the population suffers from the infections of hepatitis-B
virus (HBV), and more than 2% of the population is infected with the hepatitis-C virus (HCV),
which indicates high prevalence rates of these liver-related infections, which is in addition to
other liver-based disorders, including the symptomatic conditions of hyperbilirubinemia-related
yellow-coloration, commonly referred to as jaundice. Liver disorders are a serious global healthcare
concern [2], and the demand for valuable health-care resources, as well as attention in curtailing them,
is huge [3,4]. The common risk factors, such as obesity, diabetes, hypercholesterolemia, and excessive
drinking also make the situation further alarming [5]. The available medications for different
liver disorders are limited, and some of the currently prescribed chemotherapeutic medications,
mainly anti-viral, anti-bacterial, and synthetic steroids, have shown various types of adverse effects in
varying proportions to different individuals, and that has the potential to effectively curtail the treatment
options, and in turn, negatively impact the desired health outcomes of the subjects [6]. Previous reports
on the use of plant-based medications, and investigations of traditionally used herbs, have come
back into focus for medicinal purposes, and further drug discovery and development purposes to
offer alternative medications to the widely prescribed synthetic-origin drugs for various types of
liver disorders. This attention has also provided an impetus to newer strategies in drug development for
hepatoprotection purposes [7]. Nonetheless, the use of medicinal plants and their extracts as alternative
sources for prophylactic and therapeutic hepatoprotection has always been intriguing, though it
has been practiced commonly by traditional healers over time. The majority of the ameliorating
claims regarding the hepatoprotective plants, and herbal formulations, remain unproven, vague,
and scientifically unsubstantiated, although efforts are still continuously being pushed into the area,
and newer plants from varying environments and climatic-condition origins, together with improved
testing protocols, are ceaselessly being adopted constantly into the realm of hepatoprotection strategies
at global scales [8–11].

Halophytic plants, growing under high-salinity soil conditions, have also been recorded to
provide relief from symptomatic liver discomforts [8–10]. The halophytes, under the stress of
harsh super-saline habitats in areas with the lowest rainfall and marshy conditions, as well as
desert environments, have accustomed to adverse environmental conditions through developing
various defense mechanisms for survival. These adoptive techniques include multiple strategies which
are morphological, biochemical, physiological, metabolic, and sensory in nature [11,12]. One such
strategy of these halophytes is their responsiveness to elevated oxidative stress conditions of the plants,



Plants 2020, 9, 1291 3 of 26

wherein these plants survive high-salinity conditions by producing specific enzymatic, non-enzymatic,
and metabolite products, many of which are secondary metabolite antioxidant molecules concentrated
abundantly in the plant sap [13]. These products have well-established roles in quenching reactive
oxygen species (ROS) [14]. The observation that halophytes are rich in antioxidant constituents
lends credence to the hepatoprotective claims regarding this category of the plants. The oxidative
stress is implicated in the pathogenesis of various other diseases, including liver disorders [15].
The liver, which is also susceptible to acute and chronic toxicities from chemicals, drugs, plant extracts,
and nutraceuticals, as well as to harms from an overdose of food components, along with the inherent
adverse metabolic and biochemical reactions within the liver, has been damage-controlled and treated
by antioxidants, and antioxidant-rich plants, as well as from other natural product extracts rich
in antioxidant materials [16,17]. The pharmacological (or intrinsic) toxicity is prevalent over the
idiosyncratic toxicity, and this does not have any dose-response or temporal relationship to the
generated toxicity [18–20]. The ROS are unstable and highly reactive entities and cause the majority of
the oxidative-stress related damages and injury to the organs, including the liver, which is comparatively
at a higher risk and needs antioxidants to avoid damage and maintain homeostasis. The internally
produced glutathione and other enzymatic entities counteract the liver injury caused by the ROS,
the reactive nitrogen-based species, and the produced oxidative stress. The oral supplementation
of antioxidants for liver disorders has been studied, and several non-enzymatic antioxidants,
(e.g., ascorbic acid, α-tocopherol, silibinin, naringenin, quercetin, curcumin, resveratrol, products of
phenolic, flavonoid, tannin, and carotenoid types) have been exploited [21–23], and the plant-origin
secondary metabolite-based antioxidants have revealed promising in vivo therapeutic effects on liver
disorders in studied animal models [24], though clinical studies were deemed inconclusive [23].
However, the protective roles of these antioxidants on the liver, in experimentally induced-liver injury
and toxication, have been investigated for various pure, single component natural products, and on
the naturally-sourced plants’ extracts, as well as mixtures of synergistic natural products containing
antioxidants of a structurally-varied chemical nature, and were found to be effective [9,25–28].

In this context, the roles of liver enzymes, and other associated biochemical markers of liver
injury and amelioration, are extremely important. The liver’s diagnostic condition is indicated
by measuring these enzymes, and markers in the blood and sera samples. Among the major
hallmarks of the diseased conditions of the liver are the damage of hepatic cells, and the
changed concentrations of antioxidant-natured serum enzymes (i.e., superoxide dismutase, catalase,
glutathione peroxidase, and glutathione transferase). The levels of biomarkers in normal and
hepatotoxicity-induced animals, albeit in the absence of external antioxidant compounds, and extracts
or concoction, differs significantly. The aspartate aminotransferase, alanine aminotransferase,
gamma-glutamyl transpeptidase, and alkaline phosphatase enzyme levels, along with the total protein,
total bilirubin, and malondialdehyde, are known as liver damage biomarkers present in serum.
The normalization of these serum enzyme levels has been observed to signal amelioration of the diseased
conditions of the liver [29–32]. The roles of phenols and polyphenols, flavonoids, tannins, and alkaloid
classes of compounds as external antioxidant entities (either as part of the plant-based products, or as
a single, pure compound), and the silymarin, a known hepatoprotective agent, are considered crucial
in the amelioration process [33–35]. The synergistic actions of the enzymatic antioxidants and their
source (S-adenosylmethionine), as well as the plants’ extract components and individual compounds,
have also been reported participating in the liver protection [36–40].

Suaeda vermiculata, family Amaranthaceae, is a desert halophyte, renowned for its traditionally
claimed liver-protecting activity. This ongoing study aimed to investigate the general claims of the
treatment of various symptomatic liver disorders, and proposed to set out to evaluate the safety profile
of the plant, given its prevalent use by local herbalists and the public in general. The hepatoprotective
activity of the aqueous-ethanolic (aq.-ethanolic) extract from leaves and aerial parts, in addition to
the safety of plant material at higher doses, were examined. Studies were carried out to find the
antioxidant potential, and concentrations of the antioxidant entities in the aq.-ethanolic extract as being
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reactive to 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic
acid (ABTS) in their respective assays. The LC-MS analysis was performed to identify the constituent
parts of the aq.-ethanolic extract of the plant and identify the major antioxidants of phenolics and
flavonoid nature present in the plant extract. Moreover, the effects of the plant extract on the kidneys,
liver, blood sugar, and lipid levels in the CCl4-induced toxicity bearing animal models with lipid
peroxidation conditions, and liver damages were investigated in detail. The cytotoxic effects of the
antioxidant-rich, high-extractive-value aq.-ethanolic extract were also checked on the hepatic cell-lines,
HepG-2, and the resistant HepG-2/ADR.

2. Results

2.1. LC-MS-Based Chemical Fingerprinting of Suaeda vermiculata aq.-Ethanolic Extract

The positive mode electron-spray ionization (ESI) analysis of the aq.-ethanolic extract
of Suaeda vermiculata led to the identification of nine constituents (Table 1). Of these nine
identified compounds, three flavonoids were identified in the plant extract: One flavonol
aglycone (quercetin), and two flavonol glycosides (quercetin-3-O-rutinoside or rutin,
and kaempferol-O-(acetyl)-hexoside-pentoside).
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Table 1. Identification of constituents from the aq.-ethanolic extract of Suaeda vermiculata.

Sr. RT
(min) Mol. Formula Calc. Mass Obsrvd.

Mass Mass Fragments Error
(∆ ppm) Compound Name * R% Refer

1. 16.11 C10H16O5 217.1076 217.10656
[M + H] 239.0883 [M+ + Na]; 455.1877 [2M + Na] −2.265 Senecic acid 0.84 [41]

2. 20.24 C28H30O16 623.1612 623.1611
[M + H]+

446.9041[M-Pentose-acetyl];582.8751
[M-acetyl + 2H] −1.007 Kaempferol-O- (acetyl) hexoside-pentoside 4.37 [42]

3. 21.66 C15H10O7 303.2443 303.0492
[M + H]+ 289.1404 [M-CH2] 0 Quercetin 12.45 [43]

4. 23.45 C15H8O6 285.0399 285.04069
[M + H]+ 284.99585 [M]; 286.04395 [M + 2H] 0.810 Rhein 1.26 [44]

5. 24.18 C12O14O4 223.0970 223.09634
[M + H]+

177.0543 [M + H-C2H10O];
245.0782 [M + Na]; 467.16744 [2M + Na] −0.957 4-Acetyl-6-(2-methylpropionyl)-1,3-resorcinol 2.32 [45]

6. 29.30 C16H22O4 279.1596 279.15900
[M + H]+

301.1407 [M + Na];
579.2921 [2M + Na] −0.323 (2E)-Heptyl-3-(3,4-dihydroxyphenyl) acrylate 3.37 [46]

7. 30.15 C16H30O4 287.2222 287.22140
[M + H]+

199.16898 [M-C4H10O2];
309.20324 [M + Na]; 595.41675 [2M + Na] −1.260 Hexadecanedioic acid 1.57 [47]

8. 31.70 C55H74N4O5 872.5815 872.1408
[M + H]+

256.26268 [Phytyl-C2H5 + H]; 280.26241
[phytyl moiety]; 593.15607 [M-phytyl];

577.12459 [M-phytyl–methyl]; 615.13623
[M-phytyl + Na]

0.240 Pheophytin-a 23.69 [48]

9. 31.75 C27H30O16 633.1431 633.14559
[M + Na]+ 634.14630 [M + H + Na] 4.719 Quercetin-3-O-rutinoside (Rutin) 7.80 [43]

* Relative % calculated based on the individual compound’s peak area and the chromatogram’s total peaks area.
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2.2. Estimations of the Total Phenolics and Flavonoid Contents in the aq.-Ethanolic Extract, and Fractions of the
aq.-Ethanolic Extract Obtained from Suaeda vermiculata

The total phenolics and flavonoid contents of the aq.-ethanolic extract of Suaeda vermiculata and its
fractions were estimated as gallic acid (GAE) and quercetin equivalents (QE) (Table 2). A significant
amount of total phenolics contents were present in the aq.-ethanolic extract (200.6 ± 2.14 mg GAE/g
of the extract’s dry weight). However, the ethyl acetate fraction possessed comparatively very high
concentrations of total phenolics (317.5 ± 0.17 mg GAE/g of fraction’s dry weight). The majority of the
flavonoids’ contents were determined to be present in the chloroform fraction (17.47 ± 0.02 mg QE/g
of fraction’s dry weight), followed by the aq.-ethanolic extract (16.70 ± 1.56 mg QE/g of the extract’s
dry weight).

Table 2. Total phenolics, total flavonoids of the extracts of Suaeda vermiculata.

Extracts Extractive Values *
Total Phenolic

Contents
(mg GAE/g)

Total Flavonoid
Contents

(mg QE/g)

n-Hexane fraction 1.06 15.1 ± 0.60 E nd
Ethyl acetate fraction 4.37 317.5 ± 0.17 A 13.80 ± 0.04 BC

Chloroform fraction 1.27 140.0 ± 1.02 D 17.47 ± 0.02 A

n-Butanolic fraction 6.25 192.6 ± 0.97 C 11.55 ± 0.02 C

aq.-Ethanolic extract (mother liquor) 20.00 200.6 ± 2.14 B 16.70 ±1.56 AB

* Extractive values calculated as g/100 g of the dried plant powder; nd = not detected; GAE = gallic acid equivalent;
QE = quercetin equivalent. The experiment was carried out in triplicates. Values were expressed as mean ± SEM.
Means that do not share a letter are significantly different for the relevant column.

2.3. Determination of Antioxidant Potentials Through Measurement of Free-Radical Scavenging Activity

The in vitro radical scavenging activity of the Suaeda vermiculata mother liquor aq.-ethanolic extract
and its subsequent fractions were estimated by the DPPH and ABTS radical scavenging methods,
and IC50 values (concentrations causing 50 % inhibitions) were determined based on the requisite
percentage inhibitions versus the concentrations (Figure 1). The chloroform and ethyl acetate fractions
demonstrated significant concentration-dependent DPPH and ABTS scavenging activities, all being
maximum at 5 mg/mL as compared to the standard quercetin at the same concentration (Figure 1).
The lowest antioxidant activity was observed for the n-hexane fraction in scavenging the DPPH
and ABTS free radicals, followed by the antioxidant activity of the n-butanolic fraction. The DPPH
radical quenching-based antioxidant activity levels were also recorded for the chloroform, and ethyl
acetate fractions, observed at about 80 and 65 % of strengths, respectively, while the mother liquor,
aq.-ethanolic extract, showed nearly 40 % DPPH radical inhibition strength, all as compared to the
referral standard, quercetin (Figure 1A). The ABTS free radical scavenging antioxidant activity was
also assayed for the chloroform and ethyl acetate fractions and was found at 72 and 70 % strengths,
respectively, followed by the aq.-ethanolic extract antioxidant activity levels at 60 % antioxidant
strength in comparison to the standard quercetin (Figure 1B).



Plants 2020, 9, 1291 7 of 26

Figure 1. Radical scavenging activity of Suaeda vermiculata extracts by
(A) 1,1-diphenyl-2-picrylhydrazyl (DPPH), and (B) 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic
acid (ABTS) methods. Values are the mean of three replicates ± SEM. p < 0.0001 using two-way
ANOVA, and p < 0.0001 compared to quercetin for all groups at all the measured concentrations for
both methods according to multiple comparisons for Tukey’s method.
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2.4. Acute Toxicity Study and Dose Selection

Among all the groups (50, 300 mg/kg; 2 and 5 g/kg) checked for acute toxicity, one aq.-ethanolic
extract-treated rat (2 g/kg) died on day 2 of the dose administration. The death was attributed
to a gavage accident since no behavioral pattern difference was observed among the extract-fed
or the control group. According to the Organization for Economic Cooperation and Development
(OECD) guidelines, the dose is considered toxic if more than two animals die. All the animal groups
were monitored daily for any visible signs of toxicity and mortality for up to two weeks. None of
the remaining animals in all the groups displayed any visible signs of toxicity, such as anorexia,
hair erection, lacrimation, tremors, convulsions, salivation, or diarrhea, in the first 24 h until 2 weeks
of the study period. Based on the data, the given dose was determined to be practically non-toxic
according to Hedge and Sterner scale, and 10% (500 mg/kg) of the maximum administered dose (5 g/kg)
in the acute toxicity study was selected as the maximum dose for the pharmacological evaluation [49].

2.5. Safety Determination of aq.-Ethanolic Extract on Liver, Heart, and Kidney

The administration of the aq.-ethanolic extract of Suaeda vermiculata (250 mg/kg, CCl4) in normal
rats showed no significant effects on the levels of liver enzymes AST (aspartate transaminase) and ALT
(alanine transaminase) and was significantly lower (p < 0.02) for TP (total protein) contents estimation
compared to the intact control group. Moreover, the serum creatinine, triglycerides, cholesterol,
and glucose levels showed no significant differences in the 250 mg/kg, CCl4- group when compared
with the intact control group of animals (Tables 3 and 4).

2.6. Hepatoprotective Activity of the aq.-Ethanolic Extract

The AST and ALT values for the CCl4-induced negative control group treated with CMC were
significantly higher (p < 0.0001) when compared with all the CCl4+ induced hepatotoxic groups,
i.e., intact, silymarin (200 mg/kg), quercetin (100 mg/kg), and the extract-fed groups (100, 250,
and 500 mg/kg) (Table 3). Animals were given Suaeda vermiculata aq.-ethanolic extract at daily
doses of 100, 250, and 500 mg/kg, and showed a dose-dependent decrease in AST and ALT liver
enzyme markers. The 500 mg/kg dose-fed animal group showed maximum hepatoprotective activity
(Figure 2), and this group of animals effectively prevented the CCl4-induced elevation of serum
enzyme markers of ALT and AST as compared to the CMC group (CCl4 induced). The silymarin
(200 mg/kg), and quercetin (100 mg/kg)-fed animal groups also showed a significant decrease in AST
and ALT liver marker enzymes, while the silymarin group also showed significantly decreased TP
contents as compared to the negative control group of animals. No differences were found in the levels
of creatinine, or glucose in any CCl4+ induced hepatotoxic groups pre-treated with various doses of
aq.-ethanolic extract as compared to the negative group (Tables 3 and 4). The cholesterol level of the
aqueous-ethanol extract-fed group at 250 mg/kg was comparable to the intact control. The extract
doses of the 100 and 500 mg/kg-fed animal groups caused a significant decrease in the triglyceride
levels as compared to the negative control group of animals (Table 4).
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Table 3. Effect of aq.-ethanolic extract of Suaeda vermiculata on liver and kidney functions on carbon tetrachloride-induced liver toxicity in experimental rats.

Groups AST
IU/L

ALT
IU/L

TP
g/dL Creatinine mg/dL

I. Intact control (no CMC, no drug, no aq.-ethanolic extract, CCl4-) 62.83 ±2.21 B 67.42 ± 4.66 B 7.39 ± 0.17 A 0.91 ± 0.02 A

II. aq.-Ethanolic extract, 250 mg/Kg, CCl4- 54.36 ± 3.64 B 55.19 ± 3.47 B 6.14 ± 0.34 BC 0.80 ± 0.04 A

III. Negative control (vehicle CMC 0.5%), CCl4+ 169.57 ± 12.68 A 103.38 ± 4.86 A 7.23 ± 0.17 AB 0.82 ± 0.03 A

IV. Silymarin, 200 mg/kg, CCl4+ 55.40 ± 2.45 B 55.25 ± 2.91 B 5.32 ± 0.14 BC 0.82 ± 0.04 A

V. aq.-Ethanolic extract, 100 mg/kg, CCl4+ 65.35 ± 3.92 B 71.77 ± 4.25 B 7.64 ± 0.23 A 0.80 ± 0.03 A

VI. aq.-Ethanolic extract, 250 mg/kg, CCl4+ 56.29 ± 3.30 B 69.21 ± 3.79 B 7.23 ± 0.27AB 0.86 ± 0.03 A

VII. aq.-Ethanolic extract, 500 mg/kg, CCl4+ 54.59 ± 1.67 B 66.45 ± 7.05 B 7.56 ± 0.32 A 0.87 ± 0.02 A

VIII. Quercetin, 100 mg/kg, CCl4+ 49.54 ± 1.23 B 52.39 ± 4.56 B 8.05 ± 0.18 A 0.82 ± 0.03 A

Values denoted are mean ± SEM, n = 8 animals/group. AST: Aspartate transaminase, ALT: Alanine transaminase, TP: Total protein, CMC: Carboxyl methylcellulose. CCl4−:
Carbon tetrachloride was not administered. CCl4+: Carbon tetrachloride was administered. Means that do not share a letter are significantly different for the relevant column.

Table 4. Effect of aq.-ethanolic extract of Suaeda vermiculata on blood glucose, triglycerides, and cholesterol on carbon tetrachloride (CCl4)-induced liver toxicity in
experimental rats *.

Groups Glucose
mg/dL

Cholesterol
mg/dL Triglycerides mg/dL

I. Intact control (no CMC, no Drug, no aq.-ethanolic extract, CCl4-) 122.46 ± 2.66 A 85.06 ± 1.85 A 86.26 ± 2.24 BC

II. aq.-Ethanolic extract, 250 mg/Kg, CCl4- 101.82 ± 4.47 AB 78.73 ± 3.87 AB 74.11 ± 2.95 C

III.] Negative control (vehicle CMC 0.5%), CCl4+ 111.23 ± 3.23 AB 61.70 ± 1.42 D 100.20 ± 6.80 AB

IV.] Silymarin, 200 mg/kg, CCl4+ 110.43 ± 6.43 AB 65.94 ± 2.17 CD 99.54 ± 4.28 AB

V.] aq.-Ethanolic extract, 100 mg/kg, CCl4+ 99.86 ± 4.15 B 59.46 ± 1.66 D 76.56 ± 3.25 C

VI.] aq.-Ethanolic extract, 250 mg/kg, CCl4+ 99.49 ± 7.00 B 80.93 ± 2.08 AB 97.53 ± 3.58 AB

VII.] aq.-Ethanolic extract, 500 mg/kg, CCl4+ 98.79 ± 6.70 B 66.66 ± 2.20 CD 78.16 ± 2.62 C

VIII.] Quercetin 100 mg/kg, CCl4+ 115.46 ± 3.58 AB 72.83 ± 1.57 BC 3.02 A

* Values are denoted as mean ± SEM. CMC: Carboxyl methylcellulose. CCl4-: Carbon tetrachloride was not administered. CCl4+: Carbon tetrachloride was administered. Means that do
not share a letter are significantly different for the relevant column.
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Figure 2. The hepatoprotective effects of Suaeda vermiculata aq.-ethanolic extract on CCl4 induced
liver toxicity. Percentage protection of CCl4 induced elevation of AST and ALT enzymes. The protection
percentage formula assumes the enzyme level of the CCl4 administered negative group (carboxyl
methylcellulose) at 0% protection and that of intact group (no exposure to CCl4) at 100% protection
as such they are excluded from the graphical representation. In addition, the aq.-ethanolic extract
250 mg/kg CCl4- the group which did not receive CCl4- is also excluded from the graphical representation.
**** Data differed significantly at p < 0.0001 when compared with the negative control group. Values are
expressed as mean ± SEM, n = eight rats per group, CCl4-: Carbon tetrachloride was not administered.
CCl4+: Carbon tetrachloride-induced liver toxicity.

2.7. Cytotoxicity of Suaeda vermiculata Extract in Wild Type Sensitive and Resistant Hepatic Cell-Lines

To test the cytotoxicity of Suaeda vermiculata aq.-ethanolic extract in sensitive HepG-2 and
resistant cells, HepG-2/ADR, evaluations were conducted in comparison to the standard cytotoxic drug,
doxorubicin (DOX). Figure 3 demonstrates the dose-response curves of the Suaeda vermiculata
aq.-ethanolic extract group in comparison to the chemotherapeutical agent, DOX. The moderate
cytotoxic effect of Suaeda vermiculata aq.-ethanolic extract in HepG-2 showed an IC50 value of
56.19 µg/mL, and in HepG-2/ADR-resistance cells, the IC50 value was 78.40 µg/mL with relative
resistance (RR) at 1.39 (Table 5).

Figure 3. The dose-response curves of Suaeda vermiculata aq.-ethanolic extract: (A) aq.-ethanolic extract,
and (B) doxorubicin (DOX) in wild-type HepG-2, and resistant HepG-2/ADR cell-lines.
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Table 5. The IC50 values of Suaeda vermiculata aq.-ethanolic extract compared to DOX in HepG-2
wild types, and HepG-2/ADR resistant cell-lines, and their relative resistance (RR) using MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay.

Groups IC50 (µg/mL) *
RR

HepG-2 HepG-2/ADR

aq.-Ethanolic extract 56.19 ± 2.55 78.40 ± 0.32 *** 1.39
Doxorubicin 1.3 ± 0.064 4.77 ± 1.05 *** 3.67

* Values expressed as mean ± SEM, *** = p < 0.001 using Student’s t-test.

2.8. Suaeda vermiculata aq.-Ethanolic Extract Reverses DOX Cytotoxicity in Resistant Hepatic Cell-Lines

To examine the reversal effects of the combination of DOX and Suaeda vermiculata
aq.-ethanolic extract, the DOX-resistant HepG-2/ADR cell lines were selected. The DOX-resistant cells
were treated with DOX in the presence and absence of 20 µg/mL Suaeda vermiculata aq.-ethanolic extract.
As shown in Figure 4, Suaeda vermiculata extracts synergistically enhanced the cytotoxicity of DOX,
as observed from the dose-response curves of the combination and isobologram. The IC50 values
of DOX alone or in combination with Suaeda vermiculata aq.-ethanolic extract in DOX resistant cells
are shown in Table 6. The combination of DOX with Suaeda vermiculata extract significantly reduced
(p < 0.001) the IC50 value of DOX, with FR in resistant cell lines to 2.77, and CI at 0.56 (Table 6).

Figure 4. (A) The dose-response curves and isobologram analysis of the combination of DOX with
20 µg/mL of Suaeda vermiculata extract in resistant HepG-2/ADR. (B) The isobologram on the right side
of the figure showed the synergistic interaction between DOX and the extract. IC50, DOX, and IC50

extract correspond to the IC50 for DOX and extract alone. CI < 1 indicates synergism, CI = 1 indicates
additive, and CI > 1 indicates antagonism.

Table 6. Synergistic interaction of a combination of DOX with 20 µg/mL of Suaeda vermiculata
aq.-ethanolic extract in resistant HepG-2/ADR cell-lines *.

Groups IC50 (µg/mL) Synergistic Parameters

HepG-2/ADR FR CI r IB

Doxorubicin (DOX) 4.77 ± 1.05 – – – –
DOX + aq.-ethanolic extract 1.72 ± 0.07 *** 2.77 0.56 0.99 Synergism

* Values were expressed as mean ± SEM. CI, combination index; FR, fold reversal; IB, isobologram; and medium
effect equation (r-value). CI < 1 indicates synergism, CI = 1 indicates additive, and CI > 1 indicates antagonism.
*** = p < 0.001 using Student’s t-test.

3. Discussion

The identification of the flavonoid derivatives (quercetin, quercetin-3-O-rutinoside or rutin,
and kaempferol-O-(acetyl)-hexoside-pentoside) in the aq.-ethanolic extract of the Suaeda vermiculata is
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consistent with the halophytic nature of the plant, thereby having excessive antioxidants compounds,
especially flavonoids. In addition, the nature of these flavonoids is in conformity with the
previously isolated and identified flavonoids from the genus Suaeda [43]. For instance, the quercetin
(12.45%), and quercetin-3-O-rutinoside (7.80%) were previously isolated from Suaeda japonica,
Suaeda salsa, and Suaeda physophora [43], while kaempferol and kaempferol glycoside are also
common constituents of the genus Suaeda plants, and have been reported both from Suaeda japonica
and Suaeda asparagoides [43]. The LC-MS analysis of the aq.-ethanolic extract showed a base
peak at m/z 872.1408 [M + H]+ which was identified as the pheophytin-a (23.69%), the reported
major chlorophyll-based constituent from Suaeda vermiculata species [48]. The fragmentation
pattern for pheophytin-a showed mass peaks at m/z 256.26268 [phytyl-C2H5 + H], 280.26241
[phytyl moiety], 593.15607 [M-phytyl], 577.12459 [M-phytyl–methyl], and m/z 615.13623 [M-phytyl
+ Na], which together confirmed the structure of the compound. The LC-MS analysis of the plant’s
aq.-ethanolic extract also showed base peaks for the rhein (anthraquinone aglycone) at m/z 285.04069
[M + H]+, in addition to the base peaks for senecic acid, 4-acetyl-6-(2-methylpropionyl)-1,3-resorcinol,
(2E)-heptyl-3-(3,4-dihydroxyphenyl) acrylate, and hexadecanedioic acid at m/z 217.10656 [M + H],
223.09634 [M + H]+, 279.15900 [M + H]+, and m/z 287.22140 [M + H], respectively.

The higher contents of phenolics in the ethyl acetate fraction is probably owing to the ability of ethyl
acetate as a mid-polarity solvent to dissolve the phenolic contents of the aq.-ethanolic extract much easier
than the relatively non-polar, and lipophilic solvents, i.e., n-hexane, and chloroform. Besides, the ethyl
acetate fraction accumulated more phenolics and flavonoid contents compared to the n-butanol fraction,
which could be due to the fact that ethyl acetate as a solvent was used in the extraction sequence of
aq.-ethanolic mother liquor before the n-butanol. Additionally, the majority of the flavonoid contents
were present in the chloroform fraction (17.47 ± 0.02 mg QE/g of fraction’s dry weight), which was
closely followed by the aq.-ethanolic extract (16.70 ±1.56 mg QE/g of extract’s dry weight), indicating a
lesser degree of hydrophilicity of the products, culminated through the presence of fewer hydroxylation
sites and glycosylation of the flavonoids encountered in the chloroform extract, which were able to be
extracted in this lipophilic solvent under the presence of aqueous partitioning phase.

The presence of higher concentrations of phenolics and flavonoids is consistent with the previously
published data about flavonoid and phenolic contents present in the solvents, such as chloroform
and ethyl acetate [50–53]. In the current study, the relatively high mg per gram content values
of the phenolics and flavonoids are in the chloroform and ethyl acetate fractions compared to the
mother liquor and confirms the higher antioxidant activity of these fractions over the mother liquor.
Furthermore, the pheophytin-a, which was reported for the mild antioxidant activity, and isolated
previously form Suaeda vermiculata chloroform fraction [48] as part of the ongoing study, also played
a role in the antioxidant activity of the chloroform fraction. Additionally, the steroidal constituent,
β-sitosterol [48], along with other unsaturated oxygenated products [54] identified in the chloroform
fraction of the Suaeda vermiculata contributed to the higher antioxidant value of the chloroform fraction.
Nonetheless, the mother liquor aq.-ethanolic extract was pursued in further studies into the biological
evaluations as a hepatoprotective extract, since the traditional practice of the use of plants’ aerial
parts as a whole for liver disorders provided an equivalence between the prevailing practice and
the aq.-ethanolic extract, the mother liquor obtained from the plant’s extraction. The mother liquor
aq.-ethanolic extract was also selected for the biological evaluations as it represented the largest
number of constituents obtained through a comparatively significant high-extractive value (20 g/100 g
of the dried plant herbs). Moreover, the statistically insignificant difference (Table 2) in the flavonoid
contents of the aq.-ethanolic extract (16.70 ± 1.56 mg/g QE) in comparison to the chloroform fraction’s
flavonoid contents (17.47± 0.02 mg/g QE) supported the choice of the aq.-ethanolic extract for biological
activity evaluations.

The current investigation confirmed the Suaeda vermiculata plant’s richness in antioxidant
components compared to other Suaeda species [43]. The in vitro radical scavenging activity of
the Suaeda vermiculata mother liquor aq.-ethanolic extract and its subsequent fractions were estimated
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by the DPPH and ABTS radical scavenging methods, and the IC50 values (concentrations causing
50% inhibitions) were determined based on the requisite percentage of radicals’ inhibitions versus the
concentrations (Figure 1). Notably, the presence of higher concentrations of antioxidant compounds,
measured as radical scavenging capacity in DPPH and ABTS assays is a direct indication of the
antioxidant potential of the plant’s constituents, but not necessarily the high presence of phenolics
and flavonoids, which can only be the reasons for higher antioxidant potential, though these two
categories of products, i.e., phenolics and flavonoids, seem to be the reason for the dominating
antioxidant potential of the plant. The higher antioxidant presence in the extract and the fractions of
the Suaeda vermiculata can be attributed to the high-salinity habitat of the plant in comparison to its
other counterpart species growing in different climatic locations [43]; the former has been the herb of
choice for the local population for treatment of liver disorders, especially jaundice [48,55]. However,
the biomechanistics connections between the higher antioxidant concentration levels of compounds in
the plant, and its hepatoprotective action have not been conclusively established, though it has been
well-observed, and a relationship is proposed at the primary levels (Figure 5), albeit without intricate
and basic biomechanistics roles playing, and interconnections, or the feedback responsibilities of the
components in the presented cycle. Nonetheless, a plausible mechanistic explanation of the toxicity
and its amelioration, based on known information, is proposed herein (Section 3.1).

Figure 5. Prospective roles of antioxidants in hepatoprotection.

Moreover, it has to be noted that the present study found no adverse effects of the aq.-ethanolic
extract on the liver and kidney enzymes of the normal rats, and the plant extract also did not induce
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any toxicity at doses as high as 5 g/kg. The study also revealed that the aq.-ethanolic extract of
Suaeda vermiculata had no significant effects on the blood glucose levels for the treated normal rats as
compared to the control group of animals which (blood glucose levels) was measured at 101.82 ± 4.47
and 122.46 ± 2.66 mg/dL, respectively. Additionally, the natural healing in CCl4 -induced hepatotoxic
animals, ingestion of potent hepatotoxins, and evaluations of the hepatoprotective action using several
natural products are abundantly available in the literature [56–58]. As for the local Suaeda species,
where the Suaeda vermiculata is concerned, there were no other pharmacological data of any kind,
comparative, or otherwise available on the liver-protecting activities of this plant or the plants of the
differently-located Suaeda species, referring to those located in Iran.

The locally procured Suaeda vermiculata aq.-ethanolic extract, as shown in Table 5,
exhibited moderate cytotoxicity on HepaG-2 (IC50 56.19 ± 2.55 µg/mL), designated in accordance
with the provisions of the previous classification of the cytotoxicity criteria of the natural products
extracts on cell lines [59]. As previously reported, the extract was considered active if it had a mean
IC50 value <100 µg/mL; a moderate level of activity was considered between 10–100 µg/mL; and the
strong cytotoxic activity was designated with <10 µg/mL of the IC50 values. Suaeda vermiculata
aq.-ethanolic extract also exhibited moderate cytotoxicity in HepG-2/ADR, the resistance cell-lines
(IC50 78.40 ± 0.32 µg/mL with RR 1.39) (Table 5). In resistance cell lines, like HepG-2/ADR,
the P-gp is overexpressed as part of the mechanism to escape cell-death induced by anti-cancer
chemotherapeutic agents. The cytotoxicity results indicated that Suaeda vermiculata aq.-ethanolic extract
could be a potential modulator of P-gp, most probably due to the presence of quercetin and other
flavonoids (kaempferol, and rutin, Table 1). The flavonoids and phenolics, e.g., kaempferol, rutin,
apigenin, daidzein, fisetin, luteolin, silibinin, naringin, proanthocyanidin, (-)epicatechin-3-O-gallate,
etc., are known P-gp inhibitors [60–62]. The Suaeda vermiculata aq.-ethanolic extract’s cytotoxicity
results were further confirmed from a combination experiment which improved the cytotoxicity of DOX
(Table 6) through combination with a low and non-toxic concentration (20 µg/mL) of the aq.-ethanolic
extract [63,64]. Again, the presence of the phenolics, together with flavonoids components in the
aq.-ethanolic extract (Table 1) could explain these inhibitory effects [63].

3.1. A Plausible Biomechanistic Aspect of Liver Toxicity and Its Amelioration

The induction of liver toxicity by carbon tetrachloride (CCl4) ensues through free radicals
generation [65]. The cytochrome P450 bio-transforms CCl4 [66] to form trichloromethyl radical (CCl3•),
which, in turn, in the presence of oxygen, lipid, and protein, forms trichloromethyl peroxyl radical
(CCl3OO•) that eventually leads to lipid peroxidation [67]. These transformations lead to hepatocyte
dysfunction through the destruction of the intracellular and the plasma membranes of the organ [68–70].

The hepatotoxicity was induced in animals by CCl4 injections and led to an increase in serum
aminotransferase AST and ALT levels, generally being an AST > ALT relationship in the toxic
situations [71], wherein both the AST and ALT were considered as biomarkers of liver damage [72–75].
In the current study, rats with CCl4-induced hepatotoxicity were confirmed to have significantly
increased levels of AST and ALT in the negative control compared to the intact group of animals
(Table 3). The administration of the aq.-ethanolic extract induced significant (p < 0.05) hepatoprotective
action against CCl4-induced liver-toxicity by improving the liver functions, as indicated by the
reductions in the levels of the liver enzymes, ALT, and AST, again as compared to the negative
control (Table 3). The aq.-ethanolic extract-treated animals showed liver enzyme levels at comparable
levels to the intact animals (as standard controls), and silymarin and quercetin groups of animals.
Silymarin is an established antioxidant also used as a standard referral compound in the evaluation
of the hepatoprotective activity of nutraceuticals, and other natural products [76–78]. The protective
effects of quercetin are associated with a decrease in the oxidative stress in the hepatotoxicity-induced
liver tissues [79,80]. The AST values for all the aq.-ethanolic extract dose groups in the current study
are comparable with the quercetin. The aq.-ethanolic extract showed protective effects in CCl4-induced
hepatotoxicity conditions, as well as safety from toxicity induction up to 5 g of the aq.-ethanolic extract
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administration, which showed no adverse effect on the extract-fed animals. The protective effects of
the aq.-ethanolic extract indicated the ameliorating effects of the Suaeda vermiculata concerning the
liver cells in the in vivo conditions (Figure 6).

The comparatively higher concentrations of the flavonoids and phenolics in the halophytes,
in comparison to the other normal-conditioned plants, might also be the scientific explanation for
their liver-protecting activity [43,48,54,81,82]. Moreover, the hypoglycemic effects reported from other
plants of the genus Suaeda, for example, Suaeda fruticosa produced a significant decrease in the blood
glucose levels in normal rats, and a further reduction in the diabetic rat models was observed [83].
The study reported that the aqueous extract of Suaeda fruticosa induced a significant decrease in
the plasma cholesterol without noticeably affecting the plasma triglyceride levels in the treated rats.
The free-radical scavenging potential and the inter-linked antioxidant components in the plant extract
reportedly played a critical role in hepatotoxicity which was mediated by the actions of free-radicals
on hepatocytes leading to cell necrosis [81]. In this connection, the Suaeda vermiculata aq.-ethanolic
extract also showed free-radical inhibition properties, and the data reported in this study is following
previously published reports demonstrating the hepatoprotective effects in CCl4-induced extensive
liver damage models by the aq.-ethanolic extract containing antioxidant compounds as part of the
mother liquor obtained from the plant [56–58,66,84–90].

Figure 6. Sketch representing the role of the plant extract in liver protection.

4. Materials and Methods

4.1. Chemicals and Reagents

All chemicals were of analytical grade. Methanol (HPLC grade), carbon tetrachloride, formic acid,
(Sigma Aldrich, USA), doxorubicin was also of analytical grade. Silymarin tablets were obtained from
Micro Labs Limited, Mumbai, India, and used as obtained.
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4.2. Plant Material Collection and Extraction

The Suaeda vermiculata plant material (2 kg) was collected (10/2019) from Buraydah City, Qassim,
and identified by the institutional botanist at Qassim University (QU). The shade-dried herbs were
grinded to a coarse powder (1.4 kg), and extractions performed following the cold maceration method
under stirring for 24 h from 70% aqueous-ethanol, repeatedly (3Lx3). The hydroalcoholic extract was
filtered and evaporated to dryness under reduced pressure and <40 ◦C temperature to yield 86.3 g of
the dried extract, part of which was stored under −20 ◦C for further use. The dried aq.-ethanolic extract
(50 g) was suspended in 500 mL distilled water and fractionated with n-hexane, chloroform, ethyl
acetate, and n-butanol. The fractions were subjected to dryness under vacuum and <40 ◦C, and stored
under −20 ◦C for future use.

4.3. LC-MS Experimental Design

Chemical fingerprinting of the aq.-ethanolic extract was performed by C18 reverse phase HPLC
chromatographic analysis. The compounds were identified by the coupled MS spectrometry through
data interpretation and were compared with the literature-reported mass values. The compounds’
identification processes were based on the data from the internal library software, and comparison of
the available mass-fragments with the literature reports. The relative percentages of the identified
compounds were calculated in relation to the total area of the chromatogram. Analytical results are
summarized in Table 1.

4.3.1. High-Pressure Chromatography (HPLC): The Chemical Fingerprinting

The separation procedure was carried out using a C18 column (C18 synchronism 250 × 2.1, 5 µ).
The mobile phase solvents were composed of A: 100% water + (0.1 % formic acid), and B: 100% methanol
+ (0.1 % formic acid). The gradient elution program was followed. The injections [methanol blank,
caffeine (QC), and the samples] volume was 20 µL for each, and the flow rate was set at 450 µL/min.
UV-Vis detection was performed, and the scanned wavelength was set between 220–600 nm with
a scan rate of 20 Hz. Two channels (254 and 268 nm) were also used. The XcaliburTM software
(Thermo Scientific) was used for method development and data treatments. All the chromatographic
work was carried out at the Faculty of Medicine Laboratories, Umm Al-Qura University, Makkah,
Saudi Arabia.

4.3.2. Mass Spectrometer

The analysis was performed using a Thermo LTQ Velos Orbitrap mass spectrometer
(Thermo Scientific, Pittsburgh, PA, USA) equipped with a heated ESI ion source. The mass scan
range was set to 100–2000 m/z, with a resolving power of 100,000. The m/z calibration of the
LTQ-Orbitrap analyzer was performed in the positive ESI mode using a solution containing caffeine,
MRFA (Met-Arg-Phe-Ala) peptide, and Ultramark 1621, in accordance with the manufacturer’s
guidelines. The ESI was operated with a metal needle operating at 4.5 kV. For all the experiments,
the source vaporizer temperature was adjusted to 450 ◦C, the capillary temperature was set at 275 ◦C,
and the sheath and auxiliary gases were optimized, and set to 30 and 15 arbitrary units, respectively.

4.4. Determination of Total Phenolic Contents

The total phenolic contents of the extract and fractions were determined using the Folin–Ciocalteu
method [91]. Briefly, 4 mL of the extract/fraction (40 µg/mL in ethanol) was mixed with 2.5 mL of the
Folin–Ciocalteu reagent (diluted with distilled water, 10%, v/v) for 5 min, and then 2.5 mL of 20% (w/v)
sodium carbonate was added. The mixture was allowed to stand for 60 min in the dark, and the
absorbance was measured at 760 nm using a V-630, JASCO, Japan, UV-Visible spectrophotometer.
The analyses were performed in triplicate, and the total phenolic contents were calculated using
the linear regression equation of the calibration curve (y = 0.002x − 0.014, R2 = 0.998) of gallic acid
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performed between the concentrations of 0.05 to 0.5 mg/mL, and expressed as the mg of gallic acid
equivalent per gram (mg GAE/g) of the dried extract/fractions weights (Table 2).

4.5. Determination of Total Flavonoid Contents

The total flavonoid contents were estimated using the aluminium chloride complex-forming
assay [92]. An aliquot of extract/fraction (1.5 mL of 1 mg/mL in ethanol) was mixed with 500 µL of
10% aluminum chloride solution, and the mixture was allowed to stand for 60 min. Absorbance was
measured at 510 nm, and a calibration curve (y = 0.001x + 0.013 R2 = 0.994) for quercetin was then plotted
using 0.05 to 0.5 mg/mL of quercetin in methanol. The equivalents of milligram quercetin per gram
(mg QE/g) of the fully concentrated extract/fractions were used to calculate the total flavonoid contents.

4.6. Evaluation of Free-Radical Scavenging Activity

4.6.1. DPPH Assay

The scavenging activity of the extract was estimated using 1,1-diphenyl-2-picrylhydrazyl (DPPH)
as a free-radical [93] with slight modification. The DPPH working solution (1.5 mL, 100 µM in
methanol) was mixed with 0.5 mL of the extract/fraction/standard (quercetin solution) at different
concentrations (0.156 to 5 mg/mL). The mixtures were vortexed thoroughly for 5 min and left in the
dark at room temperature (RT) for 20 min, and absorbance was measured at 517 nm to estimate the
reduction in DPPH color intensity. The scavenging activity of the extract/fraction and standard control
were calculated using the following equation:

Scavenging % =

(
1−

Sab

Bab

)
× 100 (1)

The Sab and Bab refer to the sample absorbance and blank absorbance, respectively.

4.6.2. ABTS Assay

The ability of the extract and fractions to scavenge ABTS radical formation was assayed according
to the method of Floegel et al. [94] with slight modification. The radical cation of the ABTS
(2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) was generated by heating the mixture of
2,2-azobis(2-amidinopropane) dihydrochloride (1 mM) and 2.5 mM of the ABTS in phosphate buffer
(10 mM, pH 7.4) at 68 ◦C for 40 min on a water bath. The mixture was allowed to cool to room
temperature and filtered. The freshly prepared ABTS solution (980 µL) was mixed with 20 µL of
the serially diluted extract/fraction, and quercetin solution (0.156 to 5 mg/mL in ethanol) separately.
The mixture was incubated for 10 min at 37 ◦C before the measurement of ABTS color reduction at
734 nm using a spectrophotometer. The ABTS scavenging activity of the extract and standard quercetin
was calculated by defining the percentages of the absorbance reduction of ABTS-extract mixture in
comparison to the absorbance of the ABTS blank solution from the following equation:

Scavenging % =

(
1−

Tab

Cab

)
× 100 . (2)

The Tab and Cab refer to the sample and blank absorbances, respectively.

4.7. Acute Toxicity Studies and Sample Size

Acute toxicity studies were conducted following the OECD procedure for acute toxicity
testing [95,96]. Briefly, ten-week-old female Sprague Dawley rats (n = 20), weighing 200 ± 50 g,
overnight fasted, were randomly divided and weighed, and single aq.-ethanolic extract doses were
administered (n = 5/group) using oral (p.o.) route with 50 and 300 mg/kg, and 2 and 5 g/kg. The animals
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were observed for abnormality in behavior and movement for the first three days and mortality for up
to two weeks [96].

The required sample size for the experiment was determined using mean ± SEM AST values
between the CCl4-induced injury untreated group and the CCl4-induced injury aq.-ethanolic
extract-treated group, based on a previously published report [58]. The calculated effect size d
was 4.27 using a two-tail option on G Power V.3.1.9.4 software, Heinrich Heine University, Düsseldorf,
Germany [97]. To achieve a statistical power (1-β err prob) of 80 % and a specific α error probability
of 0.05, the minimum required sample size in each group was n > 3 mice.

4.8. Effect of aq.-Ethanolic Extract on Liver and Kidney Enzymes in Addition to Lipid and Sugar Levels

The study was performed in accordance with the Animal Research: Reporting In Vivo Experiments
(ARRIVE) statement [98].

4.8.1. Experimental Animal Groups

Male ten-week-old naïve Sprague Dawley rats (n = 64) weighing 200 ± 50 g, obtained from the
animal house facility, College of Pharmacy, Qassim University, Saudi Arabia, were maintained in
individual polyacrylic cages housing 2 or 3 rats with a chow diet obtained from the First Milling
Company in Qassim, Buraydah, Saudi Arabia, and water ad libitum, 7 days before the start of
the experiments. The animals were maintained at RT (~ 25 ◦C) and relative humidity of ~65% with
a controlled light-dark cycle of 12:12 h. The institutional Research Ethics Committee approved the
experimental procedure and animal care (Approval ID 2019-CP-8) as per the Guidelines for the Care
and Use of Laboratory Animals. Animals were divided randomly into eight groups (n = 8/group).
The intact animals (group I) remained untouched during the experimental procedure, while another
group received 250 mg/kg (group II) of the aq.-ethanolic extract of Suaeda vermiculata orally for seven
days to monitor the effect of the extract on the liver and kidney. The remaining groups were administered
p.o. once daily with carboxyl methylcellulose 0.5% (CMC, negative control, group III), 200 mg/kg
silymarin (positive control, group IV) [99–101], or aq.-ethanolic extract dose of 100, 250, or 500 mg/kg
(groups V–VII), and 100 mg/kg quercetin (group VIII) [102,103] for 7 days, followed by induction of
hepatotoxicity using single intraperitoneal (i.p.) dose of CCl4 dissolved in olive oil (1:1, 1.0 mL/kg) [56].
Olive oil (an emulsifying agent) helped to dissolve CCl4 sufficiently for induction of liver damage
and is neither toxic nor possesses any hepatotoxicity related to pharmacological activity [57,58,104].
Twenty-four hours after the administration of CCl4, blood samples were withdrawn from the orbital
vein in ethylene diamine tetraacetic acid (EDTA)-heparinized tubes under mild general anesthesia with
ketamine, and samples were centrifuged to separate plasma [105]. The separated plasma was used for
the determination of levels of aspartate transaminase (AST) and alanine transaminase (ALT) levels,
total protein (TP), creatinine, blood glucose, total cholesterol, and triglycerides with spectrophotometric
assays. Percentage hepatotoxic protection was calculated using the following equation [106]:

Hepatoprotection % =

[
a− b
a− c

]
X 100 (3)

where a, b, and c refer to the mean value of the marker enzyme level produced by hepatotoxin;
toxin plus test sample, and control, respectively.

4.8.2. Determination of Levels AST, ALT, TP, and Creatinine

The levels of ALT and AST in plasma samples were determined using an optimized UV-test,
in accordance with the International Federation of Clinical Chemistry (IFCC) procedure. The kit was
supplied by the Crescent Diagnostics Company, KSA, (product catalog #CZ902L for ALT, and #CZ904L
for AST). The absorbances were measured at 340 nm, and the readings were multiplied by a factor
of 952 using the kinetic method [107]. The plasma level of TP was measured using the photometric,
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colorimetric test. The cupric ions reacted with protein in an alkaline solution to form a purple complex.
The absorbance of the complex was proportional to protein concentration in the samples [108].
The plasma creatinine was determined by the kinetic method without deproteinization–Jaffe reaction
(Crescent Diagnostics Company, #604). In the Jaffe reaction, the creatinine reacted with alkaline picrate
to produce a reddish-orange color, the intensity of which at 490 nm was directly proportional to
creatinine concentration [109].

4.8.3. Determination of Plasma Level of Glucose, Cholesterol, and Triglycerides

The glucose level was determined after enzymatic oxidation in the presence of glucose-oxidase
(Crescent Diagnostics Company, #605). The formed hydrogen peroxide reacted under the catalysis
of peroxidase with phenol and 4-aminoantipyrine to form a red-violet using quinone imine dye
as an indicator [110]. The total amount of cholesterol was determined after enzymatic hydrolysis
and oxidation (Crescent Diagnostics Company, #603). The colorimetric indicator quinone imine
was generated from phenol and 4-aminoantipyrine by hydrogen peroxide under the catalytic action
of peroxidase, and the color intensity was then measured at 546 nm [111]. The triglycerides were
determined after enzymatic splitting with lipoprotein lipase (Crescent Diagnostics Company, #611)
wherein the indicator was quinone imine, generated from 4-chlorophenol and 4-aminoantipyrine by
hydrogen peroxide to form a red color quinone imine dye measured at 546 nm [111].

4.9. Cell-Lines

Human cell-lines of hepatocellular carcinoma HepG-2 were cultivated in complete media under
standard conditions in 5% CO2, 37 ◦C, and were free of mycoplasma [112]. DOX (Adriamycin)-resistant
hepatic cell-lines HepG-2/ADR were developed by treating and maintaining the cells in media
supplemented with 5 µg/mL DOX in the laboratories of King Abdullah University of Science and
Technology, Thuwal at the Core Labs, Biological and Environmental Sciences and Engineering
Division (BESE). Using RT-PCR, the development of DOX resistance through P-gp expression as
compared to the parent sensitive cell-lines was confirmed. The DOX-free media were applied 7–10 days
before conducting any experiments.

4.10. Cytotoxicity and Reversal Assay

Exponentially growing cells (2 × 103 cells/well) were seeded in 96-well plates for MTT cell viability
assay [113]. The cells were grown for 24 h, then treated with serial concentrations of Suaeda vermiculata
aq.-ethanolic extract (up 500 µg/mL) and DOX (100 µg/mL) for 24 h and with MTT solution (0.5 mg/mL)
for 4 h. The DMSO dissolved the reaction product (crystals). Absorbance was determined at 570 nm
using a SpectraMax M5e Multi-Mode Microplate Reader (Molecular Devices, LLC, USA). The same
protocol was used to evaluate the cytotoxicity of the combination of DOX with Suaeda vermiculata
aq.-ethanolic extract (20 µg/mL, a low, non-toxic dose). All experiments were carried out in triplicate.
The IC50 values were determined. The Student’s t-test was applied to determine the degree of significant
difference between the sets of data. The relative resistance (RR) for tested samples was calculated using
the following equation:

Relative resistance =
IC50 in resistance cells
IC50 in sensitive cells

(4)

Combination index (CI): The nature of the interaction (synergistic, additive, or antagonistic)
between extracts and DOX was determined by the combination index (CI).

Combination Index =
CDOX,50

IC50, DOX
+

Cextract,50

IC50,extract
(5)
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where CDOX,50 is the IC50 value for the cytotoxic agent in a two-drug combination, and Cextract is the
fixed concentration of the extract, herein aq.-ethanolic extract. IC50,DOX, and IC50,extract corresponded
to the IC50 for DOX, and aq.-ethanolic extract alone [114].

4.11. Statistical Analysis

Data were expressed as the mean ± standard error of the mean (SEM). Differences between
groups were analyzed using two-way ANOVA followed by a posthoc test using Tukey’s multi-group
comparison on GraphPad Prism 8.0.2, San Diego, U.S.A. The normality data were checked using
GraphPad Prism. The data were considered significant if p < 0.05 [115]. The superscripts used to describe
significance among the groups in the tables was obtained using Minitab 19.1. A Kolmogorov–Smirnov
test was used for the determination of the normality of the data.

5. Conclusions

The current study demonstrated the hepatoprotective potential and ameliorative effects of the
Suaeda vermiculata aq.-ethanolic extract in CCl4-induced liver toxicity-bearing rat models. It also
demonstrated the extract’s effective roles in cell line-based studies in controlling the damages from
experimental liver cancer cell-lines. The aq.-ethanolic extract showed no adverse effects on the liver,
kidney enzymes, glucose, or on the cholesterol levels in the experimental rats, though it showed a
noticeable reducing effect on the triglycerides. The ongoing data on the concentrations of the antioxidant,
and comparable liver-protective effects when equated with the silymarin and quercetin, confirmed the
beneficial effects of the aq.-ethanolic extract in hepatoprotection, and also the safety of the extract at
higher dose administrations. It also suggested that the consumption of the plant material by locals
can be regarded as safe. The aq.-ethanolic extract has the potential to offer newer leads, and generate
molecular templates upon intensive chemical investigation together with bioassay-guided biological
activity pursuance towards finding a potential curative agent as a single molecular entity, or as part of
the synergistic action of multiple molecules obtained from the plant’s extract for curing liver disorders
at par, or higher levels of effectiveness in terms of reduced dose, and speed of recovery in comparison
to the available silymarin derivatives, and other hepatoprotective synthetic products utilized for
the purpose.
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15. Cichoż-Lach, H. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082.
[CrossRef]

16. McRae, C.A.; Agarwal, K.; Mutimer, D.; Bassendine, M.F. Hepatitis associated with Chinese herbs. Eur. J.
Gastroenterol. Hepatol. 2002, 14, 559–562. [CrossRef]

17. Pak, E.; Esrason, K.; Wu, V. Hepatotoxicity of herbal remedies: an emerging dilemma. Prog. Transplant. 2004,
14, 91–96. [CrossRef]

18. Woolbright, B.L.; Williams, C.D.; McGill, M.R.; Jaeschke, H. Liver Toxicity. In Reference Module in Biomedical
Sciences; Elsevier: Amsterdam, The Netherlands, 2014.

19. Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role
of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev. 2018,
2018, 1–14. [CrossRef]

20. Ostapowicz, G. Results of a Prospective Study of Acute Liver Failure at 17 Tertiary Care Centers in the
United States. Ann. Intern. Med. 2002, 137, 947. [CrossRef]

21. Yen, F.-L.; Wu, T.-H.; Lin, L.-T.; Cham, T.-M.; Lin, C.-C. Naringenin-Loaded Nanoparticles Improve the
Physicochemical Properties and the Hepatoprotective Effects of Naringenin in Orally-Administered Rats
with {CCl}4-Induced Acute Liver Failure. Pharm. Res. 2008, 26, 893–902. [CrossRef]

22. Chávez, E.; Reyes-Gordillo, K.; Segovia, J.; Shibayama, M.; Tsutsumi, V.; Vergara, P.; Moreno, M.G.; Muriel, P.
Resveratrol prevents fibrosis, NF-kappaB activation and TGF-beta increases induced by chronic CCl4
treatment in rats. J. Appl. Toxicol. 2007, 28, 35–43. [CrossRef]

http://dx.doi.org/10.1038/s41598-019-42808-4
http://www.ncbi.nlm.nih.gov/pubmed/31073186
http://dx.doi.org/10.12816/0045639
http://dx.doi.org/10.3390/ijerph15112521
http://dx.doi.org/10.3390/medicina55060301
http://dx.doi.org/10.4103/0973-1296.139783
http://dx.doi.org/10.1007/s00217-020-03498-9
http://dx.doi.org/10.1016/S1995-7645(11)60126-0
http://dx.doi.org/10.2478/s11756-014-0338-z
http://dx.doi.org/10.1371/journal.pone.0176303
http://www.ncbi.nlm.nih.gov/pubmed/28441407
http://www.ncbi.nlm.nih.gov/pubmed/26587483
http://dx.doi.org/10.3748/wjg.v20.i25.8082
http://dx.doi.org/10.1097/00042737-200205000-00015
http://dx.doi.org/10.1177/152692480401400203
http://dx.doi.org/10.1155/2018/9547613
http://dx.doi.org/10.7326/0003-4819-137-12-200212170-00007
http://dx.doi.org/10.1007/s11095-008-9791-0
http://dx.doi.org/10.1002/jat.1249


Plants 2020, 9, 1291 22 of 26

23. Casas-Grajales, S. Antioxidants in liver health. World J. Gastrointest. Pharmacol. Ther. 2015, 6, 59. [CrossRef]
[PubMed]

24. Gillessen, A.; Schmidt, H.H.-J. Silymarin as supportive treatment in liver diseases: A narrative review.
Adv. Ther. 2020, 1–23. [CrossRef] [PubMed]

25. Nwidu, L.L.; Oboma, Y.I.; Elmorsy, E.; Carter, W.G. Hepatoprotective effect of hydromethanolic leaf extract
of Musanga cecropioides (Urticaceae) on carbon tetrachloride-induced liver injury and oxidative stress.
J. Taibah Univ. Med. Sci. 2018, 13, 344–354. [CrossRef] [PubMed]

26. Peng, C.; Zhou, Z.; Li, J.; Luo, Y.; Zhou, Y.; Ke, X.; Huang, K. {CCl}4-Induced Liver Injury Was Ameliorated by
Qi-Ge Decoction through the Antioxidant Pathway. Evidence-Based Complement. Altern. Med. 2019, 2019, 1–12.
[CrossRef]

27. Chao, W.-W.; Chen, S.-J.; Peng, H.-C.; Liao, J.-W.; Chou, S.-T. Antioxidant Activity of Graptopetalum
paraguayense E. Walther Leaf Extract Counteracts Oxidative Stress Induced by Ethanol and Carbon
Tetrachloride Co-Induced Hepatotoxicity in Rats. Antioxidants 2019, 8, 251. [CrossRef]

28. Nwidu, L.L.; Elmorsy, E.; Oboma, Y.I.; Carter, W.G. Hepatoprotective and antioxidant activities of Spondias
mombin leaf and stem extracts against carbon tetrachloride-induced hepatotoxicity. J. Taibah Univ. Med. Sci.
2018, 13, 262–271. [CrossRef]

29. Kuriakose, G.C.; Kurup, M.G. Antioxidant and antihepatotoxic effect of Spirulina laxissima against carbon
tetrachloride induced hepatotoxicity in rats. Food Funct. 2011, 2, 190. [CrossRef]

30. Abdou, R.H.; Basha, W.A.; Khalil, W.F. Subacute Toxicity of Nerium oleander Ethanolic Extract in Mice.
Toxicol. Res. 2019, 35, 233–239. [CrossRef]

31. Alhdad, G.M.; Seal, C.E.; Al-Azzawi, M.J.; Flowers, T.J. The effect of combined salinity and waterlogging on
the halophyte Suaeda maritima: the role of antioxidants. Environ. Exp. Bot. 2013, 87, 120–125. [CrossRef]

32. Pareek, A.; Godavarthi, A.; Issarani, R.; Nagori, B.P. Antioxidant and hepatoprotective activity of Fagonia
schweinfurthii (Hadidi) Hadidi extract in carbon tetrachloride induced hepatotoxicity in {HepG}2 cell line
and rats. J. Ethnopharmacol. 2013, 150, 973–981. [CrossRef]

33. Dahiru, D.; Obidoa, O. Evaluation of the antioxidant effects of Ziziphus mauritiana leaf extracts against
chronic ethanol-induced hepatotoxicity in rat liver. African J. Tradit. Complement. Altern. Med. 2008, 5.
[CrossRef] [PubMed]

34. Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of
Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [CrossRef] [PubMed]

35. Chu, X.; Wang, H.; Jiang, Y.; Zhang, Y.; Bao, Y.; Zhang, X.; Zhang, J.; Guo, H.; Yang, F.; Luan, Y.; et al.
Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in~vivo and in~vitro.
J. Pharmacol. Sci. 2016, 130, 15–23. [CrossRef]

36. Chen, L.; Hu, C.; Hood, M.; Kan, J.; Gan, X.; Zhang, X.; Zhang, Y.; Du, J. An Integrated Approach Exploring
the Synergistic Mechanism of Herbal Pairs in a Botanical Dietary Supplement: A Case Study of a Liver
Protection Health Food. Int. J. Genomics 2020, 2020, 1–14. [CrossRef] [PubMed]

37. Rasool, M.; Iqbal, J.; Malik, A.; Ramzan, H.S.; Qureshi, M.S.; Asif, M.; Qazi, M.H.; Kamal, M.A.;
Chaudhary, A.G.A.; Al-Qahtani, M.H.; et al. Hepatoprotective Effects of Silybum marianum (Silymarin)
and Glycyrrhiza glabra (Glycyrrhizin) in Combination: A Possible Synergy. Evidence-Based Complement.
Altern. Med. 2014, 2014, 1–9. [CrossRef]

38. Ming, Z.; Fan, Y.; Yang, X.; Lautt, W.W. Synergistic protection by S-adenosylmethionine with vitamins C
and E on liver injury induced by thioacetamide in rats. Free Radic. Biol. Med. 2006, 40, 617–624. [CrossRef]
[PubMed]

39. Singh, H.; Prakash, A.; Kalia, A.N.; Majeed, A.B.A. Synergistic hepatoprotective potential of ethanolic extract
of Solanum xanthocarpum and Juniperus communis against paracetamol and azithromycin induced liver
injury in rats. J. Tradit. Complement. Med. 2016, 6, 370–376. [CrossRef]

40. Yadav, N.P.; Pal, A.; Shanker, K.; Bawankule, D.U.; Gupta, A.K.; Darokar, M.P.; Khanuja, S.P.S. Synergistic
effect of silymarin and standardized extract of Phyllanthus amarus against {CCl}4-induced hepatotoxicity in
Rattus norvegicus. Phytomedicine 2008, 15, 1053–1061. [CrossRef]

41. Chen, P.; Wang, Y.; Chen, L.; Jiang, W.; Niu, Y.; Shao, Q.; Gao, L.; Zhao, Q.; Yan, L.; Wang, S. Comparison of
the anti-inflammatory active constituents and hepatotoxic pyrrolizidine alkaloids in two Senecio plants and
their preparations by LC–UV and LC–MS. J. Pharm. Biomed. Anal. 2015, 115, 260–271. [CrossRef]

http://dx.doi.org/10.4292/wjgpt.v6.i3.59
http://www.ncbi.nlm.nih.gov/pubmed/26261734
http://dx.doi.org/10.1007/s12325-020-01251-y
http://www.ncbi.nlm.nih.gov/pubmed/32065376
http://dx.doi.org/10.1016/j.jtumed.2018.04.006
http://www.ncbi.nlm.nih.gov/pubmed/31435346
http://dx.doi.org/10.1155/2019/5941263
http://dx.doi.org/10.3390/antiox8080251
http://dx.doi.org/10.1016/j.jtumed.2018.03.006
http://dx.doi.org/10.1039/c0fo00163e
http://dx.doi.org/10.5487/TR.2019.35.3.233
http://dx.doi.org/10.1016/j.envexpbot.2012.10.010
http://dx.doi.org/10.1016/j.jep.2013.09.048
http://dx.doi.org/10.4314/ajtcam.v5i1.31254
http://www.ncbi.nlm.nih.gov/pubmed/20162053
http://dx.doi.org/10.3390/nu6126020
http://www.ncbi.nlm.nih.gov/pubmed/25533011
http://dx.doi.org/10.1016/j.jphs.2015.12.002
http://dx.doi.org/10.1155/2020/9054192
http://www.ncbi.nlm.nih.gov/pubmed/32351982
http://dx.doi.org/10.1155/2014/641597
http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.034
http://www.ncbi.nlm.nih.gov/pubmed/16458192
http://dx.doi.org/10.1016/j.jtcme.2015.07.005
http://dx.doi.org/10.1016/j.phymed.2008.08.002
http://dx.doi.org/10.1016/j.jpba.2015.07.014


Plants 2020, 9, 1291 23 of 26

42. Quirós-Guerrero, L.; Albertazzi, F.; Araya-Valverde, E.; Romero, R.M.; Villalobos, H.; Poveda, L.;
Chavarría, M.; Tamayo-Castillo, G. Phenolic variation among Chamaecrista nictitans subspecies and varieties
revealed through UPLC-ESI (-)-MS/MS chemical fingerprinting. Metabolomics 2019, 15, 14. [CrossRef]

43. Mohammed, H.A. The Valuable Impacts of Halophytic Genus Suaeda; Nutritional, Chemical,
and Biological Values. Med. Chem. 2020. [CrossRef] [PubMed]

44. Hou, M.-L.; Chang, L.-W.; Lin, C.-H.; Lin, L.-C.; Tsai, T.-H. Determination of bioactive components in Chinese
herbal formulae and pharmacokinetics of rhein in rats by UPLC-MS/MS. Molecules 2014, 19, 4058–4075.
[CrossRef] [PubMed]

45. Dai, W.; Li, H.; Cong, W.; Zhao, W.; Wang, Q. Two New Eremophilane Sesquiterpenes and One New
Resorcinol from Ligularia knorringiana. Nat. Prod. Commun. 2016, 11, 1934578X1601100201. [CrossRef]

46. Madan, S.; Pannakal, S.T.; Ganapaty, S.; Singh, G.N.; Kumar, Y. Phenolic glucosides from Flacourtia indica.
Nat. Prod. Commun. 2009, 4, 1934578X0900400313. [CrossRef]

47. n-Hexadecanoic Acid. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C57103&Mask=200
(accessed on 14 September 2020).

48. Mohammed, H.A.; Al-Omar, M.S.; El-Readi, M.Z.; Alhowail, A.H.; Aldubayan, M.A.; Abdellatif, A.A.H.
Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata
for Antioxidant and Cytotoxic Activities. Molecules 2019, 24, 1501. [CrossRef] [PubMed]

49. OECD. OECD Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure; OECD: Paris, France, 2008.
50. Jun, H.-I.; Wiesenborn, D.P.; Kim, Y.-S. Antioxidant Activity of Phenolic Compounds from Canola

(Brassica napus) Seed. Food Sci. Biotechnol 2014, 23, 1753–1760. [CrossRef]
51. Kaur, D.; Kaur, A.; Arora, S. Delineation of attenuation of oxidative stress and mutagenic stress by Murraya

exotica L. leaves. Springerplus 2016, 5. [CrossRef] [PubMed]
52. Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol. 2012,

5, 409–424. [CrossRef]
53. Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci.

2007, 30, 3268–3295. [CrossRef]
54. Mohammed, H.A.; Al-Omar, M.S.; Aly, M.S.A.; Hegazy, M.M. Essential Oil Constituents and Biological

Activities of the Halophytic Plants, Suaeda Vermiculata Forssk and Salsola Cyclophylla Bakera Growing in
Saudi Arabia. J. Essent. Oil Bear. Plants 2019, 1–12. [CrossRef]

55. Mohammadi Motamed, S.; Bush, S.; Hosseini Rouzbahani, S.; Karimi, S.; Mohammadipour, N. Total phenolic
and flavonoid contents and antioxidant activity of four medicinal plants from Hormozgan province, Iran.
Res. J. Pharmacogn. 2016, 3, 17–26.

56. Popoviç, M.; Kaurinoviç, B.; Jakovljeviç, V.; Mimica-Dukic, N.; Bursaç, M.; Popovic, M. PARSLEY ON
OXIDATIVE STRESS 717 Effect of Parsley (Petroselinum crispum (Mill.) Nym. ex A.W. Hill, Apiaceae)
Extracts on some Biochemical Parameters of Oxidative Stress in Mice treated with CCl 4. Phytother. Res 2007,
21, 717–723. [CrossRef] [PubMed]

57. Hafez, M.M.; Hamed, S.S.; El-Khadragy, M.F.; Hassan, Z.K.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.;
Al-Harbi, N.O.; Al-Hosaini, K.A.; Al-Harbi, M.M.; Alhoshani, A.R.; et al. Effect of ginseng extract on
the TGF-β1 signaling pathway in CCl4-induced liver fibrosis in rats. BMC Complement. Altern. Med. 2017,
17, 45. [CrossRef]

58. Araya, E.M.; Adamu, B.A.; Periasamy, G.; Sintayehu, B.; Gebrelibanos Hiben, M. In vivo hepatoprotective
and In vitro radical scavenging activities of Cucumis ficifolius A. rich root extract. J. Ethnopharmacol. 2019,
242, 112031. [CrossRef] [PubMed]

59. Jabit, M.L.; Wahyuni, F.S.; Khalid, R.; Israf, D.A.; Shaari, K.; Lajis, N.H.; Stanslas, J. Cytotoxic and nitric oxide
inhibitory activities of methanol extracts of Garcinia species. Pharm. Biol. 2009, 47, 1019–1026. [CrossRef]

60. Li, S.; Zhao, Q.; Wang, B.; Yuan, S.; Wang, X.; Li, K. Quercetin reversed MDR in breast cancer cells through
down-regulating P-gp expression and eliminating cancer stem cells mediated by YB-1 nuclear translocation.
Phyther. Res. 2018, 32, 1530–1536. [CrossRef]

61. Borska, S.; Chmielewska, M.; Wysocka, T.; Drag-Zalesinska, M.; Zabel, M.; Dziegiel, P. In vitro effect of
quercetin on human gastric carcinoma: Targeting cancer cells death and MDR. Food Chem. Toxicol. 2012,
50, 3375–3383. [CrossRef]

http://dx.doi.org/10.1007/s11306-019-1475-8
http://dx.doi.org/10.2174/1573406416666200224115004
http://www.ncbi.nlm.nih.gov/pubmed/32091344
http://dx.doi.org/10.3390/molecules19044058
http://www.ncbi.nlm.nih.gov/pubmed/24699148
http://dx.doi.org/10.1177/1934578X1601100201
http://dx.doi.org/10.1177/1934578X0900400313
https://webbook.nist.gov/cgi/cbook.cgi?ID=C57103&Mask=200
http://dx.doi.org/10.3390/molecules24081501
http://www.ncbi.nlm.nih.gov/pubmed/30999569
http://dx.doi.org/10.1007/s10068-014-0240-z
http://dx.doi.org/10.1186/s40064-016-2709-0
http://www.ncbi.nlm.nih.gov/pubmed/27462485
http://dx.doi.org/10.1007/s11947-011-0573-z
http://dx.doi.org/10.1002/jssc.200700261
http://dx.doi.org/10.1080/0972060X.2019.1574611
http://dx.doi.org/10.1002/ptr.2134
http://www.ncbi.nlm.nih.gov/pubmed/17397132
http://dx.doi.org/10.1186/s12906-016-1507-0
http://dx.doi.org/10.1016/j.jep.2019.112031
http://www.ncbi.nlm.nih.gov/pubmed/31220599
http://dx.doi.org/10.3109/13880200902973787
http://dx.doi.org/10.1002/ptr.6081
http://dx.doi.org/10.1016/j.fct.2012.06.035


Plants 2020, 9, 1291 24 of 26

62. Kumar, M.; Sharma, G.; Misra, C.; Kumar, R.; Singh, B.; Katare, O.P.; Raza, K. N-desmethyl tamoxifen and
quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci.
Eng. C 2018, 89, 274–282. [CrossRef]

63. Mohana, S.; Ganesan, M.; Rajendra Prasad, N.; Ananthakrishnan, D.; Velmurugan, D. Flavonoids modulate
multidrug resistance through wnt signaling in P-glycoprotein overexpressing cell lines. BMC Cancer 2018,
18, 1168. [CrossRef]

64. Mohana, S.; Ganesan, M.; Agilan, B.; Karthikeyan, R.; Srithar, G.; Beaulah Mary, R.; Ananthakrishnan, D.;
Velmurugan, D.; Rajendra Prasad, N.; Ambudkar, S.V. Screening dietary flavonoids for the reversal of
P-glycoprotein-mediated multidrug resistance in cancer. Mol. Biosyst. 2016, 12, 2458–2470. [CrossRef]

65. Qureshi, N.N.; Kuchekar, B.S.; Logade, N.A.; Haleem, M.A. Antioxidant and hepatoprotective activity of
Cordia macleodii leaves. Saudi Pharm. J. 2009, 17, 299–302. [CrossRef] [PubMed]

66. Delgado-Montemayor, C.; Cordero-Pérez, P.; Salazar-Aranda, R.; Waksman-Minsky, N. Models of
hepatoprotective activity assessment. Med. Univ. 2015, 17, 222–228. [CrossRef]

67. Ritesh, K.R.; Suganya, A.; Dileepkumar, H.V.; Rajashekar, Y.; Shivanandappa, T. A single acute hepatotoxic
dose of CCl4 causes oxidative stress in the rat brain. Toxicol. Rep. 2015, 2, 891–895. [CrossRef] [PubMed]

68. Hogade, M.G.; Patil, K.S.; Wadkar, G.H.; Mathapati, S.S.; Dhumal, P.B. Hepatoprotective activity of Morus alba
(Linn.) leaves extract against carbon tetrachloride induced hepatotoxicity in rats. African J. Pharm. Pharmacol.
2010, 4, 731–734.

69. Boll, M.; Weber, L.W.D.; Becker, E.; Stampfl, A. Mechanism of carbon tetrachloride-induced hepatotoxicity.
Hepatocellular damage by reactive carbon tetrachloride metabolites. Zeitschrift Naturforsch. Sect. C J. Biosci.
2001, 56, 649–659. [CrossRef]

70. Recknagel, R.O.; Glende, E.A.; Dolak, J.A.; Waller, R.L. Mechanisms of carbon tetrachloride toxicity.
Pharmacol. Ther. 1989, 43, 139–154. [CrossRef]

71. He, Q.; Guoming, S.; Liu, K.; Zhang, F.; Jiang, Y.; Gao, J.; Liu, L.; Jiang, Z.; Jin, M.; Xie, H. Sex-specific reference
intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank
percentile method. PLoS ONE 2017, 12, e0189837. [CrossRef]

72. Sallie, R.; Michael Tredger, J.; Williams, R. Drugs and the liver part 1: Testing liver function. Biopharm.
Drug Dispos. 1991, 12, 251–259. [CrossRef]

73. Zhou, D.; Ruan, J.; Cai, Y.; Xiong, Z.; Fu, W.; Wei, A. Antioxidant and hepatoprotective activity of ethanol
extract of Arachniodes exilis (Hance) Ching. J. Ethnopharmacol. 2010, 129, 232–237. [CrossRef]

74. Alhassan, A.J.; Sule, M.J.; Aliyu, S.A.; Aliyu, M.D. Ideal hepatotoxicity model in rats using Carbon
Tetrachloride (CCl4). Bayero J. Pure Appl. Sci. 2011, 2. [CrossRef]

75. Singh, A.; Bhat, T.; Sharma, O. Clinical Biochemistry of Hepatotoxicity. J. Clin. Toxicol. 2011, 04. [CrossRef]
76. Shaker, E.; Mahmoud, H.; Mnaa, S. Silymarin, the antioxidant component and Silybum marianum extracts

prevent liver damage. Food Chem. Toxicol. 2010, 48, 803–806. [CrossRef] [PubMed]
77. Shalan, M.G.; Mostafa, M.S.; Hassouna, M.M.; El-Nabi, S.E.H.; El-Refaie, A. Amelioration of lead toxicity on

rat liver with Vitamin C and silymarin supplements. Toxicology 2005, 206, 1–15. [CrossRef] [PubMed]
78. Flora, K.; Hahn, M.; Rosen, H.; Benner, K. Milk thistle (Silybum marianum) for the therapy of liver disease.

Am. J. Gastroenterol. 1998, 93, 139–143. [CrossRef]
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