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Abstract

Background: Antimicrobial resistance (AMR) is a global health concern. High-throughput metagenomic sequencing of microbial sam-
ples enables profiling of AMR genes through comparison with curated AMR databases. However, the performance of current methods
is often hampered by database incompleteness and the presence of homology/homoplasy with other non-AMR genes in sequenced
samples.

Results: We present AMR-meta, a database-free and alignment-free approach, based on k-mers, which combines algebraic matrix
factorization into metafeatures with regularized regression. Metafeatures capture multi-level gene diversity across the main antibi-
otic classes. AMR-meta takes in reads from metagenomic shotgun sequencing and outputs predictions about whether those reads
contribute to resistance against specific classes of antibiotics. In addition, AMR-meta uses an augmented training strategy that joins
an AMR gene database with non-AMR genes (used as negative examples). We compare AMR-meta with AMRPlusPlus, DeepARG, and
Meta-MARC, further testing their ensemble via a voting system. In cross-validation, AMR-meta has a median f-score of 0.7 (interquar-
tile range, 0.2–0.9). On semi-synthetic metagenomic data—external test—on average AMR-meta yields a 1.3-fold hit rate increase over
existing methods. In terms of run-time, AMR-meta is 3 times faster than DeepARG, 30 times faster than Meta-MARC, and as fast as
AMRPlusPlus. Finally, we note that differences in AMR ontologies and observed variance of all tools in classification outputs call for
further development on standardization of benchmarking data and protocols.

Conclusions: AMR-meta is a fast, accurate classifier that exploits non-AMR negative sets to improve sensitivity and specificity. The
differences in AMR ontologies and the high variance of all tools in classification outputs call for the deployment of standard bench-
marking data and protocols, to fairly compare AMR prediction tools.
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Introduction
Antimicrobial resistance (AMR) is the ability of microorganisms to
resist the effect of drugs targeted to eliminate them [1] and is glob-
ally recognized as a threat to public health because it makes treat-
ment of microbial infections harder, increasing the risk of disease
spread and severity [2]. Data from 890 US hospitals collected on
specific combinations of antibiotics and bacteria show that AMR
caused an estimated 622,390 infections in 2017 [3]. Treating infec-
tions caused by AMR is clinically challenging because it requires
identifying which drugs the infecting strain is susceptible to and
then making a timely decision on the therapy to use. Notably, AMR
is not limited to health care, as it represents a significant challenge
also in animal and plant health, and thus in the entire ecosystem
[4]. Therefore, detecting AMR in clinical, veterinarian, and botani-
cal isolates is pivotal to curb the spread of AMR pathogens and re-
duce its impact. Although culture-based methods can accurately
detect AMR, they are resource intensive with respect to trained
personnel, monetary cost, and time [5]. Moreover, because only a

fraction of bacterial species are cultivable with standard methods,
culture-based methods are only applicable to a small number of
bacteria. For these reasons, whole-genome and metagenomics se-
quencing has become an increasingly prevalent method for AMR
characterization. The challenge that then arises is how to accu-
rately identify and quantify the AMR genes from such sequenc-
ing data. To accomplish this, a number of different methods have
been proposed. Despite the concordance between in silico geno-
typic and in vitro phenotypic resistance assessment, the uptake of
AMR prediction tools for routine health care has been slow, and
they showed discordant performance in clinical settings [6].

AMR prediction methods for metagenomics rely on compari-
son to databases of AMR genes. Two comprehensive and widely
used AMR databases are the Comprehensive Antibiotic Resistance
Database (CARD) [7, 8] and MEGARes [9,10]. CARD is thoroughly
maintained, with monthly updates on AMR determinants that
have (i) an associated peer-reviewed scientific publication, (ii) a
DNA sequence available in GenBank, and (iii) clear experimental
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evidence of elevated minimum inhibitory concentration over con-
trols. Currently, CARD integrates >3,000 reference sequences of
AMR genes and >1,500 single-nucleotide polymorphisms, knowl-
edge on resistance mechanisms, and specific antibiotic classes.
CARD uses a manually curated process and ontology, named
the Antibiotic Resistance Ontology (ARO, github.com/arpcard/a
ro), which describes the molecular relations of antibiotic resis-
tance (e.g., acquired resistance genes, drug targets, AMR mech-
anisms). MEGARes [9]—and its most recent 2.0 update [10]—is
a hand-curated AMR database designed for high-throughput se-
quencing data processing. MEGARes includes CARD genes and
variants but uses a different annotation structure. Specifically, it
is a multi-level hierarchy (type, mechanism, class, group) in the
form of a direct acyclic graph, ensuring that 2 higher level ranks
are not linked to the same lower level rank. The MEGARes annota-
tion graph is therefore an optimal structure for ecological profiling
and construction of AMR classifiers because, for example, it can-
not result in conflicting sequence classification. MEGARes 2.0 cur-
rently includes ∼8,000 genes. Major improvements from its first
release consist in the inclusion of antibacterial biocide and metal
resistance genes.

For AMR classification of metagenomic samples from high-
throughput sequencing, 1 class of methods is based on the use
of sequence read aligners. One widely used tool in this category
is AMRPlusPlus [9], which aligns all reads to MEGARes using BWA
[11] and then post-processes the alignment to identify the genes
that have >80% coverage from the alignment, providing the asso-
ciated AMR annotation in the output. AMRPlusPlus 2.0 [10] is an
improved version of AMRPlusPlus that is designed to be faster for
large-scale projects. AMRPlusPlus 2.0 provides a post-alignment
classification through the ResistomeAnalyzer (quality measure
for nucleotide coverage of a reference sequence for a given read)
and the RarefactionAnalysis (assessment of sequencing depth)
modules. It also incorporates prediction of AMR due to single-
nucleotide polymorphisms in housekeeping genes, using a cu-
rated set that matches CARD. Of note, CARD also performs AMR
prediction for housekeeping genes via the Resistant Gene Identi-
fier (RGI), available as a web-service and a command-line appli-
cation. Although alignment-based methods have high precision
[12], they can only classify reads that align to known AMR genes.
Given that existing AMR databases are incomplete, a large portion
of novel AMR genes may go undetected.

Another class of methods for AMR characterization is
alignment-free, using a variety of approaches including substring
(k-mer) matching and machine learning. ResFinder [13] and Kmer-
Resistance [14] process metagenomic reads by first constructing
the set of all unique k-length subsequences (called k-mer spec-
trum) from the dataset. ResFinder 4.0 compares the set of unique
k-mers to detect AMR genes and AMR-related chromosomal gene
mutations based on an reference database built on a collection
of chromosomal point mutations in bacterial pathogens [15], re-
sistance genes from the Antibiotic Resistance Genes Database
(ARDB) [16], and other literature sources [17]. The user is re-
quired to input a specific bacterial species for which the resis-
tance is searched. Eight bacterial species are available. KmerRe-
sistance, as ResFinder, compares the set of unique k-mers to an
ad hoc gene AMR reference database derived from the literature
[18,19]. Specifically, KmerResistance uses exact co-occurring k-
mer matching between a query sequence and the database, with
a “winner takes all” strategy, i.e., multiple k-mer occurrences on
different genes are resolved by selecting the one with highest fre-
quency. Next, a quality measure of a whole AMR gene match is
defined as a probability function of coverage (i.e., fraction of the

genome covered by ≥1 k-mer) and depth (i.e., average number of
times the k-mers in the match). Similar to alignment-based meth-
ods, ResFinder and KmerResistance are also restricted to identify-
ing genes that are found in a specified database and, therefore,
have limited ability to detect putative AMR sequences. Another
limitation of the k-mer–based approaches is their low flexibility
with respect to sequencing errors [14], possibly increasing false-
negative rates in sequence classification.

Other alignment-free methods use machine learning classifiers
to identify putative and known AMR genes, such as Resfams [20]
and Meta-MARC [12], both based on hierarchical hidden Markov
models (HMMs). Resfams [20] preprocesses high-throughput se-
quences by assembling them and translating the resulting contigs
into amino acid sequences. Meta-MARC can predict AMR for an in-
put sequence (either a short read or a longer assembled contig),
according to the resistance class, group, and mechanism hierar-
chy defined in the MEGARes hierarchical data structure. Specif-
ically, Meta-MARC is an ensemble of HMMs, each trained on a
group of genes from MEGARes. A classification is performed by ag-
gregating predictions from the lowest level of the MEGARes anno-
tation hierarchy towards the highest level. Meta-MARC achieves
better sensitivity, specificity, fraction of classified high-throughput
sequence data, and number of AMR classes identified when com-
pared to alignment matches and Resfams. However, the perfor-
mance of Meta-MARC with short-read data is worse than classi-
fying assembled contigs.

DeepARG [21] is a hybrid machine learning and alignment-
based approach that leverages convolutional deep learning net-
works. The alignment module first translates the input sequences
to amino acids and using DIAMOND [22], and then aligns the
translated sequences to a custom AMR database created by merg-
ing CARD, ARDB [16], and manually selected AMR sequences from
the Universal Protein Resource (UNIPROT). The deep learning
model then predicts the AMR class for all aligned reads. Because
the machine learning step is subsequent to the alignment one, de
facto DeepARG is hindered by the limitations of alignment-based
AMR prediction algorithms.

For completeness, it is worth mentioning AMR gene iden-
tification methods that are not specifically designed for high-
throughput short-read metagenomic data. These methods take as
input 1 or a combination of the following: single genes, specific
genome strains, genomic or proteomic variants, and/or protein
primary, secondary, or tertiary structures. Similar to the methods
described previously, these methods use alignment and/or ma-
chine learning paradigms [23–30]. These algorithms restrict the
user to performing 1 or more supplementary pre-processing steps
on metagenomics data, not included into the algorithm, such as
sequence alignment or assembly, sequence translations into pro-
teins, or protein structure prediction. Because of the required pre-
processing, these methods defy the very advantages provided by
the alignment-free design. For further reference, Hendriksen et al.
[31] provide a comprehensive review.

While our work focuses on raw short-read AMR classification,
we duly note that in the wider field of computational micro-
biomics, a variety of bioinformatics approaches exist and can be
combined at different levels, from the characterization of species
diversity in commensal and pathogenic host-ecological settings,
to the identification of novel AMR genes or genetic elements rel-
evant to AMR mechanisms and evolution. The de novo assembly
methods can reconstruct complete AMR genes from short-read
data, locate them within core genomes or mobile elements, and
assemble new genes that could be associated with phenotypic
resistance; e.g., the MegaHIT project [32] assembled the world’s

http://github.com/arpcard/aro
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largest collection of gut microbiome genes with functional char-
acterization. Also, the de novo assembly methods can be used to
pre-process raw short-read data for AMR classification [29]. Fast
alignment methods can be used as well to quickly identify ge-
netic signatures or point mutations responsible for AMR, e.g., in
housekeeping genes, and map very large metagenomics samples
to databases of interest, such as 16S rRNA gene collections [33].

In this article, we develop AMR-meta, a novel, alignment-free,
AMR classification approach for high-throughput metagenomic
data, based on k-mers and matrix factorization of k-mers. The
matrix factorization produces a number of "metafeatures" able
to capture multiple levels of gene diversity within broad AMR
classes. Importantly, and differently from existing methods, AMR-
meta uses an augmented training strategy that incorporates non-
AMR genes as negative examples. We show that our approach
is competitive with state-of-the-art tools (i.e., AMRPlusPlus 2.0,
Meta-MARC, and DeepARG) in classification performance and ex-
ecution speed. Notably, AMR-meta captures resistance mechanics
complementary to those found by other tools, which instead are
more correlated to each other.

Methods
AMR-meta is trained and tested first on an internal dataset that—
differently from other approaches—includes both AMR (named
"resistant") and non-AMR genes (named "susceptible"). The AMR
genes are taken from MEGARes 2.0 [10], while non-AMR genes
are chosen from Genbank’s RefSeq and include (i) bacterial genes
that are highly dissimilar to AMR genes and (i) AMR-homologous
sequences, i.e., sequences highly similar to AMR genes but not
known to be associated with antibiotic resistance. By including
the non-AMR and AMR-homologous sequences, we aim to de-
crease the false-positive calls and to increase the true-negative
rates. This internal dataset is split into a 70/30 training/test ratio,
and AMR-meta components (k-mers and k-mer–derived metafea-
tures) are trained and tested accordingly (all performance mea-
sures reported in this article are relative to test sets). Second,
we generate 2 semi-synthetic external datasets, drawing bacte-
rial genomes from the Pathosystems Resource Integration Center
(PATRIC) [34], and simulating short-read data. We derive 2 PATRIC
datasets that represent drug resistance/susceptibility relative to
specific molecules or antibiotic classes, called PSSmoland PSScla,
respectively. This 2-fold design allows us to benchmark AMR-
meta against other existing tools—AMRPlusPlus 2.0, Meta-MARC,
and DeepARG—in a flexible way because their output levels vary
among antibiotic classes and more specific mechanisms. We use
PSSmol to score the AMR predictions and PSScla to estimate the
concordance of AMR-meta class predictions with those of other
methods. Finally, we combine AMR-meta with the other tools and
evaluate their predictions on 2 functional metagenomic datasets
that were sampled from a clinical and an environmental setting.
Our internal/external workflow is summarized in Fig. 1.

Feature encoding and prediction models
AMR-meta k-mer LASSO module
The baseline models of AMR-meta are logistic regressors (1 for
each antibiotic class) that use raw k-mers as input. Each model
uses the whole class-specific k-mer spectrum (derived from the
collated positive/negative training datasets), where each feature
is a binary value, representing the presence or absence of a par-
ticular k-mer in the dataset. Given the high-dimensionality of the
k-mer spectrum, we use least absolute shrinkage and selection

operator (LASSO) regularization to reduce the feature space, op-
timizing the shrinkage operator via cross-validation [35]. Given
the heterogeneity in gene diversity within each class (e.g., β-
lactamases have higher diversity than fluoroquinolones), we also
expect different cardinality of non-zero coefficients among the
class-specific k-mer LASSO regressors.

AMR-meta metafeature ridge module
One possible problem with k-mer LASSO regression is that a single
linear combination of k-mer features might not be able to explain
the variance of the entire dataset, even if discrimination perfor-
mance is good for the majority of genes in 1 class. A way to in-
crease the portion of variance explained is to use >1 linear com-
bination, e.g., the first mth vectors of a principal component analy-
sis. In this way, multiple independent combinations of k-mers can
more effectively represent the genetic diversity within antibiotic
classes.

Accordingly, we explore a space transformation—with con-
comitant dimension reduction—of the k-mer spectrum that iden-
tifies a set of (orthogonal) multiple features, i.e., metafeatures,
each as an independent combination of the original k-mers con-
tributing to a cumulative portion of the data variance. To do so,
we apply a matrix factorization approach, which has been previ-
ously shown apt to tackle complex feature extraction problems,
e.g., oncology and proteomics [36,37]. The method is based on
non-negative matrix tri-factorization [38]. The algorithm identi-
fies low-rank, non-negative matrices whose product provides an
approximation of the original non-negative matrix.

Here we consider 2 data domains, namely, k-mers and genes. A
k-mer is related to a gene if it is present in the gene sequence. Let
us denote the total number of genes with g; the total number of
k-mers with t; a matrix of r rows and c columns having all values
equal to zero with ∅r,c; and a matrix with 1 gene per row and 1
k-mer per column with Rg, t, and RT

g,t as its transpose. We denote
the transpose of a matrix A with superscript T as AT in the rest of
this article. We express the relation between the 2 domains by a
symmetrical, 4-block matrix:

R =
(
∅g,g Rg,t

RT
g,t ∅t,t

)
,

where non-diagonal block matrices represent the relation (inter-
sections) between k-mers and genes. Note that in this context, the
relation between elements is defined by design: We set the value
of R at an entry to 1 if the corresponding k-mer is present in the
corresponding gene, and 0 otherwise.

We denote the number of k-mer metafeatures and the number
of gene metafeatures as mt and mg, respectively. The factorization
procedure decomposes R into the product of 3 matrices G, S, and
GT, such that G × S × GT will approximate R by reducing the error
up to a user-defined lower bound set as the difference between
2 consecutive iterations (denoted with R ≈ GSGT). Here G repre-
sents the relation between the original domains (genes, k-mers)
and their metafeatures; and S represents the relation between the
metafeatures, i.e., how 1 domain is mapped to the other. The ma-
trices G and S have the following form, both expressed as 4-block
matrices:

G =
(

Gg,mg ∅g,mt

∅k,mg Gt,mt

)
and S =

(
Smg,mg Smg,mt

Smt ,mg Smt ,mt

)
.

We use the intersection between the data of the same domain
as constraints in the factorization process; i.e., each domain has
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Figure 1: AMR-meta training/test workflow. We assemble an internal dataset of AMR and non-AMR homologous genes from MEGARes and RefSeq
genes, on which AMR-meta models (k-mers, and metafeatures through matrix factorization) are trained and tested (70/30 split). AMR-meta and other
AMR classification tools are then externally tested on (i) semi-synthetic data from PATRIC at both antibiotic class and molecule levels (PSScla and
PSSmol) and (ii) functional metagenomics data (Soil and Pediatric).

a block, symmetrical constraint. We define the matrix � to rep-
resent the self-domain relations, i.e., gene/gene and k-mer/k-mer
relations. Therefore, � is an R × R matrix. The empty blocks of �

are the non-diagonal blocks. � =
(

�g,g ∅g,t

∅t,g �t,t

)
.

In � we set each entry to −1 if the corresponding row and col-
umn elements share a relation; 1 if unrelated; and 0 if the relation
is unknown. In this application, in the �t block we consider each
k-mer identical to itself (related, −1), while we make no assump-
tion about the relation with 2 different k-mers (not related, 0). In
the �g block, we consider all the genes of each class to be related
(−1), and different from the genes of other classes (1).

The goal of the factorization is to minimize the following ob-
jective function:

minG≥0(G; S) =
∑

||Ri j − GiSi jG
t
j|| + tr(G�Gt ), (1)

where || · || indicates the Frobenius norm and tr( · ) indicates the
trace. The objective function is composed of 2 parts: The first
part measures the difference between the original matrix and the
product of the 3 factorized matrices; the second part calculates
the adherence of the factorized metafeatures to the constraints,
in our case based on the AMR resistance class. The factorization
process proceeds in an iterative fashion until convergence to a lo-
cal minimum, with convergence heuristically defined by observ-
ing the value of the objective function and the corresponding re-
construction error below a user-defined threshold [36–38]. We fix
a threshold of 10−2 as the difference between consecutive itera-
tions, or reaching 5,000 iterations, as stop criteria. Previous works
discuss the method in detail [36,37]; a dedicated GitHub repos-
itory contains code and user manual [39]. The factorization pro-
cess, calculated over the full-length training genes, produces Gt,mt ,
which is the matrix relating the k-mers to their metafeatures. For
each short-read pair encoded as binary vector of k-mer occur-
rences sr1, t, we calculate its metafeatures as sr1,t × Gt,mt . Because
the optimal number of metafeatures can be hard to infer, and the
sizes of the matrices grow with the number of features [36,37], for
this application we used up to mt = 100 and mg = 25 metafeatures.
After factorization, we feed the metafeatures to a logistic regres-
sion, optimizing the coefficients with a ridge approach. Figure 2
provides a graphical representation of the factorization process.

Figure 2: The matrix tri-factorization scheme. AMR, non-AMR, and
AMR-homologous genes are paired up with k-mers across all antibiotic
resistance classes into the R matrix, and the dimension is reduced
through the R ≈ GSGt factorization, where the metafeatures are
extracted, revealing the AMR similarity phenotypes in the � matrix.

Training strategy
AMR genes
We collate AMR genes from MEGARes 2.0 [10], constituting the
positive (resistant) reference sets on the basis of the MEGARes an-
notation at the antibiotic class level. Of note, we exclude house-
keeping genes that confer resistance through single point muta-
tions.

Putative non-AMR bacterial genes
We include putative non-AMR genes from the RefSeq database
[40]. Using BLAST, we select the 1,000 RefSeq bacterial genes that
do not match to MEGARes (e-value = 10), aiming for a 1:1 target
ratio with the antibiotic class of highest frequency. This gene set
has high genetic divergence from the AMR genes in MEGARes, yet
the nucleotide content is fully bacterial.

AMR-homologous human and vertebrate genes
To mimic genes that likely do not provide AMR but share a sig-
nificant similarity with AMR genes, we assemble a dataset select-
ing AMR-homologous genes and gene fragments from the human
genome (GRCh38), and all the contigs in RefSeq labeled as "ver-
tebrate mammalian" and "vertebrate other" assemblies. To do so,
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we run an ungapped BLAST search of all MEGARes genes against
these human and vertebrate sequences (e-value = 0.01). We use
each unique sequence match, and add the flanking region to each
match, elongating the matched sequence to be equal in length
to the corresponding resistant MEGARes gene. Specifically, with a
match of nmatch nucleotides between target and query AMR gene,
we extend the match by nmatch/2 nucleotides in both directions on
the target MEGARes sequence. The underlying assumption here is
that matches of bacterial AMR genes on vertebrate genomes are
spurious or not functional and therefore do not provide AMR. Of
note, this set-up is similar to the test set derivation presented in
DeepARG [21].

k-mer–based and metafeature modeling
All k-mers present in the genes of the training datasets, exclud-
ing any sample reserved for validation (see next subsection), are
considered and counted using different values of k, from 13 to 77
based on prior literature evidence [14]. The best value for k is cho-
sen incrementally on the basis of internal validation performance,
stopping when performance decreases. Next, we stratify the train-
ing samples by class. We remove all k-mers with a frequency less
than a given cut-off f in a single class (3 or 5 upon internal vali-
dation). We also exclude AMR classes with <10 k-mers after fre-
quency filtering.

Simulation of metagenomic short-read data for training
We use the AMR datasets described above to generate short reads,
labeling each as resistant or susceptible to an antibiotic class. For
each MEGARes class, we generate short-read datasets providing
10× base coverage of the original full-gene data. These datasets
allow the evaluation of both false-positive and false-negative re-
sults.

External validation
We use 4 independent external datasets, 2 semi-synthetic (made
similarly to the training set) and 2 from functional metagenomic
experiments. Because the prevalence of AMR and the k-mer spec-
trum in the external test set is not guaranteed to be balanced as
in the training, we re-calibrate the k-mer and metafeature prob-
ability threshold for external validation using the internal vali-
dation dataset and a number of samples where the k-mer and
metafeature vectors are empty; i.e., they represent the non-AMR
gene background. The ratio is optimized between 1:0.05 and 1:10,
picking the first that meets the calibration target, i.e., a prediction
with a score <0.5 for a feature vector without any k-mer belonging
to our model.

Semi-synthetic datasets
We create the semi-synthetic datasets from PATRIC, downloading
via FTP full bacterial genomes and summary metadata [23,30]. We
retain only genomes annotated as susceptible or resistant after
an antibiogram test conforming to the Clinical & Laboratory Stan-
dards Institute (CLSI), which is the most frequent testing standard
in PATRIC, with >55,000 resistant and 54,000 susceptible records
[30]. Because the antibiotic nomenclature in PATRIC is molecule-
specific and does not match the MEGARes ontology hierarchy ex-
actly, we compile a lookup table linking each PATRIC drug annota-
tion to a MEGARes class. We remove PATRIC genomes that do not
refer to the AMR classes considered in the training phases or are
not included in the classes predicted by the concurrent methods.

We then generate 2 PATRIC semi-synthetic datasets (PSS),
based on PATRIC antibiotic molecule labels (PSSmol) and MEGARes
classes (PSScla), respectively.

We use PSSmol to assess the performance of our approach
and the concurrent methods on molecule-specific data. We re-
tain genomes that are resistant (or susceptible) to ≥1 MEGARes
class. We rank the PATRIC drug labels on the basis of number
of associated genomes, and we select the top ones on the basis
of the associated MEGARes classes. We exclude labels with <250
genomes or labels not referring to a specific molecule (e.g., tetra-
cycline). We generate 250,000 short reads for each PATRIC label,
equally divided between resistant and susceptible. Note that for
PSSmol, because the PATRIC labels refer to genome (and not the
specific gene, as in MEGARes), it is not possible to determine the
ground truth, i.e., whether a short read comes from a resistant
or a susceptible gene. To assess each method’s performance, in
the absence of such ground truth, we develop a scoring system
based on the assumption that a method should find more resis-
tant read pairs from resistant genomes and fewer from suscep-
tible genomes. With srres, res defined as the number of short-read
pairs coming from resistant genomes and classified as resistant,
and with srres, sus as the number of short-read pairs coming from
susceptible genomes and classified as resistant, we define the S-
score as S = srres, res − srres, sus. A higher S-score thus denotes bet-
ter performance, and a negative value implies that the method
finds more resistant short-read pairs among the susceptible
ones.

PSScla is collated at the class level. Unlike PSSmol, each short
read from PSScla has a known label that indicates whether it
comes from a resistant or susceptible gene. To generate PSScla,
first we remove PATRIC genomes presenting inconsistent class
annotations, i.e., that are annotated as both resistant and sus-
ceptible to antibiotics belonging to the same class. Second, to
consider only genomes that are resistant (or susceptible) to the
range of antibiotics within a given MEGARes class, we rank each
genome in decreasing order of the total number of annotations
of resistance (or susceptibility) to multiple drugs within the same
class. On the basis of this ranking, we retain only genomes that
rank above the 90th percentile. Third, we perform a class-by-
class BLAST filtering (e-value = 0.01, percent identity ∈ [70, 90])
of the selected PATRIC genomes against MEGARes genes, retain-
ing and clipping the unique genes of PATRIC genomes that match
MEGARes. The objective is to extract a set of PATRIC genes that
match to MEGARes genes but are not exact matches. In fact,
genes similar to known resistant genes coming from antibiotic
susceptible—by a phenotypic test—genomes represent excellent
candidates to test the ability of a classifier to recognize true/false-
positive results. From these selected PATRIC genes, we generate
short reads covering the selected genes, and capping the num-
ber of resistant or susceptible paired reads at ≤100,000 per AMR
class (i.e., 400,000 total reads per class). We reckon that with this
procedure, we are able to uniquely label each PATRIC instance
that passes the filter; however, in the BLAST alignment, there
could be flanking regions or inserts that produce artifact matches.
Nonetheless, given the strict parameters used, we we deem these
cases to be rare. A resistant sample likely contains only resis-
tant reads, and vice versa for a susceptible sample. Therefore, it is
possible to calculate sample-wide performance by counting the
proportion of resistant-within-resistant and susceptible-within-
susceptible reads in each test sample. After filtering, glycopep-
tides and lipopeptides are excluded because there are <15 resis-
tant genomes. Sulfonamides are excluded because no susceptible
genomes are retained by our filtering procedure.
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Functional metagenomics data
We benchmarked our method against 2 functional metagenomic
datasets, which we refer to as the Pediatric and the Soil datasets
(NCBI BioProject Accessions PRJNA244044 and PRJNA215106, re-
spectively). A functional metagenomics experiments is made by
cloning metagenomic DNA fragments into bacterial vectors grown
on antibiotic-laden media. The cultured bacteria surviving the an-
tibiotic exposure are sequenced using a clonally amplified high-
throughput sequence library. As per experimental design, for each
fosmid, all sequence reads contain ≥1 AMR gene (known or not
yet discovered) resistant to a known antibiotic. Therefore, each
sequencing experiment has a known antibiotic resistance label.
However, because the original metagenomics fragments can be
longer than a single AMR gene, a single fosmid might contain mul-
tiple AMR genes, or contain unknown genes. The Pediatric and Soil
datasets include fosmids from Escherichia coli (DH10B) and con-
sist of of 219 and 169 samples with an average of 1.98 and 1.12
million paired-end short reads, respectively, sequenced with Il-
lumina Genome Analyzer IIx technology. We use the aforemen-
tioned PATRIC annotation look-up table to pair antibiotic annota-
tions to MEGARes classes. For testing classifier performance, we
randomly select 100,000 short-read pairs for each class as for the
PATRIC datasets.

Software and hardware set-up
We process the training/validation data, the semi-synthetic
PSSmol and PSScla datasets, and the experimental functional
metagenomics data through in-house UNIX scripts, off-the-shelf
bioinformatics tools including BLAST, R, and Bioconductor. The
k-mer LASSO and the metafeature regression are developed in
R, bash, and C++. We download the functional metagenomics
datasets using NCBI’s sra-toolkit. For short read generation, we
use InSilicoSeq [41], simulating Illumina’s NovaSeq (thet com-
pany’s top-line production-scale sequencing instrument) reads
with default parameters. We exclude genes shorter than 151 bases
(length of NovaSeq’s short reads) from the simulations. Code and
R scripts are available publicly at the project home page.

Results
AMR-meta provides competitive prediction
performance on multiple AMR classes
We generate 13 datasets, corresponding to the following an-
tibiotic classes (according to the MEGARes ontology): amino-
glycosides, β-lactamases, drug and biocide resistance, fluoro-
quinolones, glycopeptides, lipopeptides, macrolide-lincosamide-
streptogramin (MLS), multi-biocide resistance, multi-drug resis-
tance, multi-metal resistance, phenicols, sulfonamides, and tetra-
cyclines. We exclude classes with <10 k-mers after frequency fil-
tering. Upon internal validation, the best k-mer length k and fre-
quency threshold f are 13 and 5, respectively (the performance
decreases at k = 31 and for f = 3 with the same or higher k). Upon
optimization of the k-value, the total number of unique 13-mers is
138,260, and the median number per class is 3,645 (interquartile
range [IQR], 1,658–7,168). The matrix factorization includes 5,175
training genes, yielding a matrix R of 138,260 + 5,175 = 143,435
rows and columns, and a k-mer/metafeature matrix of 138, 260 ×
100 elements.

Table 1 shows the class-specific performance summaries by k-
mer and metafeature regression on the internal validation sets.
On the internal validation set, the k-mer LASSO and the metafea-
ture regression exhibit a good trade-off between sensitivity and

specificity at both k-values. The median number of features se-
lected by k-mer LASSO is 12,783 (IQR, 12,304–13,179). As expected,
the highest number of non-zero coefficients is found in the β-
lactamase class, which is the class with higher diversity and num-
ber of resistant genes in MEGARes. The same holds for the high-
est number of metafeatures with positive coefficients (note that
each metafeature is derived from the matrix factorization de-
scribed above, incorporating several hundreds of thousands of k-
mer/gene elements). In terms of performance, for LASSO, the me-
dian (IQR) f-measure across all classes is 0.7 (0.2–0.9), while for the
metafeature regression, the median f-measure is 0.4 (0.2–0.7). For
both methods, the best-performing classes are β-lactamases and
fluoroquinolones, while the most problematic are MLS, and multi-
biocide, -drug, and -metal resistance. Despite the k-mer LASSO
having a higher median f-measure, the metafeature regression
performs better in the problematic MLS and drug and biocide
classes and shows better sensitivity in glycopeptides and better
specificity in fluoroquinolones and lipopetides. For reference com-
parison, the median f-measure across classes is 0.5 (IQR, 0.3–0.7)
for DeepARG and 0.9 (IQR, 0.9–1.0) for Meta-MARC, based on the
original articles’ validation results. AMRPlusPlus 2.0 does not re-
port per-class results on test sets.

AMR-meta generalizes robustly on external,
semi-synthetic datasets
The PSSmol dataset includes 12 molecule labels incorporated
into antibiotic classes, namely, ciprofloxacin and levofloxacin
(fluoroquinolones), gentamicin and amikacin (aminoglycosides),
ceftriaxone and ampicillin (β-lactamases), chloramphenicol
(phenicols), sulfisoxazole (sulfonamides), erythromycin and
azithromycin (MLS), tigecycline (tetracyclines), and vancomycin
(glycopeptides). Performance results in terms of S-score, which
summarizes the correct resistance and susceptible hits (the
higher the better), are shown in Fig. 3. The median S-score for the
k-mer LASSO is 285.5 (IQR, 123.5–540), and for the metafeature
regression is 322 (IQR, 73–470). Meta-MARC scores 250 (IQR, 72–
359.5), DeepARG scores 144.5 (IQR, 43–345), and AMRPlusPlus 2.0
scores −29 (IQR, −377.5 to 210). Overall, our metafeature approach
shows both the highest performance and stability, also exhibiting
a positive score in the levofloxacine molecule, whereas all the
other methods produce a negative score. The k-mer LASSO com-
ponent ranks second, followed by the other off-the-shelf tools.

AMR-meta predictions complement those of
existing algorithms
Next, we measure the correlation between the predictions of
the 2 AMR-meta modules and the ones from the other algo-
rithms. Because PSSmol does not have a per-gene defined ground
truth, we assemble PSScla. The PSScla dataset includes 6 of the
13 MEGARes classes, namely, aminoglycosides, β-lactamases, flu-
oroquinolones, MLS, phenicols, and tetracyclines. PSScla has in-
stances from both positive (resistant) and negative (susceptible)
genes. When we look at the class-specific concordance for each
pair of tools using the the Spearman rank correlation (Fig. 4),
PSScla shows that the algorithms behave differently. Specifically,
DeepARG, Meta-MARC, and AMRPlusPlus 2.0 are highly correlated
in most of the antibiotic classes (range 0.59–0.92), while they have
low correlation with the k-mer LASSO and the metafeature re-
gression (range 0.04–0.12)—which in turn show mild-low corre-
lation (range 0.12–0.49). Thus, both k-mer LASSO and metafea-
ture regression stand distant from each other and the other meth-
ods. The PSScla dataset is explicitly constructed to measure class-
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Table 1: Performance of k-mer LASSO and metafeature ridge regression in predicting antibiotic class susceptibility/resistance on the
internal test sets (30% of full dataset)

k-mer LASSO Metafeature ridge

Antibiotic class N (test)
No.

features f-measure MCC Sensitivity Specificity
No.

metafeatures f-measure MCC Sensitivity Specificity

Aminoglycosides 4,920 13,162 0.85 0.84 0.79 0.99 54 0.58 0.54 0.57 0.97
β-lactamases 36,052 19,483 0.96 0.93 0.94 0.99 74 0.89 0.79 0.83 0.96
Drug and biocide
resistance

5,055 13,064 0.36 0.39 0.93 0.76 56 0.39 0.93 0.7 0.66

Fluoroquinolones 1,286 11,462 0.98 0.98 0.96 1 50 0.9 0.9 0.92 1
Glycopeptides 3,200 12,700 0.8 0.8 0.7 1 54 0.23 0.27 0.84 0.75
Lipopeptides 1,084 12,356 0.85 0.85 0.76 1 43 0.8 0.8 0.73 1
Macrolide-
lincosamide-
streptogramin

2,210 14,064 0.2 0.28 0.93 0.77 54 0.3 0.29 0.38 0.97

Multi-biocide
resistance

1,412 12,304 0.13 0.2 0.88 0.76 51 0.1 0.16 0.78 0.73

Multi-drug
resistance

1,387 12,280 0.13 0.21 0.91 0.77 48 0.11 0.18 0.83 0.74

Multi-metal
resistance

2,407 13,179 0.21 0.28 0.92 0.76 62 0.18 0.25 0.9 0.73

Phenicols 922 11,115 0.74 0.74 0.66 1 51 0.44 0.44 0.53 0.99
Sulfonamides 531 12,783 0.75 0.78 0.6 1 54 0.75 0.77 1 0.6
Tetracyclines 4,208 14,286 0.86 0.85 0.8 1 43 0.67 0.65 0.67 0.98

Results show f-measure, Matthews correlation coefficient (MCC), sensitivity, and specificity; also, the number of non-zero k-mer LASSO and positive metafeature
ridge coefficients are shown.

Figure 3: Performance of AMR-meta (k-mers and metafeatures) and of other off-the-shelf tools on the molecule-level PATRIC semi-synthetic data
(PSSmol). The S-score is the difference between short-read pairs predicted as resistant from the pooled resistant and susceptible genomes drawn from
PATRIC.

specific concordance, with very similar resistant and susceptible
instances. However, for this reason, the PSScla becomes by design
a challenging dataset for classification because the reads derived
from susceptible genes all align well with other resistant genes in
the same AMR class. Thus, the performance of all algorithms will
tend to flatten. Nonetheless, the metafeature approach exhibits
the highest median accuracy. Overall—pooling both resistant and
susceptible for each AMR class—the k-mer LASSO median rate
of correct predictions is 44% (IQR, 35–48%), the metafeature ridge
46% (IQR, 33–48%), DeepARG 44% (IQR, 36–47%), AMRPlusPlus 2.0
45% (IQR, 36–50%), and Meta-MARC 44% (IQR, 36–47%).

AMR-meta has lower false-positive rate on
negative examples than other algorithms
As a sensitivity analysis, to study how the different algorithms
behave with the negative samples in PSScla, we sample the nega-

tive genomes based on their similarity with the positive ones, us-
ing increasing matching thresholds, i.e., 70–75%, >75–80%, >80–
85%, and >85–90%. The hypothesis is that the false-positive rate
correlates with the threshold; i.e., algorithms tend to mis-classify
non-AMR reads/genes that share high similarity with AMR genes.
Because AMR-meta is specifically trained on both negative and
positive examples, the expectation is that the algorithm will pick
fewer false-positive results than other methods. We thus assem-
ble datasets for each AMR class and for each of the 4 ranges of sim-
ilarity percentage, with a cap of 250 random genomes per class. As
expected, the false-positive rate increases with similarity, and the
metafeature model is the method with the lowest median false-
positive rate (0.02), followed by DeepARG (0.06), Meta-MARC (0.2),
k-mer LASSO (0.23), and AMRPlusPlus (0.3). The full results, strati-
fied by class and threshold ranges, are provided in Supplementary
Fig. S1.
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Figure 4: Spearman rank correlation of the AMR classifiers on the
PATRIC semi-synthetic data (PSScla).

AMR-meta ensemble for functional genomics
The Soil and Pediatric datasets come from functional metage-
nomics experiments that by design guarantee the presence of an-
tibiotic resistance in a sequence sample because the sample is
cultured on antibiotic-laden medium. However, sequenced reads
can also contain other or unknown genes, which cannot be quan-
tified. We consider here the hit rate, i.e., the proportion of se-
quence reads classified as resistant. Caution: a higher hit rate
can signify that a method finds more AMR genes but also that a
method finds more false-positive genes. Given that AMR-meta is
designed to decrease the false-positive rate, we expect it to be the
most conservative. Yet, to empirically identify a trade-off between
the approaches, in addition to running each single model, we also
built an ensemble using voting with k-mer LASSO, the metafea-
ture regression, and the individual models’ predictions as input
features (requiring ≥2 concordant predictions for classifying re-
sistance).

On Soil, the voting ensemble achieves the highest hit rate,
with a median fraction of read pairs identified as resistant of
7.72% (IQR, 1.28–10%), followed by AMRPlusPlus 2.0 with 7.03%
(IQR, 1.06–7.48%), DeepARG with 6.27% (IQR, 1.21–7.32%), Meta-
MARC with 4.97% (IQR, 1.86–8.68%), the k-mer approach with
1.94% (IQR, 0.7–2.49%), and the metafeature approach with 0.08%
(IQR, 0.01–0.65%). On Pediatric, Meta-MARC achieves the highest
hit rate with a median of 8.51% (IQR, 2.29–28.14%), followed by

the k-mer approach with 0.27% (IQR, 0.2–4.8%), the voting en-
semble with 0.27% (IQR, 0.05–4.97%), AMRPlusPlus 2.0 with 0.2%
(IQR, 0.02–11.95%), DeepARG with 0.19% (IQR, 0.02–8.06%), and the
metafeature approach with 0.01% (IQR, 0–0.4%). We observe large
variations in each method depending on the class considered. It
has to be noted that Meta-MARC’s threshold was previously re-
calibrated on these datasets, and its standard threshold is much
more conservative. As expected, the metafeature module is the
most conservative on both datasets, while the voting ensemble
offers a balanced alternative in all cases. Interestingly, the k-mer
approach is one of the least conservative on the Pediatric set. De-
tailed results on the external Pediatric and Soil functional metage-
nomics datasets are illustrated in Fig. 5.

Run-time comparison
To compare execution times, we create benchmark datasets of in-
creasing size by selecting reads drawn from the semi-synthetic
PATRIC data (across all classes), generating files of 1, 2, 5, and 10
GB of paired short-read files. We run all algorithms on the Uni-
versity of Florida’s High-Performance Cluster—HiPerGator 3.0—
using a single node, composed by 4 AMD Opteron 6378 cores, with
32 GB of RAM. Table 2 shows run-times on the node. AMRPlus-
Plus 2.0 and AMR-meta k-mer LASSO are the fastest tools, with a
time of execution difference within minutes up to 5 GB load. , and
Meta-MARC is considerably slower (30-fold), hitting the 24-hour
wall time for files >1 GB.

Discussion
In this work, we present AMR-meta, an alignment-free, k-mer–
and metafeature-based AMR classifier for short-read metage-
nomics data. AMR-meta uses an augmented training strategy
based on non-AMR and AMR-homologous genes, providing rele-
vant classification performance increment across various antibi-
otic classes.

Historically, the main objective of AMR characterization by
metagenomics sequencing has been to identify known AMR genes,
using comprehensive and up-to-date databases. However, the
absence of non-AMR genes (negative examples) and of AMR-
homologous sequences that do not have a role in resistance
can hamper AMR classification accuracy and affect the trade-
off between sensitivity and specificity. Notably, there are metage-
nomics classification tools that exploited the negative-positive
k-mer representation paradigm. For instance, Clark weighs dif-
ferently k-mers that are found only in specific species, as com-
pared to those that are shared by different species or genera
[42]. Other studies, focused on full-genome analysis and based
on in vitro susceptibility, have shown high discriminating abil-
ity and capacity to identify potential new resistance features
[27, 29].

It is worth mentioning that comparing different AMR tools can
be challenging because not all use the same ontology or provide
classifications at the same annotation level. For instance, Meta-
MARC is trained on a self-determined similarity-based clustering
of AMR genes, yet it is able to provide predictions at the mecha-
nism/class/group level according to MEGARes ontology, matching
the outputs of AMRPlusPlus 2.0 and AMR-meta. Instead, DeepARG
uses a unique set of AMR categories derived from the CARD and
ARDB. At this point, comparison of tools requires making an arbi-
trary choice on the AMR ontology to be used, and on the annota-
tion level (e.g., class rather than mechanism), potentially penaliz-
ing one approach over another, as we show in our semi-synthetic
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Figure 5: Percentage of sequence reads predicted resistant on the functional metagenomics data (Soil and Pediatric) by AMR-meta, off-the-shelf tools,
and their voting ensemble.

Table 2: Running times (hh:mm:ss) of AMR classification tools on metagenomics short-read data (reads drawn from the PATRIC datasets),
151 bases, paired end, fastq format

File size (R1+R2) No. of reads (R1+R2) AMR-meta (k-mer) AMRPlusPlus 2.0 Meta-MARC DeepARG

1GB 1,584,451 00:22:16 00:21:19 16:26:27 00:53:01
2 GB 3,168,014 00:43:37 00:49:40 >24 h 01:38:55
5 GB 7,924,402 01:47:24 01:35:47 >24 h 03:41:06
10 GB 15,851,366 03:32:46 02:48:43 >24 h 11:42:16

PATRIC datasets PSSmol and PSScla. In addition, summarizing re-
sults over antibiotic classes can also introduce bias, given the high
class imbalance in terms of antibiotics, gene frequency, and the
aforementioned heterogeneity of intra-class gene diversity. It is
understandable that a unified AMR ontology is difficult to achieve,
yet an effort of the community to create common, standardized
protocols for benchmarking and comparison is warranted.

One limitation of our approach is in the sample resis-
tance/susceptibility annotation for validation and benchmark
datasets. First, we label most of the bacterial genes that do not
match to MEGARes as drug-susceptible, while in reality these
sequences might contain new, undiscovered AMR genes. Sec-
ond, there might be inconsistencies with antibiogram results in
PATRIC.

Other limitations include the fact that we try only 1 metafea-
ture approach—matrix factorization—while other methods could
be tested, e.g., sparse binary principal/independent component
analysis. Finally, it is known that k-mer approaches are not very
sensitive to mutations, while mutant genes can still carry resis-
tance.

Future development for AMR-meta including new strategies to
select positive/negative labeled examples (and mutant genes) can
further improve the classification performance. As another per-
spective, given the availability of efficient data structures for k-
mer modeling, the LASSO module of AMR-meta could also be ef-
ficiently implemented as stand-alone AMR classifier to process

data from portable sequencers in real time using mobile devices
[43].

Availability of Source Code and
Requirements
� Project name: AMR-meta
� Project home page: https://github.com/smarini/AMR-meta
� RRID:SCR_022026
� biotoolsID: biotools:amr-meta
� Operating system: Linux
� Programming language: Bash, R, C++
� Other requirements: R packages Matrix, stringr, glmnet
� License: MIT

Data Availability
As stated in the Methods, the datasets supporting the results
of this article are obtainable from public sources, specifically
Refseq, ncbi.nlm.nih.gov/refseq; MEGARes, megares.meglab.org;
NCBI BioProject PRJNA244044, ncbi.nlm.nih.gov/bioproject/2440
44; NCBI BioProject PRJNA215106, ncbi.nlm.nih.gov/bioproject/21
5106; and PATRIC, patricbrc.org. The AMR-meta algorithm, in-
cluding a containerized version via Singularity, is available at
github.com/smarini/AMR-meta. Snapshots of our code and other

https://github.com/smarini/AMR-meta
http://ncbi.nlm.nih.gov/refseq
http://megares.meglab.org
http://ncbi.nlm.nih.gov/bioproject/244044
http://ncbi.nlm.nih.gov/bioproject/215106
http://patricbrc.org
http://github.com/smarini/AMR-meta
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data further supporting this work are openly available in the Gi-
gaScience respository, GigaDB [44].

Additional Files
Supplementary Figure S1: Cumulative FP ratio over PSScla sub-
sets. Negative short reads from the set genomes have been col-
lated according to the growing similarity of BLAST matches, i.e.,
70–75%, >75–80%, >80–85%, and >85–90%. FP ratio has been cal-
culated for each subset. The figure reports the cumulative FP ratio
for the different thresholds. Sets not represented in the figure did
not provide genomes with similarities within the corresponding
column ranges.
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