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Abstract

While access to soluble recombinant proteins is essential for a number of proteome studies, preparation of purified
functional proteins is often limited by the protein solubility. In this study, potent solubility-enhancing fusion partners were
screened from the repertoire of endogenous E. coli proteins. Based on the presumed correlation between the intracellular
abundance and folding efficiency of proteins, PCR-amplified ORFs of a series of highly abundant E. coli proteins were fused
with aggregation-prone heterologous proteins and then directly expressed for quantitative estimation of the expression
efficiency of soluble translation products. Through two-step screening procedures involving the expression of 552 fusion
constructs targeted against a series of cytokine proteins, we were able to discover a number of endogenous E. coli proteins
that dramatically enhanced the soluble expression of the target proteins. This strategy of cell-free expression screening can
be extended to quantitative, global analysis of genomic resources for various purposes.
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Introduction

Rapid progress in sequencing technology is generating enor-

mous amounts of sequence data, making protein expression a

major bottleneck in the functional analysis of identified genetic

resources [1,2,3,4]. When compared to traditional cell-based gene

expression, cell-free protein synthesis offers excellent speed and

flexibility for parallel expression of multiple proteins [5,6,7]. For

instance, Kwon et al. were recently able to identify novel

transaminases from the genomic sequences of Rhodobacter sphaeroides

and Mesorhizobium loti strains by cloning-independent, cell-free

expression analysis of computer-predicted putative tranaminase

sequences [8]. In theory, cell-free synthesis enables functional

interpretation of protein-coding sequences from any genomes with

unsurpassed throughput.

However, similar to the case of cell-based gene expression, cell-

free synthesized proteins often fail to acquire a native soluble

structure, hampering downstream analysis of the translation

products. Combining target proteins with a solubility-enhancing

partner is one of the most generic, but effective tactics to promote

the solubility of recombinant proteins [9]. Many otherwise highly

insoluble proteins have been expressed as soluble fusion proteins

with a number of solubility-enhancing fusion partners including

glutathione-S-transferase (GST) [10]. maltose binding protein

(MBP) [11,12], thioredoxin (Trx) [13], NusA [14], and SUMO

protein [15], However, only a few established fusion partners are

currently available; thus, the development of novel fusion partners

is necessary to enable proficient expression and analysis of rapidly

increasing protein-coding sequences.

The use of fusion partners can influence the translational efficiency

of the target genes as well as the solubility of the translation products.

Indeed, it is well known [16,17,18,19,20,21,22] that the nature of

initial codons next to the start codon has a crucial effect on the

expression efficiency of the downstream genes [23]. Therefore, both

the overall expression level and relative solubility of the target proteins

can be altered upon N-terminal fusion with fusion partners. Since

neither the effect of the fusion partner sequences on the translation

efficiency or solubility of the translation product can be predicted,

selection of optimal fusion partners that allow the maximum

expression of soluble target proteins requires exhaustive expression

studies of different gene constructs. While combinatorial expression

analysis has been a challenging task due to the limited throughput of

cell-based gene expression, in this study, we conducted large scale

cell-free expression screening of solubility-enhancing fusion partners

from highly abundant E. coli proteins. Among the more than 1,000

different protein species that exist in E. coli cells during normal

growth, ribosomal proteins and other protein synthesis-related

proteins represent the most abundant protein species [24,25,26,27].

For example, ribosomal proteins account for as much as 34% of the
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total cellular protein mass and approximately 8% of the total cellular

volume of E. coli [26,28,29]. We speculated that these extremely

abundant proteins have more efficient folding pathways than other

endogenous proteins to enable tolerance of such a high concentration

inside the cells. Based on this assumption, it is expected that these

proteins could be used as the fusion partners to enhance the soluble

expression of heterologous proteins in a cell-free protein synthesis

system derived from E. coli extracts. During the initial screening, 88

fusion partner proteins were investigated for their ability to improve

the expression level and solubility of three model proteins (human b-

defensin 2, human epidermal growth factor, and human erythropoi-

etin). Among the 88 tentative fusion partners examined, 12 E. coli

proteins were found to be exceptionally effective at improving the

expression of model proteins in terms of the expression level and

solubility. The fusion partners selected during the primary screening

were then applied for soluble expression of 24 cytokines, a class of

proteins that are extremely difficult to express in soluble forms in the

present cell-free synthesis system derived from E. coli extract.

Through the expression screening analysis of 288 combinatorial

fusion constructs (12 fusion partners against 24 cytokines), we were

able to select potent fusion partners that enhanced the soluble

expression of target proteins by as much as 29 fold. Although the

effect of the examined fusion partners appeared to be protein specific,

a number of fusion partners led to particularly dramatic improve-

ments in the expression of soluble proteins.

Materials and Methods

Materials
ATP, GTP, UTP, CTP, creatine phosphate, creatine kinase and

E. coli total tRNA mixture were purchased from Roche Applied

Science (Indianapolis, IN). L-[U-14C]leucine (11.9 GBq/mmol)

was obtained from Amersham Biosciences (Uppsala, Sweden).

E. coli strain BL21-StarTM (DE3) was obtained from Invitrogen

(Carlsbad, CA). Oligonucleotides used in this study were

synthesized by Integrated DNA technologies on a 25 nmole scale

with standard desalting purification. All other reagents were

purchased from Sigma (St. Louis, MO) and used without further

purification. The S30 extract was prepared from strain BL21-

StarTM (DE3) according to previously described methods [17,23].

cDNAs of human and murine cytokines were obtained from the

Bank for Cytokine Research (Chonbuk, Korea).

PCR construction of expression templates
Combinatorial gene constructs of fusion partners and target

proteins were prepared via three-step PCR as shown in Figure 1,

after which they were used directly as the expression templates without

purification. In the first-round PCR, fusion partner sequences from

the genomic DNA of E. coli K12 strain and target sequences from the

cloned genes were amplified separately. Pairs of fusion partners and

model protein genes were then joined and amplified in the subsequent

second and third-round PCR reactions, respectively (see Table S1 for

the sequences of the primers used in each PCR reaction).

Cell-free protein synthesis reactions
The standard reaction mixture for cell-free protein synthesis

consisted of the following components: 57 mM Hepes–KOH (pH

8.2), 1.2 mM ATP, 0.85 mM each of CTP, GTP, and UTP,

2 mM DTT, 0.17 mg/ml E. coli total tRNA mixture (from E. coli

strain MRE600), 0.64 mM cAMP, 90 mM potassium glutamate,

80 mM ammonium acetate, 12 mM magnesium acetate, 34 mg/

ml l–5-formyl-5,6,7,8-tetrahydrofolic acid (folinic acid), 1.0 mM

each of 20 amino acids, 2% polyethylene glycol (PEG) 8000,

67 mM creatine phosphate (CP), 3.2 mg/ml creatine kinase (CK),

0.01 mM L-[U-14C]leucine (11.9 GBq/mmol, Amersham Biosci-

ences), and 10 mg/ml DNA, 24% (v/v) S30 extract.

The amounts of the cell-free synthesized proteins were

determined by measuring the TCA-precipitated radioactivity in

15 ml of reaction sample as previously described [30,31]. The

solubility of the synthesized protein was estimated based on the

ratio of the TCA-precipitated radioactivity of the reaction samples

before and after centrifugation at 20,000 RCF for 20 min [32].

Results

Preparation of combinatorial fusion constructs for cell-
free synthesis of aggregation-prone proteins

56 ribosomal proteins, 21 translation-related factors and molecular

chaperones, three OB-fold domains, and eight of the most commonly

used fusion partner proteins were examined as fusion partners for the

expression of aggregation-prone proteins (Table 1). For the initial

screening, each of the genes of the tentative fusion partners was fused

to the N-termini of three different model proteins, human b-defensin

2 (hBD-2), human epidermal growth factor (hEGF) and human

erythropoietin (hEPO). These model proteins were selected because

they show very poor expression levels and solubility in the present

cell-free protein synthesis system. The DNA constructs used to direct

the synthesis of fusion proteins were prepared through three-step

PCR procedures using six primers for each fusion construct as

outlined in Figure 1A. The constructs were designed to include the

T7 promoter and ribosomal binding site in the 59-UTR and the T7

terminator sequence in the 39-UTR. In addition, the cleavage site for

Factor Xa (ATCGAAGGCCG, Ile-Glu-Gly-Arg) following a short

linker (GGTGGTAGT, Gly-Gly-Ser) was introduced between the

fusion partner and target protein coding genes (Figure 1B). After

being confirmed on an agarose gel for their size and relative amounts

(Figure 2), the PCR products coding for each fusion protein were

incubated in the reaction mixture for protein synthesis as described in

the Materials and Methods.

Effect of fusion partners on the solubility and expression
level of target proteins

As shown in Figure 3, both the expression level and solubility of

the target proteins showed drastic variations in the presence of

different fusion partners (Tables S2, S3, S4). For example, in the

case of hBD-2 expression, the greatest increase in the amount of

translation product was obtained when the target gene was fused

with ibpA. However, in this case, most of the expressed protein

was found in the insoluble fraction. In contrast, fusion partners

such as S6 (30S ribosomal subunit S6) were found to enhance the

expression level while keeping most of the translation products

substantially soluble. Approximately 500 mg/ml of hBD-2 fusion

protein was produced, 56% of which was soluble when S6 was

fused with hBD-2. Furthermore, some of the examined fusion

partners, including L7 (50S ribosomal subunit L7) and fkpB, were

able to enhance the soluble expression of all three model proteins.

Based on molar quantities, when compared to the native protein,

the amount of soluble molecules was increased by approximately

19 – 32 fold.

Parallel screening of optimal fusion partners for soluble
expression of cytokine molecules

From the 88 tentative fusion partners examined above, we

selected 12 fusion partners that gave rise to more than a five-fold

increase in the amount of soluble products for at least two of the

three target proteins (Figure 4 and Figure S1). It should be

noted that only Trx was selected from the conventional fusion

Cell-Free Expression Screening of Fusion Partners
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partners examined, while all other generally used fusion

partners failed to improve the soluble expression of the primary

model proteins substantially. While some of the conventional

fusion partners greatly improved the solubility of the translation

product, the total yield of the fusion protein was not enhanced

as much (NTL9, Ub). In other cases, the partners did not

increase the solubility, while the overall yield was improved

(GST, NusA, Trx). In contrast, 11 fusion partners selected from

the E. coli genome were able to improve the efficiency of gene

expression while maintaining the translation product in a highly

soluble form.

We next evaluated the effect of the selected fusion partners

against 24 different cytokine species derived from humans and

mice. When expressed from their native sequence, most of the

examined cytokines exhibited very low yield and poor solubility

(139 mg/ml and 18% average yield and solubility, respectively).

However, upon fusion with the 12 selected fusion partners, most

of the examined cytokines showed a substantially enhanced yield

of soluble products due to increases in both total protein

production and solubility (Figure 4). Among those, L7 and S6

were found to be exceptionally effective at enhancing the

production of soluble proteins. Soluble yields of 20 out of 24

examined cytokines were improved when fused with the L7

protein with levels of enhancement ranging from 1.5 to 29 fold.

Similarly, S6 increased the soluble expression of 21 cytokines

from 2.5 to 15 fold.

Figure 1. Three-step PCR reactions to assemble linear expression template. (A) Schematic representation of PCR-based generation of fusion
constructs. Two primary PCR products with defined overlapping ends are synthesized by the first PCR reaction. These two fragments are joined in a
second PCR, overlap extension PCR and subsequent third PCR step introduces the regulatory elements necessary for transcription and translation to
the fused target genes. (B) Sequence elements of final amplified expression template.
doi:10.1371/journal.pone.0026875.g001
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Relationship between solubility and physicochemical
properties of protein

The level of enhancement in the solubility and expression in

response to fusion with the 12 fusion partners showed wide

distributions depending on the targeted cytokine molecules. The

set of expression and solubility data generated in this study

(12624 = 288) was analyzed for the presence of common

properties of the nucleotide and amino acid sequences that

determine the expression efficiency and solubility of the

expressed fusion molecules. First, total expression levels of the

examined constructs did not show clear correlations with their

GC contents (Figure 5A). However, there appeared to be a

positive correlation between protein expression efficiency and

codon adaption index (CAI) (Figure 5B) as well as a certain degree

of bias in the initial nucleotide sequence of the well-expressed

fusion constructs (Figure 5C). Since all of the fusion partners

were added at the N-terminus of the target proteins, this finding

reflects the relative expression efficiency of the fusion partners

due to the identities of their initial codons. The solubility data

generated from the primary and secondary screening procedures

were also analyzed to explore the general pattern correlating the

physicochemical properties of the fusion proteins and their

solubility. While the solubility of the fusion molecules appeared

to be related to the composition of amino acids (for example, the

contents of charged amino acids), the distribution of solubility

generally seemed to occur at random against different param-

eters (Figure 5 D–G). Therefore, the effect of fusion partner

appears to be due to the intrinsic nature of the fusion partners,

rather than changes in the amino acid composition introduced

by the fusion partners.

Figure 2. Agarose gel electrophoresis of PCR products.
doi:10.1371/journal.pone.0026875.g002

Table 1. Fusion partners used in this study.

Category Partner protein

Conventional fusion partner (8) MBP[36], Trx[37], GST[38], NusA[39], Ubiquitin (Ub)[40], Domain I of IF-2 (DI-IF2, 1–158)[41], N-terminal domain of L9
(NTL9, 1–56) [42]

Ribosomal protein (56) 30S ribosomal subunit
S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22
50S ribosomal subunit
L1, L2, L3, L4, L5, L6, L7, L9, L10, L11, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L27, L28, L29, L30, L31,
L31B, L32, L33, L34, L35, L36

Translation-related factor (4) EF-Tu, EF-P, IF1, IF3

Chaperone protein (17) IbpA, IbpB, Skp, SlyD, DsbA, DsbB, DsbC, SecB, SecE, SecG, GrpE, FkpB, FklB, GroEL, GroES, GroEL191–345, GroEL191–376

OB-fold domain (3)* LysN1–145, AspN1–102, AsnN1–99

*This family contains OB-fold domains that bind to nucleic acids (oligonucleotide/oligosaccharide-binding fold). The family includes the anti-codon binding domain of
lysyl, aspartyl, and asparaginyl-tRNA synthetases [43].
doi:10.1371/journal.pone.0026875.t001
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Figure 3. Solubility and expression efficiency of fused gene constructs. Eighty seven fusion partner genes were combinatorially fused to
three different genes (hBD2, hEGF, hEPO) using three-step PCR. All PCR products coding each fused gene were directly used as expression templates
for cell-free protein synthesis where expression efficiency and solubility were measured. After 3 h for cell-free expression, the reaction samples were
centrifuged at 10,000 rpm for 30 min. Both pellet and soluble fractions were analyzed by radioactivity counting. The degree of solubility and
expression yield enhancement for each fusion gene is colorized with red and blue respectively.
doi:10.1371/journal.pone.0026875.g003
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Discussion

While the proteomics approach for understanding the networks

of protein function is represented by characterization of global

changes at the level of their expression/post-translation modifica-

tion by mass spectrometry and 2D gel electrophoresis, data

obtained from proteomic analysis frequently needs to be

complemented with detailed information regarding the individual

proteins participating in the functional networks, which can be

accelerated using a reliable method for high-throughput expres-

sion and analysis of protein molecules. By programming with

PCR-amplified genes, cell-free protein synthesis enables multi-

plexed, rapid preparation of protein molecules for subsequent

downstream analyses such as structure determination and analysis

of biological activities. With the use of automated liquid handling

devices, thousands of recombinant proteins can be readily

prepared for genome-wide expression analysis of ORFs, providing

an ideal platform for ‘reverse proteomics’. In addition, unlike cell-

based gene expression, the amounts of cell-free synthesized

proteins can be precisely determined by measuring the incorpo-

ration of labeled amino acids into the synthesized proteins,

allowing for precise quantification of total and soluble translation

products.

However, the solubility issue of the expressed proteins remains

the major hurdle to overcome for large-scale investigation of

protein function. In this study, cell-free expression analysis of

combinatorial fusion constructs between aggregation-prone target

proteins and a series of fusion partners was used in an attempt to

Figure 4. Combinatorial examination of fusion partners for the expression of different cytokines. (A) Fold enhancement of soluble
expression of cytokines by the examined fusion partners. (B) Fold enhancement of total expression yield by fusion with the examined fusion partners.
(C) A bubble chart where the size of each bubble diameter is proportional to the fold enhancement of the expression efficiency of total protein.
Detailed stacked bar graphs of individual fusion protein are shown in Figure S1.
doi:10.1371/journal.pone.0026875.g004
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screen optimal fusion partners that provide the maximum

expression level of soluble proteins. In addition to the commonly

used generic fusion partners, we included highly abundant E. coli

proteins in the list of tentative fusion partners. This was done for

two reasons. First, although the primary purpose of adding fusion

partners is to improve the solubility of target proteins, the presence

of a fusion partner can also influence the efficiency of the

expression of the entire fusion protein due to the initial codon

effect. Therefore, by using the sequences of proteins that are highly

expressed by the E. coli translational machinery, we expected to

enhance the overall expression level of the target proteins in our

cell-free synthesis system derived from E. coli. In addition, we

assumed that highly abundant proteins have properties that

enables them to decrease their aggregation, which will be

necessary for bacterial cytoplasmic proteins to minimize their

deposition at the concentrations required for their proper

biological functions [33,34]. Therefore, by using those abundant

proteins as the fusion partners, we sought to enhance both the

expression level and solubility of the resulting fusion proteins.

Cytokines were selected as the target proteins since they are a

Figure 5. Statistical analysis for the relationships between solubility/yield and physicochemical properties. (A) Relationship between
expression efficiency and GC content. (B) Histograms of codon adaptation index for highly expressed genes and poorly expressed genes. (C)
Sequence logos of downstream region of proteins with high expression efficiency (.70% enhancement), which was created with WebLogo software
[44]. (D) Solubility distribution for quantified proteins. Histogram of solubility for the quantified proteins in Figure 3. The proteins with solubilities
,30% and .70% were defined as the aggregation-prone (Agg, colored blue) and soluble (Sol, colored pink) groups, respectively. Scatter plot of
solubility versus isoelectric point (E) and molecular weight (F). Histograms of the relative contents of negatively charged residues (Asp and Glu) (Left),
hydrophobic residues (Val, Leu and Ile), aromatic residues (Phe, Tyr, and Trp), and positively charged residues (Lys, Arg, and His) in the Total, Agg, and
Sol groups.
doi:10.1371/journal.pone.0026875.g005
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growing group of proteins that act as mediators of cell-to-cell

communication and thus have great potential for use as potential

therapeutics as well as drug targets.

As expected, the E. coli proteins selected based on their

abundance level were able to increase the soluble expression of

the targeted cytokine proteins as well as the model proteins for

primary screening. In this study, when several hundred fusion

genes were systematically examined in parallel, different fusion

partner proteins showed increased expression of soluble target

proteins as well as the overall yield of expressed protein, with

increases of as much as 29 fold and 15 fold, respectively, being

observed in response to their fusion with aggregation-prone

proteins. To understand the correlation between the sequence

information and the expression efficiency/solubility in our fusion

protein expression result, statistical analysis of fusion constructs

was conducted. The results showed that AT nucleotides are biased

in the initial region of highly expressed fusion genes. However, no

significant correlation between physicochemical properties and the

solubility of fused genes was observed. We also attempted to draw

a common pattern of sequence-solubility relationship of the

expressed fusion proteins using a computational sequence analysis

algorithm (Table S5). However, again, we were not able to find

meaningful correlations between the sequence properties obtained

from the AGGRESCAN analysis and experimental results of

protein solubility [35]. This might result from the difference

between in vivo and in vitro environments for protein synthesis,

which needs further investigation in the future.

Since the protein solubility varies significantly depending on the

specific combination of fusion partner and target proteins, effective

fusion partners for a given target protein should be determined

empirically, which demands a high-throughput strategy for a

large-scale gene fusion and protein expression system of fused gene

constructs.

While the present study focused on the cell-free expression of

aggregation prone proteins, we expect that the results presented

herein can be extended to cell-based protein expression for large

scale production of specific target proteins since the present cell-

free protein synthesis system mimics the cytoplasmic conditions of

the E. coli cells. Since most of the fusion partners screened in this

study are ribosomal subunit proteins, the possibility that their use

in cell-based gene expression can interfere with the assembly of

endogenous ribosomes cannot be excluded; nevertheless, they

could be engineered to be incapable of participating in ribosome

assembly. Furthermore, the approach presented herein will be

applicable to various fields involving global expression and analysis

of various genomic resources.

Supporting Information

Figure S1 Expression yield and solubility of cytokines fused with

12 fusion partners. 24 cytokine genes that otherwise exhibit poor

expression level and solubility were fused by PCR with 12 fusion

partners selected from the initial screening. The fusion constructs

were incubated in a cell-free protein synthesis system and analyzed

for their final expression level and solubility as described in

Materials and Methods.

(DOC)

Table S1 Primers used in this study.

(DOC)

Table S2 Solubility and total expression yield of BD2.

(DOC)

Table S3 Solubility and total expression yield of EGF.

(DOC)

Table S4 Solubility and total expression yield of EPO.

(DOC)

Table S5 AGGRESCAN analysis.
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