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Background: Atrial fibrillation (AF) and ventricular fibrillation (VF) are complex heart

rhythm disorders and may be sustained by distinct electrophysiological mechanisms.

Disorganised self-perpetuating multiple-wavelets and organised rotational drivers (RDs)

localising to specific areas are both possible mechanisms by which fibrillation is

sustained. Determining the underlyingmechanisms of fibrillationmay be helpful in tailoring

treatment strategies. We investigated whether global fibrillation organisation, a surrogate

for fibrillation mechanism, can be determined from electrocardiograms (ECGs) using

band-power (BP) feature analysis and machine learning.

Methods: In this study, we proposed a novel ECG classification framework to

differentiate fibrillation organisation levels. BP features were derived from surface ECGs

and fed to a linear discriminant analysis classifier to predict fibrillation organisation level.

Two datasets, single-channel ECGs of rat VF (n = 9) and 12-lead ECGs of human AF

(n = 17), were used for model evaluation in a leave-one-out (LOO) manner.

Results: The proposed method correctly predicted the organisation level from rat VF

ECGwith the sensitivity of 75%, specificity of 80%, and accuracy of 78%, and from clinical

AF ECG with the sensitivity of 80%, specificity of 92%, and accuracy of 88%.

Conclusion: Our proposed method can distinguish between AF/VF of different global

organisation levels non-invasively from the ECG alone. This may aid in patient selection

and guiding mechanism-directed tailored treatment strategies.

Keywords: fibrillation, cardiac arrhythmia, electrocardiography, electrograms, ablation

1. INTRODUCTION

Atrial fibrillation (AF) and ventricular fibrillation (VF) are complex heart rhythm disorders with
an increasing prevalence (Zheng et al., 2001; Morillo et al., 2017; Martín-Yebra et al., 2019). Both
AF and VF show beat-to-beat variability in electrical propagation through the myocardium and the
mechanisms that initiate and sustain these rhythms are not entirely understood.
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The limited insight intomechanisms of myocardial fibrillation
stems primarily from ex vivo optical mapping studies of the
transmembrane potentials with potentiometric dyes (Laughner
et al., 2012), which have shown several competing mechanisms
(Handa et al., 2021). The multiple wavelet hypothesis proposes
that fibrillation is a chaotic disorganised rhythm sustained by
multiple wavelets of electrical activity that meander, collide, and
continuously regenerate (Moe et al., 1964; Krummen et al., 2016).
The competing hypothesis is that fibrillation is a spatiotemporally
organised phenomenon sustained by one or more rotational
drivers (RDs). RDs are scroll waves of electrical propagation that
perpetuate around a point of phase singularity, that can anchor
to specific regions and/or meander through the myocardium,
generating fibrillation wavefronts (Pandit and Jalife, 2013).
Multiple disorganised rapidly discharging foci within the
myocardium have also been shown to sustain fibrillation (Lee
et al., 2015), while, more recently, a more complex mechanism
of asynchronous endo-epicardial disassociation of fibrillatory
conduction has been proposed in AF (de Groot et al., 2016).

Treatment options for patients at risk of VF and those
suffering from AF are empirical at present and not targeted
towards the specific mechanism of fibrillation. VF survivors who
are at further risk of future episodes are conventionally offered
implantable cardioverter defibrillation to terminate VF episodes,
while pulmonary vein isolation (PVI) to electrically disconnect
the atrial body from the pulmonary veins (where rapid firing can
trigger AF) is the only proven efficacious treatment in AF (Sau
et al., 2019). The absence of any mechanism-directed treatment
for patients with AF in particular has led to limited success
rates in catheter ablation for persistent AF (Schreiber et al.,
2015). There is a pressing need to move beyond the one-size-
fits-all approach of empirical treatment towards mechanism-
directed treatments.

We recently showed that there is a range of AF and VF
mechanisms, with varying degrees of the global organisation,
using ex vivo optical mapping of explanted perfused hearts
and invasive intracardiac mapping in patients undergoing AF
ablation (Handa et al., 2020). Only some forms of AF are
globally organised and driven by stable RDs, and these would
be potentially amenable to ablation targeting RDs, while other
forms of AF are globally disorganised with no clear drivers
and as such may respond to compartmentalisation of the atria.
A possible approach to individualised tailored therapy would
be to select the appropriate treatments based on the specific
electrophysiological mechanisms sustaining fibrillation in each
specific patient (Ng et al., 2020). Ideally, we would be able to
identify the mechanism non-invasively.

The electrocardiogram (ECG) is an integral part of cardiac
diagnostics and routine care. With the advent of machine
learning, there has been increasing interest in extending
the diagnostic abilities of ECGs beyond qualitative human
assessment (Fan et al., 2018). Signal processing of ECGs has been
implemented in AF (Meo et al., 2013), where certain features of
ECG complexity have been shown to correlate with the long-term
success of catheter ablation (Lankveld et al., 2016). Conventional
signal processing techniques, in the form of dominant frequency
(DF) analysis (Uetake et al., 2014) and entropy analysis (Alcaraz

and Rieta, 2012) have been utilised to analyse AF surface ECGs,
in addition to more novel techniques such as fibrillation-wave
power (FWP) and fibrillation-wave amplitude (FWA) analysis
(Lankveld et al., 2016) to predict treatment outcomes. A recent
study employed convolutional neural networks to identify the
ECG signatures of AF from normal sinus rhythm ECGs alone
with an accuracy of 83.3% and proposed it as a tool to
eliminate the need for expensive long-duration ECG monitoring
to diagnose AF (Attia et al., 2019).

In this study, we sought to investigate whether the degree
of the global organisation of VF and AF and the underlying
fibrillation mechanisms itself can be detected with a machine
learning classification framework based on the non-invasive
ECG recording alone. First, epicardial VF activity was recorded
in ex vivo explanted perfused rat hearts with high spatial
resolution optical mapping. The mechanism was classified
using phase analysis as either globally chaotic and driven by
multiple wavelets, or globally organised and driven by RDs. This
characterisation was designated as ground truth for labelling
the corresponding single channel ECG recorded during the
optical mapping studies and to train a machine learning model
(Li et al., 2019; Handa et al., 2020). After developing and
validating our characterisation of VF mechanisms from ECGs,
we trained the model on human AF surface ECGs in patients
with persistent AF to determine the prediction accuracy in the
classification of the underlying AF organisation/mechanism as
determined by invasive intracardiac mapping. For both data
sets, the proposed classification frameworks were evaluated in a
leave-one-out (LOO) manner, and classification results showed
that the proposed method correctly predicted organisation level
from rat VF ECGs sensitivity of 75%, specificity of 80%, and
accuracy of 78%, and from clinical AF ECG with the sensitivity
of 80%, specificity of 92%, and accuracy of 88%. Accurate
classification of fibrillation organisation and mechanism using
the ECG may allow for more tailored treatments based on the
specific arrhythmia mechanism.

2. DATA ACQUISITION AND DATA
LABELLING

The objective of the proposed classification framework is
to differentiate between organised and disorganised forms of
fibrillation from surface ECG. Organised fibrillation is usually
driven by RDs while disorganised fibrillation is by multiple
wavelets (Handa et al., 2020). This novel technique could be
ultimately used to guide patient selection for individualised
treatment options. The two data sets used for the model
evaluation were derived from a recent study by our group,
and the methodology for data acquisition has previously been
described in detail (Handa et al., 2020). Optical mapping VF data
were obtained by performing ex vivo perfused rat heart optical
mapping of the transmembrane potential and the clinical AF data
were acquired from patients in persistent AF using intracardiac
multipolar catheter recordings of electrograms (EGMs) during
catheter ablation procedures. Concurrent surface ECGs were also
recorded for rat VF and human AF.
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FIGURE 1 | Schematic showing the proposed method evaluated by different sets. For the rat ventricular fibrillation (VF) data, as shown in (A), the ECG was labelled by

the rotational driver (RD) detection results from phase mapping. For the clinical atrial fibrillation (AF) data, as shown in (B), GC analysis of the electrogram (EGM) data

was the surrogate organisation label for the ECG classification.

For the rat VF model, the labelling of the fibrillation
organisation level was conducted using phasemapping, described
below. For the clinical AF data, where the high-resolution
recording was not available, a Granger causality (GC) analysis
of the intracardiac EGM data was used for labelling the clinical
ECG. A schematic of the study design is shown in Figure 1.
The methodology for phase analysis and GC analysis has
been described in detail (Handa et al., 2020). Details of the
analysis techniques and labelling are presented briefly in the
following section.

Data for the AF mapping studies were collected in the cardiac
electrophysiology lab, Hammersmith Hospital. Approval was
given by the Local Research and Ethics Committee for Imperial
College Healthcare NHS Trust and written informed consent was
obtained from all patients. LA mapping data were obtained for
17 patients with persistent AF. Electroanatomical mapping data

were collected using the EnSite
TM

Velocity
TM

system (Abbott
Inc, Minnesota, USA). On the day of the procedure, all patients
were presented in AF. Left atrial access was gained with a

transeptal puncture. A 20-ring electrode A-Focus II
TM

(Abbot
Inc., Minnesota, USA) mapping catheter (double loop, 1 mm
length electrodes, 4 mm interelectrode spacing) was used to
acquire LA geometry and EGM. EGM were collected with stable
tissue contact at the endocardial surface. Data from pulmonary
veins and left atrial appendage were excluded from the analysis.
Data were collected in both persistent AF and a subset of
patients in sinus rhythm after direct current cardioversion. The
bipolar EGMs were filtered at 30–500 Hz bandpass filtering.

The endocardial area subtended by the A-FocusII
TM

mapping
catheter was termed a ’kernel’. For each given kernel, 20 s of data
were subsequently analysed.

The number of kernels collected and subsequently the number
of segments analysed in this paper varied between patients due to

TABLE 1 | Patient characteristics of invasive clinical data-set.

Patient characteristics (n = 17)

Age (years) 66±7

Male 10

Mean left atrium size on TTE (mm) 44±5

Mean CHA2DS2VASc score 2.5(0-6)

Hypertension 7

Diabetes Mellitus 4

Cerebrovascular Disease 2

History of heart failure 3

Duration of persistent AF (months) 20.5±9

differing left atrial geometry and catheter stability. An attempt
was made to map the left atrium extensively for all subjects,
thus, the impact of the heterogeneity will be minimised in the
final analysis. A summary of patient characteristics can be found
in Table 1.

2.1. Phase Mapping of Rat VF Data
For the rat VF model, nine ex vivo perfused rat hearts underwent
high-resolution optical mapping of the left ventricular
epicardial surface after VF induction with programmed
electrical stimulation, and the single-channel ECG was recorded
simultaneously, with a sampling rate of 1,000Hz.

Phase analysis is a gold standard technique for the analysis
of fibrillatory signals (Nattel et al., 2017). Phase mapping
was applied to the optical mapping data to identify phase
singularities (PS) and RDs for further labelling. All our methods
for analysing optical mapping fluorescence data have been
previously described in detail (Ng et al., 2013, 2016; Roney et al.,
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2017; Li et al., 2019; Handa et al., 2020). In this study, a RD was
defined as a PS with more than two full rotations. Figure 1A
shows the ECG labelling based on the RD identification: ECGs are
identified as organised if spatiotemporally stable RDs sustained
VF on optical mapping and disorganised if VF was driven by
chaotic wavefronts with no identifiable stable RD.

2.2. GC Analysis of Clinical AF Data
For clinical AF data (17 subjects), alternative analysis techniques
based on GC analysis were used to classify organisational levels of
fibrillation recordings as phase analysis of intracardiac EGMs is
confounded by several issues, including the low spatial resolution
of clinical data (Roney et al., 2017).

Granger causality is a measurement of signal inter-
dependency and has been previously used to delineate dominant
patterns of wavefront propagation in fibrillation (Luengo
et al., 2016, 2018; Rodrigo et al., 2016; Alcaine et al., 2017).
In our previous study, two measurements derived from GC,
causality pairing index (CPI) and circular interdependence value
(CIV) were applied to intra-cardiac EGM to quantify the AF
organisation level, detect RDs, and identify the likely mechanism
sustaining fibrillation (Handa et al., 2020). In this study, the
CPI and CIV calculated from intra-cardiac electrogram data
(EGM) were used to label the corresponding surface ECGs
as organised or disorganised fibrillation. To make this work
self-contained, the calculation of CPI and CIV will be presented
in the following section.

2.2.1. Causality Pairing Index
From the multi-variate cardiac signal, x(t) ∈ R

nc at time t of the
dimension of nc, GC is inferred by fitting an auto-regressive (AR)
model to x(t) as

Â(τ ) = argmin
A(τ )

nt
∑

t=L+1

||x(t)−

L
∑

τ=1

A(τ )
⊤
x(t − τ )||2 + (1)

λ

L
∑

τ=1

||A(τ )||1, τ = 1, . . . , L

A(τ ) ∈ R
nc×nc is the AR coefficient matrix, τ is the time lag,

L is the maximal time lag of the model, and λ is a regularisation
coefficient. Let xi(t) be the i-th row of x(t). The element of the i-th
row and j-th column,A(τ , i, j), reflects the strength of the xi(t−τ )
in predicting xj(t), or in other words, the temporal dependency
between xi(t) and xj(t).

The optimisation problem in Equation 1 is usually termed
as the Lasso-Granger approach (Valdés-Sosa et al., 2005; Arnold
et al., 2007; Song and Bickel, 2011). With the l1-norm-based
regularisation term

∑L
τ=1 ||A(τ )||1, the Lasso-Granger approach

yields a more sparse and robust Granger causality estimation.
In this study, Forward Backward Lasso Granger Causality is
applied to solve (Equation 1), which is faster and more robust
(Cheng et al., 2014).

With the l1-norm sparsity constraint, solving (Equation
1) drives all elements in Â(τ ) to be zero unless the casual
relationships between certain pairs of signals are very strong.

Therefore, a measurement of the organisation was calculated as
the percentage of the non-zero pairings between different signals.

To be specific, define S as the set containing all the non-zero
elements in Â(τ ), i.e.,

S = {â(τ , i, j) | a(τ , i, j) > 0, i 6= j, (2)

τ = 1, . . . , L, and i, j = 1, . . . ., nc}

where â(τ , i, j) is the element of i-th row and j-th column in Â(τ ).
The CPI is obtained as the following by

CPI =
|S|

L(n2c − nc)
(3)

where | · | is the cardinal number of a set.
By Equation (3), CPI quantifies the global fibrillatory

organisation by calculating the number of possible Granger-
causal signal pairs in fibrillation between which there are
propagational effects on a normalised scale of 0–1, where 0 is
defined as no possible pairing having causal dependency (most
disorganised) and 1 where all possible pairings have causal
dependency (most disorganised).

2.2.2. Circular Interdependence Value
Circular interdependence value is an analytical tool for localising
RDs from regional analysis of cardiac signals from the flow
directions indicated by Â(τ ). Let xi(t) be the i-th signal of x(t).
The major source index si for xi(t) is defined as the signal with
the strongest causal influence on xi(t), i.e.,

si = argmax
j

∑

τ

Â(τ , i, j), j = 1, . . . , nc and j 6= i (4)

Let psi and pi be the coordinates of the locations corresponding
to xi(t) and xsi (t) in a global coordinate, respectively, and the GC
vector for xi(t), gi, is calculated as the following

gi =

{

psi − pi if
∑

τ Â(τ , i, si) > 0.

0 otherwise.
(5)

The GC vector gi in Equation (5) can be regarded as the source-
to-sink vector for electrode i, pointing from its source electrode
si to electrode i. Let p0 be the coordinates of the location of
interest. Then, then rotational direction for pi relative to p0
could be calculated as the cross product of pi − p0 and gi after
normalisation, i.e.,

ri =
pi − p0

||pi − p0||
×

gi
||gi||

(6)

≡ ri,1i+ ri,2j+ ri,3k

where i, j, and k are the standard basis vectors corresponding
to the x-, y-, and z-axis in the global coordinate, respectively.
Suppose a local coordinate where the x-y plane is specified by p0,

pi, and psi with standard basis vectors ĩ, j̃, and k̃ corresponding to
the x-, y-, and z-axis, respectively. Define the origin of the local
coordinate as p0, and

ĩ ≡
pi − p0

||pi − p0||
(7)
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Then, the rotational direction ri could be written as

ri = r̃i,1 ĩ+ r̃i,2 j̃+ r̃i,3k̃ (8)

where r̃i,1 and r̃i,2 are equal to 0, and the sign of r̃i,3 indicates the
direction of possible rotational activities. If the rotation with the
centre as p0 is clockwise, r̃i,3 < 0 and vice versa.

Remark 1. ĩ, j̃, and k̃ may vary depending on the locations p0, pi,
and psi for i = 1, . . . , nc. For spiral catheters (e.g., Lasso, Biosense
Webster), ideally all recording points are in the same x-y plane, and
k̃ are the same for all i = 1, . . . , nc. Thus, the global coordinate
and local coordinates could be represented by just one coordinate
for simplification. However, the simplification is not applicable for
basket catheters.

With Equations (6) and (8), CIV is calculated as

CIV =
|
∑

i sign(r̃i,3)|

nn(p0)
(9)

where nn(p0) is the number of available neighbouring recordings
around p0 to quantify the rotational activity. CIV ranges from 0
to 1 and measures the circulatory propagation patterns, whereby
spatially stable RD yield a high CIV and meandering unstable
RDs a low value. Details of using CIV for RD detection and its
validation can be found in the method section and in our recent
study by Handa et al. (2020).

2.2.3. Labelling
In the patient with persistent AF group, each subject underwent
detailed intracardiac mapping in the atrium with a 20-electrode
AFocusII mapping catheter, (St Jude Medical, MN, USA).
Multiple areas were mapped within the atrium with the catheter
recording 20 separate EGMs at a time. CPI, a measure of
organisation of fibrillation, was calculated for each set of
AFocusII recordings in a given region. Global CPI was calculated
as the average of the CPI of all the regional AFocusII recordings
for the subjects. The criteria for binarising the 17 subjects in
the clinical AF data sets is shown in Figure 1B. In particular,
those with RD-positive areas and CPI above the median CPI were
labelled as organised, and those without any RD-positive areas or
CPI below the median CPI as disorganised.

3. METHOD

3.1. QRS Subtraction
The frequency spectrum of the individual QRS complex is often
found in a range of 10∼30 Hz (Bollmann et al., 2006), and the
frequencies characterising the atrial signal are mostly confined to
the interval of 5∼12 Hz (Lin, 2008). Due to this overlap between
atria electrical activity and QRS complexes, QRS subtraction
was applied to the clinical AF ECG data set. In particular, QRS
detection followed by linear interpolation proposed in Ahmad
et al. (2011) was adopted. Normal QRS duration is between 0.08
and 0.10 s. To ensure ventricular activity fully removed, points
corresponding to a QRS duration of 0.10 s were subtracted and
replaced with linearly interpolated points with a ratio of 5:6, i.e.
with 5/11 points before and 6/11 points after the peak detection,

as described in Ahmad et al. (2011). Two examples of QRS
subtraction are shown in Figure 2.

3.2. Feature Extraction
In this study, we propose to use the band-power (BP) feature,
i.e., the power of the ECG signals corresponding to different
frequency bands, to classify the organisation type. Given the heart
rate in rats is markedly higher than in humans, in this study,
different bands and data segmentation settings were selected for
rat VF and clinical AF ECG feature extraction.

For the rat VF model, the single-channel continuous ECG
recordings were sampled at a sampling rate of 1,000 Hz and
segmented by a 2 s window with a window shift of 1 s. The DF
of rat VF ranges from 10∼20 Hz (Handa et al., 2018). Thus, the
segmented data were filtered with eight temporal philters with a
bandwidth of 4 Hz ranging from 2∼3 4Hz (2∼6 Hz, 6∼10 Hz, . . .
30∼34 Hz, fourth-order band-pass Butterworth philters with an
allowance of 2 Hz). In addition to band-power, an AR model was
applied to boost the number of features for the single-channel
rat VF ECG. The AR coefficients with the order of 20 together
with the BP of the eight bands were concatenated and used as the
feature vector. Thus, the total number of features for rat VF ECG
was 28.

For the clinical AF dataset, the continuous 12-lead ECG
recordings were sampled with a sampling rate of 2034.5 Hz and
segmented by an 8 s window with a window shift of 4 s. The
segmented data were then filtered into four bands, i.e., 5∼15 Hz,
15∼25 Hz, 25∼50 Hz, and 50∼100 Hz (fourth order band-pass
Butterworth philters with an allowance of 2 Hz). The DF of AF
was found to be within the frequency spectrum of 3∼12Hz. Thus,
most of the AF components can be covered by the band 5∼15
Hz. The other three higher bands are selected to capture subtle
high-frequency characteristics of the signals. For each band and
each lead, the band-power was calculated then normalised by the
total power of the signal of a broad band 2∼200 Hz. With four
normalised BP features extracted for each lead, the total number
of features for a clinical AF ECG segment was 48.

3.3. Feature Selection
Mutual information is a measurement of the dependence
between features and class labels and has been successfully
applied for feature selection of BP features of time series (Ang
et al., 2012). Thus, in this study, mutual information was adopted
for feature selection.

Given the feature f and class label c, the mutual information is
formulated as below:

I(f , c) = H(c)−H(c|f ) (10)

where H(c) is the individual entropy of class label c and H(c|f ) is
the conditional entropy of class label c given feature vector f . It
could be interpreted as the amount of uncertainty reduced in the
class label c through observing feature f Ang et al. (2012).

In this study, the class label c was the organisation level. For
each BP or AR feature, its mutual information with class label c
was calculated during the training stage. The top 50% of features
with the highest mutual information were selected and used in
the classification step.
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FIGURE 2 | Two examples of QRS subtraction applied to the AF ECG data set (Lead I). Upon QRS detection, points corresponding to a QRS duration of 0.10 s were

replaced with linearly interpolated points.

3.4. Classification
In this study, binarised linear discriminative analysis (LDA) and
a linear regression model were adopted for the organisation level
prediction. During the model training and testing, features from
2 s segments of ECG were used. With the prediction results
at the segment level, the final organisation level prediction of
each subject was obtained by voting or averaging. For each
subject, the final class label was the class label that was predicted
most frequently during the segment classification. The subject
was predicted as organised if more than half of the segments
were predicted to be organised. For clinical AF data, a linear
regression model was also tested for continuous organisation
level prediction. With the regression model, the mean predicted
value of all segments was used as the final prediction of
the subject.

The whole evaluation ran in LOO manner, whereby the
feature selection and classification framework were trained by
data segments from eight out of nine subjects (rat VF ECG) or 16
out of 17 subjects (clinical AF ECG) and evaluated on segments
from the remaining subject. Thus, for different subjects, different
features could have been selected in the training. In this way, the
data segments for each subject were not used to train the model
that they were tested with.

4. EXPERIMENTAL RESULTS

4.1. GC Analysis of Clinical AF Data
Figure 3A shows an example of a source-to-sink vector map
constructed for a set of intracardiac multipolar (AFocusII)
catheter recordings in AF. It shows a site with a stable RD
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FIGURE 3 | (A) shows a source-to-sink vector map constructed from the intra-cardiac EGM signal, indicating a site with a stable RD with a high circular

interdependence value (CIV). The arrows show the directions of the source-to-sink vectors. The corresponding EGMs in (B) show organised clockwise rotational

activation: electrode 12 was activated first, followed by electrodes 1, 4–8, 10, and 11, and the activation of the electrode 11 was followed by the next activation of

electrode 12. Figure reproduced from Handa et al. (2020) (CC BY 4.0).

FIGURE 4 | Histograms of RD positive areas and causal pairing index (CPI) of the 17 subjects of clinical AF ECG/EGM dataset. Most of the subjects have less than 2

RD positive areas, and the median CPI of all subjects is 0.14.

with a high CIV driving a globally organised form of AF.
The arrows show the directions of the source-to-sink vectors.
The corresponding EGMs show organised clockwise rotational
activation. For this example, the CIV of 0.68 was above the
threshold of 0.60, which is the operating point obtained using rat
VF data in our previous study for classifying an RD-positive area
(Handa et al., 2020).

Figure 4 shows histograms of RD-positive areas (Figure 4A)
and CPI (Figure 4B) of the 17 subjects of the clinical AF
ECG/EGM dataset. For this data set, 8 out of 17 subjects have
no RD-positive area, and the maximum number of RD-positive
areas identified with intracardiac mapping is 4. The median CPI

of all subjects is 0.14. Among the nine subjects with RD-positive
areas, the five subjects with CPI above 0.14 were labelled as
organised, and those without any RD-positive areas or CPI below
the median CPI as disorganised.

4.2. Statistical Correlation Analysis
To investigate whether the surface ECG BP reflected the AF
organisation level measured invasively, Pearson correlation
analysis was performed to test the correlation between
normalised band-power features and the organisation level
as quantified by CPI for the clinical AF ECG. Logarithm was
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FIGURE 5 | Correlation between log (band power) of different bands and the global fibrillatory organisation level measured with causal pairing index (CPI). Significant

correlations were found for higher frequency bands 25∼50 Hz and 50∼100 Hz with certain leads.

TABLE 2 | Correlation results with clinical atrial fibrillation (AF) data.

Band Lead β

25∼50 Hz I –0.53*

25∼50 Hz aVL –0.56*

25∼50 Hz V1 –0.67**

50∼100 Hz III –0.49*

50∼100 Hz aVL –0.59*

*α = 0.05, **α = 0.01.

applied to make the BP distribution normal distribution. A
p-value smaller than 0.05 was considered statistically significant.

Figure 5 shows examples of the correlation results of leads
I, V1, and III, with each closed circle representing one subject.
Table 2 summarises all significant correlations with p < 0.05.
The significant correlations were found in two relatively higher
bands, 25∼50 Hz and 50∼100 Hz. The correlation was the
strongest with BP of lead V1, 25∼50 Hz (β = –0.67; p <

0.01). No significant correlation was found with bands of lower
frequencies, i.e., 5∼15Hz and 15∼25Hz. The correlation analysis
demonstrates that there is a negative correlation between the
amount of high-frequency components in the signal and the level
of global fibrillatory organisation for certain leads.

4.3. Organisation Level Classification of
ECG
The proposed method was evaluated by LOO, and subsequently,

the numbers for the training and test data passed to the classifier
varied. For the rat VF classification, the number of training
samples ranges from 1,856 to 2,416, and that of the test from 17
to 577. For the clinical AF data, the number of training samples
ranges from 1,368 to 1,491, and that of the test from 37 to 160.
The LOO classification results for both rat VF and clinical AF
data are summarised in Table 3, where c and ĉ are the true and
predicted class labels, respectively, and ‘O’ and ‘D’ represent the
organised and disorganised classes, respectively. nseg is the total
number of the data segments per subject, and for the clinical AF
data, the number of areas being mapped nk was also included.

TABLE 3 | Leave-one-out (LOO) classification results (%).

Subject ID nseg (nk ) c ĉ Pw (%)

Rat-1 168 O D 76.78

Rat-2 196 O O 73.98

Rat-3 439 O O 98.61

Rat-4 577 O O 100.54

Rat-5 162 D D 71.43

Rat-6 179 D D 77.09

Rat-7 17 D O 100.00

Rat-8 434 D D 82.10

Rat-9 261 D D 93.87

Clinical-1 160 (21) D D 63.12

Clinical-2 47 (8) D D 100.00

Clinical-3 44 (9) D D 100.00

Clinical-4 85 (16) D D 100.00

Clinical-5 148 (28) D D 68.24

Clinical-6 76 (15) D D 59.21

Clinical-7 53 (9) D D 100.00

Clinical-8 131 (20) D D 87.79

Clinical-9 97 (16) D O 91.75

Clinical-10 67 (9) O D 100.00

Clinical-11 123 (25) O O 98.37

Clinical-12 151 (27) O O 97.35

Clinical-13 80 (10) D D 61.25

Clinical-14 40 (6) D D 87.50

Clinical-15 91 (25) O O 98.90

Clinical-16 98 (15) D D 100.00

Clinical-17 37 (6) O O 54.05

Bold values indicate correct predictions by the machine learning algorithm. i.e. c = ĉ.

For each subject, the final prediction was calculated by voting:
the subject would be organised if more than 50% of the segments
were predicted as organised, and disorganised if below (or equal
to) 50%. In Table 3, Pw is also presented, which is the percentage
of segments classified as the winner class during voting. The
confusion matrices of the classification at segment and subject
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FIGURE 6 | Confusion matrices of the binary classification of the fibrillatory organisation level of the rat VF and clinical AF data. (A) Rat VF ECG, segment level. (B) Rat

VF ECG, Subject level. (C) Clinical AF ECG, segment level. (D) Clinical AF ECG, subject level.

FIGURE 7 | Feature distribution regarding the fibrillatory organisational level. The three best features selected by mutual information were plotted. The colour of the

features are corresponding to the CPI values except features of subject clinical-10 in red. In General, the features with the high and low CPI are separated. However,

features of subject clinical-10 with high CPI (in red triangles) tend to be overlapped with features from the low-CPI group. (A) Rat VF features. (B) Clinical AF features.

levels were shown in Figure 6. For the subject-level prediction,
the sensitivities are 75 and 80%, the specificities are 80 and
91.67% and the accuracies are 77.78 and 88.24% for rat VF and
clinical AF, respectively.

Figures 7A,B show the distribution of the three most

discriminative features selected using mutual information for rat

VF ECG and clinical AF ECG, respectively. In both panels, each

circle represents one feature calculated from a 2 s data segment.

Note that the feature selection was only applied for illustrative

purposes. For the rat VF ECG in Figure 7A, most segments from

the organised class fell within one cluster, separated from the two

clusters of disorganised features. For Rat-7, the duration of VF is

shorter, resulting in amuch smaller number of available segments
than the other rat subjects. Thus, the short ECG segment may
not be able to fully represent the fibrillatory characteristic, which
could be the reason for its incorrect classification with high Pw =

100%.
Figure 7B shows the features of the clinical AF ECG,

which formed more sub-clusters. The colour of the features
are corresponding to the CPI values except for features of
subject clinical-10 in red, as clinical-10 is the only organised
subject that is classified as disorganised. Generally, the features
with the highest and lowest CPI tended to be separated

from each other, while the features with intermediate CPI
tended to have more overlapping. Clinical-10 has a CPI of
0.22 and stable RD identified, however, the features of this
subject tend to be closer to features from the disorganised
class, which could be the reason for the wrong classification.
Clinical-9 has a CPI of 0.15 and was labelled as disorganised
because no RD is detected for this subject. The reason for
the subject being classified wrongly could be the CPI is very
close to the median CPI that is used to binarise the data into
two groups.

Figures 8A,B show examples of the rat VF ECG segments
from organised and disorganised classes based on the phase
mapping. In Figures 8C–F, examples of clinical AF ECG
segments of lead I are shown with the corresponding CPI.
Generally, there are no clear morphological patterns associated
with CPI level and subsequently, it is difficult to discern
the organisation level of a given data segment by visual
evaluation alone.

5. DISCUSSION

Experimental results showed that the proposed classification
methods can differentiate fibrillation of different organisation
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FIGURE 8 | (A,B) show examples of organised and disorganised rat VF ECG. (C–F) shows examples of clinical AF ECG with different CPI levels calculated from the

corresponding EGM data. For both rat and clinical data, it is difficult to differentiate the organised and disorganised data by visual evaluation alone.

levels using the surface ECG an with accuracy of 78% for the rat
VF data and an accuracy of 88% for the clinical AF data. Based
on the results, this method has the potential to non-invasively
the determine degree of organisation to aid mechanism-directed
treatment decisions for patients with AF and in VF survivors.

The concept of ‘organisation’ within AF is not fully established
or defined, in part due to a limited understanding of the
underlying mechanisms. The degree of complexity within AF has
been analysed previously by both local and multi-site analysis
of EGMs in time and frequency domains (Ravelli and Masè,
2014). Some groups have looked at analysing the repetitive nature
of wavefronts in AF using techniques such as similarity index
(Ravelli et al., 2005) and Retro-Mapping (Mann et al., 2019).
These techniques require intracardiac electrogram analysis from
invasive mapping. Lankveld et al. (2014) previously showed that
the spatiotemporal organisation of the AF ECG as measured
by techniques such as F-wave complexity, harmonic decay, and
DF analysis could delineate paroxysmal AF from the more
disorganised persistent AF (Lankveld et al., 2014). Furthermore,
it was shown that these AF complexity parameters derived from
surface ECGs could predict procedural outcomes from catheter
ablation in patients with persistent AF at long-term follow-up
(Lankveld et al., 2016). The proposed methodology in this study
for characterising the complexity of fibrillation from ECGs has

the strength of being both non-invasive and being validated
with detailed optical mapping studies in rat VF. The binary
classification of AF ECGs as organised or disorganised with
regard to description of the probable underlying mechanism
may be useful in selecting appropriate treatment strategies
for patients. Patients with disorganised AF are likely better
suited for treatment with anti-arrhythmic drugs or extensive
compartmentalisation of the atria with a surgical approach, while
those with an organised AF may benefit from catheter ablation.

5.1. Implication of High-Frequency
Components
This study shows that the power of frequency bands of relatively
higher frequency is negatively correlated with the organisation
level, which is consistent with existing studies that organised AF
tends to have a lower DF (Lankveld et al., 2016).

In Figure 9, filtered signals (normalised by the total
power) corresponding to bands 25∼50 Hz (i.e., high-frequency
components) from one organised and one disorganised subject
were compared, and it shows that the power of these high-
frequency components from the disorganised subject was
consistently higher than that from the organised subject,
although high-frequency components (>25 Hz) constitute a
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FIGURE 9 | Comparing filtered signals of bands 25∼50 Hz from one organised and one disorganised subjects (clinical AF dataset).

relatively small part of the whole signal spectrum, they may be
helpful in distinguishing organised from disorganised AF.

Optical mapping data and EGM recordings can be regarded
as sources, and the surface ECG can be regarded as a linear
mixture of the sources due to the volume conduction effect.
The organised fibrillation driven by one or two stable RDs tends
to have activation with consistent and synchronised patterns of
activation, yielding the power spectral density (PSD) of the ECG
concentrating on a few low-frequency components. When the
fibrillation is chaotic with randomly propagating wave-fronts,
source signals tend to be more fragmented, resulting in the
surface ECG with more high-frequency components.

It is also worth noting that the temporal morphological
characteristics of ECG signals are only one aspect of the
differences implied by high-frequency bandpower features
between the organised and disorganised classes. The
significant associations between high frequency bandpower
and organisation level were found with only certain leads. Only
using features with significant correlations yielded classification
accuracies around the chance level. Moreover, using features
from all 12 leads but from only one single band, 25∼50 Hz
or 50∼100 Hz, also yielded accuracies around 60%. Neither a
single band nor a single lead can fully capture the source pattern
differences between the organised and disorganised subjects. The
different spatial dispersion patterns over the 12 leads of different
frequency bands are the key in discriminating the organised and
disorganised classes.

5.2. Lead Optimisation
For the 12-lead clinical ECG, we also estimated the lead weights
by solving the following optimisation problem

ŵ = argmin
w

E[(w⊤xo(t))
2]

E[(w⊤xd(t))2]
(11)

where w ∈ R
12 is the channel weights, and xo(t) and xd(t) are

the vectors of the band-passed ECG signal at time t of organised
and disorganised classes, respectively. w⊤xo(t)(w

⊤xd(t)) can
be regarded as a single virtual channel, and E[(w⊤xo(t))

2]
and E[(w⊤xd(t))

2] denotes the expectation of the BP of the
single virtual channel for organised and disorganised classes,
respectively. By solving (Equation 11), the lead weights could be
optimised in a way that w maximises the difference between the
BP of the organised and disorganised classes. We have applied
(Equation 11) to each band and used the bandpower of the single
virtual channel as the feature. This approach was evaluated in
the same LOOmanner. However, the lead optimisation based on
Equation (11) is not as good as that using mutual information
for feature selection, possibly due to over-fitting. Selecting the
leads yielding BP features with the highest mutual information
means that weights of leads could be either 0 or 1. This process
involves fewer parameters to be tuned as solving (Equation
11), and subsequently, is more robust against the cross-subjects
dissimilarities within the same class.

5.3. Limitations
A limitation of this study is that the AF mapping data were low-
resolution sequentially acquired intracardiac EGM data used to
label the underlying mechanism, and follow-up data were not
available. Thus, the ground truth for the organisation level could
not be directly determined and had to be inferred from GC
analysis. GC analysis of intracardiac electrogram in patients with
AF was established from a methodology developed from analysis
of rat VF optical mapping. The outcomes measured in AF in
this study may have been influenced by mapping resolution,
interelectrode distance, catheter stability, and heterogeneity in
mapping. CPI value to determine the fibrillatory organisation,
while applied to an unselected population may also have been
influenced by the characteristics of this population.
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Because the sample size of the clinical AF data is small, it
is difficult to infer the true distribution of the CPI of clinical
AF. In this study, we combined the RD detection results with
median CPI to binarise the data. A more comprehensive data set,
e.g., including cardiac imaging data from patients and follow-up
data post ablation would be needed for a better binarisation in
future study. Furthermore, in this study we have conducted
QRS subtraction while it is difficult to fully remove T-waves
while keeping the fibrillation signals intact. In our future study,
we will seek better signal processing approaches for fibrillation
signal extraction.

6. CONCLUSION

Individualised mechanism–directed treatments with better
patient selection are needed for myocardial fibrillation treatment.
If the mechanism of myocardial fibrillation, specifically AF, can
be determined from the surface ECG, patients can be non-
invasively screened for specific treatment strategies, whereby
only patients with globally organised fibrillation are candidates
for targeted ablation of drivers, and those with globally
disorganised fibrillation are better treated with anti-arrhythmic
drugs or ablation strategies to compartmentalise the atria.
In this study, we propose a classification framework for
detection of the fibrillation organisation level, and thus, the
underlying fibrillation mechanism (stable RD vs. multiple
wavelet driven) from the ECG alone, with no need for invasive
intracardiac recordings.

Experimental results in this study showed that the proposed
classification methods can differentiate fibrillation of different
organisation types: for the rat VF ECG, the sensitivity, specificity,
and accuracy are 75, 80, and 78%, respectively; and when
these methodologies were adapted for the clinical AF ECG,

the sensitivity, specific, and accuracy are 80, 92, and 88%,
respectively. Therefore, the proposed techniques in this study
have the potential to determine fibrillatory mechanisms and may
aid non-invasive mechanism-directed tailoring of treatments for
patients with AF and in VF survivors.
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A. APPENDIX

Circular interdependence value for RD identification was
validated with optical mapping data of the rat VF model.
Figure A1 shows an example of the down-sampling optical
mapping data. In (Figure 6A), The background is the ground
truth of the rotational activity obtained by phase mapping in
the form of a heat map, the value of which is the percentage
of the time rotational activities staying at the given location.
In particular, the red hotspot is of a value around 10%,
which is around 350 ms given that the total duration of this
recording is 4 s. The DF of the rat VF data usually ranges
from 20∼30 Hz. Thus, the rotation activity at the red hotspot

FIGURE A1 | (A) shows the down-sampling of the high-resolution optical mapping data of rat VF. Areas 1 and 2 were labelled according to the RD (RD) heatmap

shown as the background, the local GC vector maps of which were shown in (B) and (C), respectively. (D) shows the ROC of the RD prediction using CIV.

would have approximately 18 times of rotations, making it a
relatively very stable RD site. The original optical mapping data
were down-sampled as 4-by-4 grids with 1/4 of the original
resolution. Each rat heart would generate approximately 75
down-sampled areas.

Two examples of local GC map after down-sampling are
shown in (Figures 6B,C), and areas 1 and 2 were labelled as RD
and non-RD class, respectively, according to the heat map in
(Figure 6A). The CIV for area 1 is much higher at 0.83 than that
of area 2 at 0.27. The RD prediction for all the down-sampled
areas using CIV yielded the receiver operating characteristic
(ROC) curve shown in (Figure 6D), with an area under curve
(AUC) of 0.87 and the best operating point at 0.60.
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