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Osteopontin levels are associated 
with late‑time lower regional brain 
volumes in multiple sclerosis
Gergely Orsi1,2*, Zsofia Hayden3, Tamas Cseh2, Timea Berki3 & Zsolt Illes2,4,5

Osteopontin (OPN) is a proinflammatory marker produced by systemic immune and central nervous 
system (CNS) resident cells. We examined, if the level of OPN in the cerebrospinal fluid (CSF) and 
blood is associated with late‑time regional brain volumes and white matter (WM) lesion load in MS. 
Concentrations of OPN in blood and CSF were related to MRI findings 10.1 ± 2.0 years later in 46 
patients with MS. OPN concentration was measured by ELISA, while regional brain volumes and lesion 
load was assessed by magnetic resonance imaging (MRI) using 3D MPRAGE sequence and automated 
MR volumetry. OPN measured in the CSF was associated with several regional brain volumes and 
WM lesion load measured 10.1 ± 2.0 years later. CSF OPN concentration correlated with long‑term 
enlargement of lateral‑ and inferior lateral ventricles and the elevation of gross CSF volume, in 
conjunction with the reduction of several cortical/subcortical gray matter and WM volumes. Serum 
OPN showed no long‑term association with regional brain volumes. OPN measured from the CSF 
but not from the serum was associated with lower regional brain volumes measured a decade later, 
indicating the primary role of inflammation within the CNS in developing long‑term brain related 
alterations.

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous 
system. It is the most frequent non-traumatic cause of permanent neurological disability in young and middle-
aged  adults1,2. The main driver of the pathology is central nervous system (CNS) inflammation in both the 
white matter (WM) and gray matter (GM) that induces a number of pathological events ultimately leading to 
progressive disability in part of the  patients3,4. Magnetic resonance imaging (MRI) is a distinguished paraclinical 
investigation in the process of clinical diagnosis of MS, along with cerebrospinal fluid- (CSF) and blood tests, 
and MRI is also basic in defining the clinical course of  MS5.

MRI is a sensitive tool for detecting MS related tissue abnormalities in the CNS, especially the brain-related 
focal white matter (WM) and gray matter (GM) lesions, as well as the diffuse, or localized tissue loss (atrophy)6,7. 
Brain atrophy was shown to be extensive in MS, with nearly 0.5–1.35% brain volume loss/year, much higher 
than that of normal aging (0.1–0.5%/year)8. It arises early in the course of the disease and accelerates along with 
disease  progression9.

Osteopontin (OPN), also known as early T cell-activation gene 1 or secreted phosphoprotein 1 (SPP1) was 
originally identified as a bone matrix protein. OPN was shown to act as a pro-inflammatory cytokine in several 
autoimmune diseases, most notably in neuromyelitis optica spectrum  disease10 and  MS11. OPN is produced by 
various immune cells, including T cells, B cells, macrophages, dendritic cells, and natural killer cells.

Proinflammatory Th17 immune responses induced by OPN have been indicated in the pathogenesis of  MS12. 
Enhanced OPN expression was found in active MS  lesions13, in microvascular endothelial cells and macrophages 
of plaques and also in the white matter surrounding the  plaques14. OPN has a prominent role in secondary neu-
rodegeneration: microglia secrete OPN into the extracellular matrix, which activates and recruits macrophages 
and CNS resident cells that modulate inflammatory  responses15,16. A recent meta-analysis by Agah et al. sum-
marizes the findings on OPN levels in multiple sclerosis; OPN level in the CSF is higher in MS compared to 
healthy  controls17. Serum OPN levels were shown to be elevated in all MS subtypes, except for clinically isolated 
 syndrome17. The higher concentration of OPN in CSF compared to serum suggests OPN expression by CNS 
 cells18 . The elevated CSF and serum OPN levels were shown in both relapsing–remitting MS (RRSM) and 
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secondary progressive MS (SPMS)  patients19, moreover, higher OPN levels in CSF were measured in patients 
with active disease, as compared to patients with stable  disease17. The highest OPN concentration in CSF was 
measured in RRSM  patients17. OPN levels in the CSF correlate with development of microstructural abnormali-
ties and functional connectivity within 10  years20. Therefore, we here examined the long-term effect of OPN on 
regional brain volumes in patients with MS.

Results
40 reliably segmented structures were extracted from Freesurfer’s segmentation output, omitting brainstem. 
Figure 1 shows the results of automatic segmentation on a randomly selected subject. Multiple linear regression 
models included age, gender, and estimated total intracranial volume as variables of no interest. Dependent vari-
ables were the segmented brain structures and OPN was included as independent variable of interest in separate 
models. Storage time was also included in the initial models, but was removed from the final ones, as storage 
time was not proved to be a significant predictor in any of the tested models.

OPN measured from serum samples showed no associations with the segmented volumes, regardless of 
the time of collection [median OPN concentration 12.52(9.0–16.7) ng/mL at the time of CSF collection and 
9.8(6.2–18.8) ng/mL at the time of MRI].

OPN measured from CSF collected 10.1 ± 2.0 years before MRI [median 246.4(164.5–439.5) ng/mL] showed 
highly significant and diverse associations with the segmented brain volumes. CSF OPN levels were posi-
tively associated with the volumes of the ventricles and CSF; left- and right inferior lateral ventricles (t = 3.318, 
p = 0.0013 and t = 5.012, p = 0.00005, respectively), left- and right lateral ventricles (t = 3.272, p = 0.0036 and 
t = 3.345, p = 0.0031, respectively), T1 derived total WM lesion volume (t = 2.991, p = 0.007), and CSF volume 
(t = 3.055, p = 0.006). Besides, inverse associations were found between CSF OPN levels and the following regional 
brain volumes: subcortical GM volume (t = −4.03, p = 0.0006), left- and right ventral diencephalon (t = −3.69, 
p = 0.0014 and t = −3.425, p = 0.0025), ventricle-free supratentorial volume (t = −3.341, p = 0.0031), total cerebral 
cortex and WM volumes (t = −2.768, p = 0.0115 and t = −2.894, p = 0.0087, respectively). More details and further 
associations are shown in Table 2. Figure 2 shows the raw correlation between osteopontin concentration meas-
ured from cerebrospinal fluid and subcortical gray matter volume measured 10.1 ± 2.0 years later.

Discussion
OPN measured from the CSF was associated with reduced brain volume in several regions within 10.1 ± 2.0 years, 
indicating that the level of CSF OPN was associated with regional brain volumesmeasured a decade later. Results 
showed that an elevated CSF OPN concentration predicted the late-time enlargement of lateral- and inferior 
lateral ventricles and the elevation of gross CSF volume, in conjunction with the reduction of several cortical 
and subcortical GM volumes. Tortorella et al. conducted a cross-sectional study on patients with clinically 
isolated syndrome (CIS), measuring OPN concentrations from CSF and gross brain volumetry, including total 
GM volume, peripheral GM volume, total brain volume, ventricular volume and manually assessed corpus cal-
losal index. Their results showed that OPN levels were only weakly associated with corpus callosum  index21. In 
our longitudinal cohort, CIS patients were not included, and we did not observe such associations in our MS 
populations. Moreover, cross-sectional statistical analyses yielded no significant associations at all, and all sig-
nificant correlations surviving FDR correction corresponded to OPN concentration from CSF and MRI acquired 
10.1 ± 2.0 years later. The suggestion that OPN may be associated with WM  damage21 is well supported by our 
previous study in the same cohort, demonstrating that CSF OPN levels are related to wide-spread WM altera-
tions localized to the normal appearing white matter (NAWM) of left superior and inferior longitudinal fasciculi, 
external capsule, forceps minor (genu of corpus callosum) and anterior corona radiata, indicating myelin loss 
and axonal  degenerations20. These previous and the current data may thus suggest that patients with higher OPN 
CSF levels developed more extensive WM damage accompanied by the association with reduced WM and GM 

Figure 1.  From left to right: axial, coronal, and sagittal representative images showing the results of automatic 
segmentation. All images are shown in radiologic convention.
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regional volumes. Indeed, GM atrophy is strongly associated with WM injury in MS patients, particularly with 
injury to association  fibers22.

It is conceivable that soluble biomarkers, specific for late-time regional brain volumes, alone or in combina-
tion with MRI biomarkers, may be clinically valuable in prognostic evaluation at the beginning of MS disease. 
Brain atrophy has clinically relevant impact on MS pathogenesis: higher atrophy rate leads to the worsening of 
expanded disability status scale (EDSS) and progression to  disability23. Recently, several phase III trials defined 
brain atrophy as an outcome in both relapsing and progressive MS, and a number of disease modifying treatments 
significantly reduced atrophy  rate24. If confirmed in other independent cohorts, CSF OPN concentration may be 
a potential marker for screening patients for high risk of accelerated atrophy rate in the long-term. Despite the 
fact that due to study design, we cannot state that the observed association with smaller regional brain volumes 
(and larger ventricles) indicate atrophy, our study may still indicate that in the development of brain volume 
losses reported  earlier8,9, OPN produced within the CNS plays an important role. This also emphasizes the role 
of inflammation within the CNS compartment in the evolution of atrophy.

Methods
Subjects. Forty-six patients with clinically definitive MS (32 females, age range at MRI: 20–68 years) have 
participated in the study. Serum and CSF samples were collected 10.1 ± 2.0 years before MRI and aliquots were 
kept at − 80  °C until further processing. A new serum sample was taken at the day of MRI acquisition. All 
patients participating in the study had MS fulfilling the 2017 modified McDonald diagnostic  criteria25. In case of 
relapsing MS, the MRI measurements were taken in the remission phase. Most of the patients were on chronic 
disease modifying treatment (Table  1). 11% of the patients had primary progressive MS, and at the time of 
MRI, 67% had relapsing and 22% secondary progressive MS. During the follow-up period (10.1 ± 2.0 years), 
the median number of relapses was 3 (IQR:2–4), and EDSS has increased in the study population (p = 0.034, 
Wilcoxon Signed Rank Test).

The study was conducted according to the World Medical Association Declaration of Helsinki and approved 
by the Regional Ethical Committee of the University of Pecs (7068-PTE 2018). All patients signed written 
informed consent prior to study procedures.

Measurement of osteopontin in serum and CSF. After centrifugation, supernatants were stored at 
−80 °C until further processing. For quantitative detection of OPN concentrations in the serum and CSF sam-
ples, a commercially available sandwich enzyme-linked immunosorbent assay (ELISA) kit was used (Human 

Figure 2.  Correlation between osteopontin concentration measured from cerebrospinal fluid and subcortical 
gray matter volume measured 10.1 ± 2.0 years after lumbar punction. Pearson’s r = −0.579, p = 0.00196. Variables 
are unadjusted for age, gender, and estimated total intracranial volume and only serves demonstrational 
purposes. Associations between the measured variables, appropriately adjusted for the nuisance factors, are 
shown in Table 2.
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Osteopontin DuoSet ELISA, R&D Systems, Minneapolis, MN). All preparations were performed according to 
the manufacturer’s instructions. Samples were diluted for analysis (Serum 1:25; CSF 1:100). All samples were 
run in duplicates. An iEMS MF microphotometer was used for optical density detection at 450 nm (Thermo 
Labsystem, Beverly MA, USA). The detection limit for the assay was 62.5 pg/mL.

Magnetic resonance imaging. All subjects were scanned using the same 3  T MRI scanner (MAG-
NETOM  PrismaFit, Siemens AG, Erlangen, Germany) with a standard 20-channel head-neck coil. Brain volume-
try was based on a 3D T1 magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequence 
acquired according to the Freesurfer’s Morphometry Protocols Guideline (TR/TI/TE = 2530/1100/3.37 ms; Flip 
Angle = 7°; 176 sagittal slices; slice thickness = 1  mm; FOV = 256 × 256mm2; matrix size = 256 × 256; receiver 
bandwidth = 200 Hz/pixel).

Volumetric analysis of the T1‑weigted MR images. 3D T1 images were fed into volumetric segmen-
tation performed with FreeSurfer v6.0. Details of the procedures are described in previous  publications26,27. 
Each dataset was checked within the processing stream to verify the following stages: Talairach transform, skull 
strip, white matter- and pial surface segmentation, as described in Freesurfer’s Recommended Reconstruction 
Workflow. The white matter hypointensities labels were corrected by hand for all subjects to avoid the mis-seg-
mentation of white matter lesions (T1 black holes) as grey matter. The final volumetric results from Freesurfer 
were fed into statistical analysis.

White matter lesion segmentation. LST toolbox version 3.0.0 (Lesion Segmentation Toolbox, https:// 
www. stati stical- model ling. de/ lst. html) was used to automatically segment cerebral white matter lesions on 3D 
FLAIR images using the lesion prediction  algorithm28.

Statistical analysis. All statistical analyses were performed using SPSS (IBM Corp., Version 25.0. Armonk, 
NY). For volumetric analysis, multiple linear regression models were employed with the volumes of the seg-
mented brain structures as dependent variable and OPN concentration, age, gender and estimated total intracra-
nial volume as independent variables. The assumptions of multiple linear regression were satisfied, as judged by 
testing for linearity, independence of errors, outliers, normality assumptions of the residuals, homoscedasticity 
and multi-collinearity. Significance level was set at p < 0.05. Given the large number of segmented structures in 
the volumetric analysis, multiple comparisons correction with Benjamini–Hochberg procedure was applied with 
a conservative q = 5%.

Table 1.  Clinical characteristics of MS patients. Normally distributed data are reported as mean ± SD, non-
normally distributed data are reported as median (25–75% interquartile range). PPMS primary-progressive 
multiple sclerosis, SPMS secondary-progressive multiple sclerosis, RRMS relapsing–remitting multiple 
sclerosis, EDSS expanded disability status scale, CSF cerebrospinal fluid, DMT disease modifying therapy.

Characteristics Number of patients, mean ± SD or median (IQR)

Demographics

Number of patients 46

Disease duration (years) 12.5 (8.75–15.25)

Age at onset (years) 30.9 ± 9.1

Sex (male/female) 14/32

Years between CSF examination and MRI 10.1 ± 2.0

Disease type (number of patients)

PPMS 5 (11%)

SPMS 10 (22%)

RRMS 31 (67%)

EDSS

At time of CSF examination 2(1.5–2.375)

At time of MRI 2(1–5.875)

DMT at the time of MRI

None 14 (30%)

Interferon-beta 11 (24%)

Fingolimod 4 (9%)

Dimethyl fumarate 4 (9%)

Teriflunomide 4 (9%)

Glatiramer acetate 7 (15%)

Other (alemtuzumab, ocrelizumab, azathioprine) 2 (4%)

https://www.statistical-modelling.de/lst.html
https://www.statistical-modelling.de/lst.html
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Limitations
The present study bears limitations inherent to the study design. The main limitation is the lack of initial (base-
line) MRI measurements. Without the baseline measurement we cannot state that the association with lower 
regional brain volumes (and larger ventricles) correspond to brain atrophy per se.
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