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Abstract: Single-walled carbon nanotubes (SWCNTs) have received extensive research attention ow-
ing to their extraordinary optical, electrical, and mechanical properties, which make them particularly
attractive for application in optoelectronic devices. However, SWCNTs are insoluble in almost all sol-
vents. Therefore, developing methods to solubilize SWCNTs is crucial for their use in solution-based
processes. In this study, we developed a photocleavable polythiophene-derivative polymer dispersant
for SWCNTs. The noncovalent surface functionalization of SWCNTs with a polymer allows their
dispersal in tetrahydrofuran. The resultant solution-processed polymer/SWCNT composite film
undergoes a hydrophobic-to-hydrophilic change in surface properties upon light irradiation (313 nm)
because hydrophilic carboxyl groups are formed upon photocleavage of the hydrophobic solubilizing
units in the polymer. Furthermore, the photocleaved composite film displays a 38-fold increase
in electrical conductivity. This is due to the removal of the solubilizing unit, which is electrically
insulating.

Keywords: carbon nanotube; polythiophene; noncovalent functionalization; photocleavage;
surface hydrophilicity

1. Introduction

Single-walled carbon nanotubes (SWCNTs) show unique electrical and optical prop-
erties [1]. Accordingly, the use of SWCNTs has led to important advances in the develop-
ment of next-generation solar cells [2,3], field-effect transistors [4,5], and thermoelectric
devices [6,7]. SWCNTs also show high mechanical durability owing to their extended
π-conjugated lattices of sp2-bonded carbon atoms, yielding high-performance nanotube
fibers [8].

While there are a variety of applications for SWCNTs, they also present certain draw-
backs. For instance, SWCNT surfaces are hydrophobic, leading to unfavorable aggregation.
Accordingly, SWCNTs are poorly dispersible and quickly precipitate in most organic sol-
vents. Therefore, the development of new SWCNT-dispersion strategies is required for
their use in solution-based processes and applications.

Noncovalent functionalization provides a means for the solution processing of SWC-
NTs [9,10]. When a dispersant, such as a surfactant, polymer, or biomaterial, is attached to
an SWCNT surface through hydrophobic and/or π-π interactions, the uniform dispersion
of the dispersant/SWCNT composite can occur without deforming its sp2 carbon struc-
ture [11,12]. Conjugated polymers are good candidates for use as functional dispersants [13]
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because extended π-structures bearing solubilizing units (e.g., alkyl chains) can bind non-
covalently through π-π interactions to SWCNTs, allowing the formation of SWCNT sus-
pensions. Subsequently, such suspensions can be used to make solution-processed SWCNT
films using coating and printing techniques [14]. However, the solubilizing conjugated
polymer remains attached to the surface of the SWCNTs, meaning that the resulting film
can be damaged upon exposure to the solvent in which it was made. Therefore, the fabrica-
tion of insoluble SWCNT films using functional dispersants would benefit their practical
application [15].

In this study, we developed the polythiophene dispersant PC56T44, which features
a photocleavable solubilizing unit (Figure 1a). Photoresponsive (coumarin-4-yl)methyl
groups have been reported as cage compounds for biomedical applications [16,17]. We
introduced an octyloxy chain as a solubilizing unit in the coumarin group. Exposure to
light leads to the removal of the coumarin group, including the solubilizing unit. The
novelty of this approach is that the photocleaved unit allows not only the formation of an
insoluble PC56T44/SWCNT composite film, but it also changes the surface properties of the
film. Upon photocleavage, the surface of the composite film changes from hydrophobic
to hydrophilic. This change is due to the formation of hydrophilic carboxyl (COOH)
groups on the polymer attached to the surface of the SWCNTs. Furthermore, the electrical
conductivity of the photocleaved PC56T44/SWCNT composite film is 38 times that of the
pristine film because the solubilizing unit is an electrical insulator.
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Figure 1. (a) Chemical structures of PC56T44 and PT. (b) Absorption spectra of (1) PC56T44 and (2) PT
in THF.

2. Materials and Methods
2.1. Materials

Unless otherwise stated, all compounds and solvents were purchased from commercial
suppliers and used without further purification. SWCNTs (≥90% carbon basis (≥80% as
carbon nanotubes), 1.3 nm in diameter) were purchased from Sigma–Aldrich Co., Ltd.
(St. Louis, MO, USA). Isopropanol (IPA), dichloromethane, and chloroform (CHCl3) were
purchased from Junsei Chemical Co., Ltd. (Tokyo, Japan). Acetone, hexane, and deuterated
chloroform (CDCl3) were purchased from FUJIFILM Wako Pure Chemical Co., Ltd. (Osaka,
Japan). Tetrahydrofuran (THF; spectroscopic grade) was purchased from Kanto Chemical
Co., Inc. (Tokyo, Japan). An elastic carbon-coated copper transmission electron microscopy
(TEM) grid was purchased from Okenshoji Co., Ltd. (ELS-C10, Tokyo, Japan). A fused
silica substrate was purchased from Matsunami Glass Ind., Ltd. (Osaka, Japan).

2.2. Polymer Dispersants for SWCNT

Syntheses of the polymeric dispersants PC56T44 and PT have been described else-
where [18]. PC56T44 was afforded with a number-average molecular weight (Mn) of 17,000
and a polydispersity (weight-average molecular weight (Mw)/Mn) of 1.4. The correspond-
ing values for PT were Mn: 6800 and Mw/Mn: 1.7.

The photocleavage behavior of PC56T44 was investigated by NMR and Fourier-transform
infrared (FT-IR) spectroscopy. A PC56T44 film was prepared by drop-casting a CHCl3 solu-
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tion (15 mg mL−1) on a fused silica substrate. The polymer film was irradiated at 313 nm
(light intensity: 5 mW cm−2) for 5 h using a high-pressure mercury lamp (REX-250, Asahi
Spectra Co., Ltd., Tokyo, Japan) equipped with a glass filter (HQBP313, Asahi Spectra).
The unreacted polymer and cleaved coumarin groups were removed by immersion in
CHCl3/hexane (1:3 (v/v)). After drying, the resulting polymer on the substrate was dis-
solved in CDCl3, yielding the photoirradiated NMR sample.

An FT-IR sample was prepared by drop-casting a CHCl3 solution (15 mg mL−1) onto
a KBr plate. After irradiation at 313 nm for 5 h, the photoirradiated FT-IR sample was
obtained by immersion in CHCl3/hexane (1:3 (v/v)) to remove the unreacted polymer and
cleaved coumarin groups.

2.3. Dispersal of SWCNTs in THF

PC56T44 (1 mg) was dissolved in THF (10 mL) and SWCNTs (1 mg) were added to
the resulting solution. The polymer/SWCNT mixture was ultrasonicated for 1 h using a
tip-type ultrasonic homogenizer (Branson Sonifier 250, Branson Ultrasonics Co., Brookfield,
CT, USA; power output: 20 W) in an ice bath. The suspension was centrifuged at 4000 rpm
for 30 min using a Microfuge 16a centrifuge (Beckman Coulter Inc., Brea, CA, USA). A
suspension of PC56T44/SWCNT (1:1 (w/w)) composite in THF was obtained upon collection
of the supernatant layer.

A suspension of PT/SWCNT (1:1 (w/w)) composite was prepared in a similar way as
that described for the PC56T44/SWCNT composite.

2.4. Preparation of PC56T44/SWCNT Composite Films

The substrates were cleaned with acetone and IPA by ultrasonication twice before
preparing the samples. The substrates were treated with an ultraviolet–ozone cleaner
(ASM1101N, Asumi Giken Ltd., Tokyo, Japan) for 10 min. A PC56T44/SWCNT (1:1 (w/w))
composite film was fabricated by drop-casting a THF solution (0.2 mg mL−1) onto the
substrate. The obtained film was dried at 25 ◦C for 15 h. The PC56T44/SWCNT composite
film was irradiated at 313 nm (light intensity: 5 mW cm−2) for 5 h. Photoirradiation was
performed at 25 ◦C under nitrogen using a temperature controller (FP90 central processor
equipped with a FP-82HT hot stage, Mettler Toledo, Columbus, OH, USA). After irradiation,
the unreacted polymer and cleaved coumarin groups were removed by immersion in
CHCl3/hexane (1:3 (v/v)).

2.5. Characterization

Absorption spectra were obtained using a V-750 (Jasco Co., Ltd., Tokyo, Japan) or
UV-3600i plus spectrophotometer (Shimadzu Co., Ltd., Kyoto, Japan).

Photocleavage behavior was investigated using 1H NMR (JNM-ECZ400R, JEOL Ltd.,
Tokyo, Japan) and FT-IR (FT/IR-4100, Jasco) spectroscopies.

The SWCNT dispersion was investigated using TEM (JEM-1230, accelerating voltage:
80 kV, JEOL Ltd., Tokyo, Japan), scanning electron microscopy (SEM; Quattro ESEM,
accelerating voltage: 5 kV, Thermo Fisher Scientific, Waltham, MA, USA), and Raman
spectrometry (LabRAM, excitation wavelength: 633 nm, HORIBA Jobin Yvon, Kyoto,
Japan).

Water contact angle measurements were obtained using a DropMaster 500 contact
angle meter (Kyowa Interface Science Co., Ltd., Tokyo, Japan) equipped with a charge-
coupled device camera. The water contact angle was measured immediately after 1 µL of
water was dropped onto the PC56T44/SWCNT composite film with a syringe.

Film thickness was measured with a Dektak surface profiler (Bruker Co., Billerica, MA,
USA).

Conductivity measurements were performed using a Keithley 2400 source meter
(Tektronix Inc., Beaverton, OR, USA).
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3. Results and Discussion
3.1. Photocleavage of PC56T44

Figure 1a shows the chemical structures of the polythiophene derivatives PC56T44 and
PT. PC56T44 includes a (coumarin-4-yl)methyl moiety as a photocleavable group and an
octyloxy side chain as a solubilizing unit. PT possesses a methyl acetate group without
a photoreactive group. The absorption spectra of PC56T44 and PT in THF are shown in
Figure 1b. The maximum absorption wavelength (λmax) values for PC56T44 are 322 and
381 nm. The former λmax is due to the S1→ S0 transition of the coumarin group [19], while
the latter is due to the π–π* transition of a polythiophene unit in a random coil structure [20].
Since PT also has the π–π* transition at 383 nm, PC56T44 and PT show similar π-conjugated
structures in the polythiophene chain.

A change in the absorption spectrum of PC56T44 in THF occurs upon photoirradia-
tion at 313 nm (Figure 2a). As the irradiation time increases, λmax at 322 nm decreases.
After irradiation for 5 h, a photostationary state is reached. These results indicate that
photoirradiation leads to photocleavage of the coumarin group bearing the solubilizing
unit. As the irradiation time increases, the absorbance at 381 nm decreases. This may be
due to the photocleavage of the bulky coumarin group, which changes the polythiophene
conformation. Thus, the main chain shows a decrease in the conjugation length.
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The FT-IR spectra of PC56T44 were obtained before and after irradiation to investigate
its photocleavage behavior (Figure 2b). PC56T44 shows ester group absorbances at 1261 (C–
O) and 1734 cm−1 (C=O) before irradiation. After irradiation, a broadened peak appeared
at around 3200–3400 cm−1, which is attributed to a stretching mode of a carboxyl (COOH)
group (Figure 2(b2)).

1H NMR analysis revealed that irradiation at 313 nm leads to photocleavage of the
coumarin units (Figures S1 and S2). The integration value for the methylene groups in
the coumarin unit (5.20 ppm) decreased from 2.46 to 1.77. Because the integration value
for the methyl acetate group (3.68 ppm) did not change, 28% of the thiophene units with
the coumarin groups were changed in the polymer chain. Thus, there was a 16% yield of
COOH groups in the polymer chain upon photocleavage (Figure 2c). We also found that a
broadening of the peak around 1730 cm−1 occurred in the FT-IR spectrum after irradiation
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(Figure 2(b2)). This may be attributed to the overlapped peaks of ester and COOH groups.
Because the photocleavage rate was insufficient (16%), the peak of the COOH group around
1710 cm−1 could not be observed clearly.

3.2. Dispersion of SWCNT Using Noncovalent Functionalization

Ultrasonication of polythiophene derivatives and SWCNT in THF yielded suspensions
(Figure 3a). The color of the PC56T44/SWCNT composite suspension is darker than that
of the PT/SWCNT composite. This indicates that PC56T44 has a better ability to disperse
SWCNTs than PT.
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Figure 3b shows the absorption spectra of the suspensions. The higher absorbance of
the PC56T44/SWCNT composite is evidence of more dispersed SWCNTs. Thus, the π–π
interactions between the aromatic coumarin in PC56T44 and the SWCNTs result in improved
dispersion. The absorption spectra of the suspensions in the visible and near-infrared
regions are consistent with the electronic structure of SWCNTs, corresponding to optical
transitions for the first (S11, 940−1300 nm) and second (S22, 620−940 nm) semiconducting
SWCNTs [21].

The broadening of an absorption peak is proportional to the degree of aggregation in
a sample. Accordingly, to evaluate dispersion behavior, we measured the full width at half
maximum (FWHM) at 1153 nm in the S11 region. The FWHM for the PC56T44/SWCNT
composite was 39.4 meV. The FWHM for the poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6’-
{2,2’-bipyridine})]/(6,5) SWCNT composite in the S11 region was 22.4 meV [22], indicating
that our composite tended to show SWCNT aggregation in the suspension.

The Raman spectrum of PC56T44/SWCNT (1:1 (w/w)) presented two characteristic
bands: the disorder (D)-band at 1317 cm−1 and the graphitic (G)-band at 1586 cm−1

(Figure 4a). The D-band is related to the presence of defects, corresponding to sp3-hybridized
carbon in the hexagonal frameworks of the nanotubes. The G-band is attributed to the
vibration of sp2 carbons in graphitic layers [23]. The D- and G-band intensity ratio (ID/IG)
indicates the level of defects in SWCNTs. The ID/IG value for PC56T44/SWCNT was 0.12,
indicating that the SWCNTs had almost no structural defects after dispersion.
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Small bundles of SWCNTs (diameter: 15−20 nm, length: 1.8 µm) were observed in the
suspensions (Figure 4b). Since the SWCNT diameters were approximately 0.7−1.4 nm, the
bundles of SWCNT originated from entangled structures. Since the surfaces of SWCNTs
were smooth and uniform, the PC56T44 attached to the surface of SWCNTs brought about
π−π interactions between the polythiophene units and the SWCNTs.

3.3. Morphological Change at the Surface of the Solution-Processed SWCNT Film

We prepared a drop-cast film of the PC56T44/SWCNT composite on a fused silica
substrate (Figure 5a). The film thickness was ~1.2 µm. Photocleavage of PC56T44 in the
SWCNT film was investigated by SEM (Figure 5b). The as-prepared PC56T44/SWCNT
composite film showed network structures. The composite bundles were 30−40 nm in di-
ameter. However, the SEM image is not clear owing to the aggregation of SWCNTs covered
with the polymer (Figure 5(b1)). In contrast, network structures were observed clearly after
photoirradiation at 313 nm for 5 h. The diameters of the composite bundles decreased by
40% to 60% (Figure 5(b2)). These results suggest that the decrease in diameter was due to
photocleavage of the solubilizing unit in PC56T44 on the surface of the SWCNTs. We also
found that the PC56T44/SWCNT composite film was insoluble in CHCl3, dichloromethane,
and THF after photoirradiation, owing to the photocleavage of the solubilizing unit.
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Figure 5. (a) Photograph of a PC56T44/SWCNT composite film formed on a substrate. (b) SEM
images of the PC56T44/SWCNT composite film (1) before and (2) after irradiation at 313 nm.

Photocleavage of the solubilizing unit in PC56T44 afforded COOH groups. These
groups made the SWCNT surface hydrophilic. When a surface changes from hydrophobic
to hydrophilic, the water contact angle decreases. Photocleavage of the solubilizing unit de-
creased the water contact angle (Figure 6a). The water contact angle of the PC56T44/SWCNT
composite film before irradiation was 93◦. This result indicates that the surfaces of the
SWCNTs were covered with PC56T44 through noncovalent functionalization. In contrast,
the water contact angle after irradiation at 313 nm was 43◦. Since the water contact angle
for the pristine SWCNTs was around 85◦ [24], the change in the surface composition of
the SWCNT film led to a change in the water contact angle. We also found that the forma-
tion of COOH groups upon photocleavage increased surface hydrophilicity (Figure 6b).
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Therefore, the composite film became hydrophilic after photocleavage of the hydrophobic
solubilizing unit.
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3.4. Modulation of the Electrical Conductivity of the PC56T44/SWCNT Composite Film upon
Photocleavage

Finally, the electrical conductivity (σ) of the photocleaved composite film was inves-
tigated. Since conductive SWCNTs form network structures in films, an applied voltage
generates electrical current through the nanotube junctions [25]. A PC56T44/SWCNT com-
posite film was fabricated on interdigitated gold electrodes by drop-casting a suspension in
THF (Figure 7a). Before irradiation, the PC56T44/SWCNT composite film showed a σ value
of 2.3× 10−3 S cm−1 (Figure 7(b1)). On the other hand, a 38-fold increase in the current was
observed after photoirradiation at 313 nm (8.8× 10−2 S cm−1; Figure 7(b2)). The σ value for
the PC56T44/SWCNT composite was higher than that for the poly(dioctylfluorene)/SWCNT
composite (4.0 × 10−7 S cm−1) [26] and the poly(3-octylthiophene)/SWCNT composite
(4.7 × 10−4 S cm−1) [27]. This comparison suggests that our composite is superior for
the high σ material. In contrast, the PT/SWCNT composite film exhibited a σ value of
7.7 × 10−9 S cm−1 (Figure S3). This low σ value may be attributed to insufficient junctions
between nanotubes, owing to the poor dispersion behavior of the PT/SWCNT composite
(Figure 3b).
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Figure 7. (a) Schematics showing the (1) top view of the interdigitated gold electrodes and (2) the
side view of the sample configuration. (b) Current–voltage characteristics of the PC56T44/SWCNT
composite film (1) before and (2) after photocleavage at 313 nm.

These results suggest that the increase in σ was due to the photocleavage of the
solubilizing unit. Because the solubilizing unit is electrically insulating, photocleavage led
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to a higher σ value for the PC56T44/SWCNT composite film. Photoinduced modulation
of the σ value is attractive for the development of SWCNT-based film devices such as
photovoltaics and thermoelectric devices.

4. Conclusions

We have successfully developed a photocleavable polymer dispersant PC56T44 for
SWCNTs. Ultrasonication yielded dispersed PC56T44/SWCNT composite in THF through
noncovalent functionalization. A solution-processed PC56T44/SWCNT composite film
exhibited photocleavage of the solubilizing unit upon irradiation. Water contact angle
measurements revealed that the surface properties of the composite film changed from
hydrophobic to hydrophilic upon irradiation due to the formation of hydrophilic carboxyl
groups. Furthermore, the photocleaved PC56T44/SWCNT composite film showed a dra-
matic increase in electrical conductivity because the solubilizing unit in PC56T44 acts as an
electrical insulator.

A particularly important aspect of this study is the increase in electrical conductivity
when the solubilizing unit was photocleaved to yield an insoluble SWCNT film. Since
the photoirradiated area is insoluble, selective irradiation can form a patterned SWCNT
film by solution processing. We believe that such patterned films have potential applica-
tions in printed electronics, such as photovoltaics and thermoelectric devices with p–n
heterojunctions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12010052/s1: Figure S1. 1H NMR spectrum of PC56T44 in CDCl3; Figure S2. 1H NMR
spectrum of PC56T44 after irradiation at 313 nm in CDCl3.; Figure S3. Current–voltage characteristics
of a PT/SWCNT composite film.
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