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There is an urgent need for more informative quantitative techniques that

non-invasively and objectively assess strategies for epilepsy surgery. Invasive intracranial

electroencephalography (iEEG) remains the clinical gold standard to investigate the

nature of the epileptogenic zone (EZ) before surgical resection. However, there are major

limitations of iEEG, such as the limited spatial sampling and the degree of subjectivity

inherent in the analysis and clinical interpretation of iEEG data. Recent advances in

network analysis and dynamical network modeling provide a novel aspect toward a

more objective assessment of the EZ. The advantage of such approaches is that they

are data-driven and require less or no human input. Multiple studies have demonstrated

success using these approaches when applied to iEEG data in characterizing the EZ

and predicting surgical outcomes. However, the limitations of iEEG recordings equally

apply to these studies—limited spatial sampling and the implicit assumption that iEEG

electrodes, whether strip, grid, depth or stereo EEG (sEEG) arrays, are placed in the

correct location. Therefore, it is of interest to clinicians and scientists to see whether the

same analysis and modeling techniques can be applied to whole-brain, non-invasive

neuroimaging data (from MRI-based techniques) and neurophysiological data (from

MEG and scalp EEG recordings), thus removing the limitation of spatial sampling, while

safely and objectively characterizing the EZ. This review aims to summarize current state

of the art non-invasive methods that inform epilepsy surgery using network analysis

and dynamical network models. We also present perspectives on future directions and

clinical applications of these promising approaches.
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1. INTRODUCTION

Epilepsy is a debilitating neurological disorder that affects 1–2% of the population worldwide (1).
About two thirds of epilepsy patients may have their seizures controlled using anti-epileptic drugs
(AEDs), while at least one third of patients do not adequately respond to medications (2, 3). More
crucially, this ratio of pharmaco-refractory patients has not changed with the introduction of new
first-line AEDs each year (4). For those pharmaco-refractory patients, surgical intervention (with
the removal of brain tissue driving ictogenesis) can serve as a viable option for the treatment of
drug-refractory epilepsy (5).
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The success rate of epilepsy surgery is between 30 and
70% (6, 7). A recent multi-center study suggests the success
rate of epilepsy surgery is about 50% (8). While the role
of epilepsy surgery is well-established, the estimated ratio
of operated to potentially eligible patients is only 1:25–50
(9). Accurate localization of the epileptogenic zone (EZ)—
the minimum brain area to be removed to render a patient
seizure free—is the ultimate goal in the pre-surgical evaluation
of these patients (5, 10). Invasive intracranial monitoring
(with direct recordings of local field potentials generated by
pathological brain tissue) is still the gold standard to delineate
the EZ presurgically (1, 5, 6). However, it is not a true gold
standard because intracranial recordings have multiple key
limitations (11). These include high cost, significant patient
morbidity, and the element of subjectivity involved in the
identification of the iEEG-defined seizure onset zone (SOZ)
(8, 11). The analysis of ictal iEEG is typically restricted to
visual inspection; however, a more objective approach to the
analysis of iEEG data is beginning to emerge in the clinical
setting (12–14). For instance, a number of investigators have
developed quantitative approaches (12–14) to the analysis of
clinical EEG to reduce the degree of subjectivity involved in
the clinical interpretation of these complex datasets. Of the
various forms of iEEG (classical sEEG, isolated depth electrodes,
intraoperative monitoring, subdural grids, and strips), it is
sEEG (with its more extensive sampling capacity) that has
fostered a deeper understanding of the network nature of the
EZ, challenging the clinical view that the EZ is a discrete
unifocal zone.

Network analysis and network models have assumed
important roles in the present-day imaging of brain networks
and their functions (15–17). As a fast-evolving research area, the
recent advances in network analysis and network models enable
the study of both normal and pathological brain dynamics by
taking into account high-dimensional information obtained
using neurophysiological and neuroimaging approaches
(18–20). Aided by techniques from neuroscience and
neuroimaging, a large number of studies using network
analysis and network models have shed new light on our
understanding of the enormous complexity of the epileptic
brain (21).

Dynamical network models provide great capacity to probe
the mechanisms underlying complex neural dynamics (15,
17, 22, 23). Inspired by pioneering studies of excitatory and
inhibitory neurons as well as the alpha rhythm of the thalamus
(24–26), investigators have developed dynamical models of
neural mass and neural mass networks, which connect an
ensemble of neural mass models into macroscopic neural
systems (27, 28). Employing dynamical networkmodels, multiple
attempts have been made to understand the mechanisms
underlying normal and pathological neural dynamics (29–
34). Dynamical network models have also been applied to
neurophysiological data recorded from the human brain to
develop specific hypotheses toward clinical application (20,
29, 31, 35, 36). In this review, recent advances and notable
developments in the field will be examined in the context of
epilepsy surgery.

2. A GENERIC WORKFLOW

A generic workflow of applying network analysis and dynamical
network models to EEG and MEG source signals is depicted
in Figure 1. EEG and MEG signals acquired as part of the
presurgical evaluation are first preprocessed via multiple steps
before they are source modeled (37). After preprocessing,
the head model and source space are constructed using the
individual’s MRI data. Forward and inverse solutions are
then generated for source imaging. Source signals in defined
source space can be then reconstructed. With reconstructed
source signals, functional networks can be constructed using
connectivity approaches.

Network modeling generally requires a connectivity analysis
to obtain a network structure or topology as the basis of
the modeling as the first step. This network structure may
come from structural imaging data such as tractography or
functional connectivity. When using functional connectivity to
determine network structure, a series of time-evolving functional
networks may be used (19) or a time-domain averaged functional
network may be used. Some models also offer the capacity to
use directional networks and hence effective connectivity and
causal relationships may be integrated into the network structure
(33, 38). Nodal level neural dynamics can then be embedded
into network nodes. Multiple models of neural dynamics using
different mathematical mechanisms can be employed in this
step. Some models also offer flexibility by accommodating the
use of different models to configure nodal neural dynamics.
Network simulations can then be run with or without external
inputs, such as perturbatory white noise. By introducing external
noise, “stimulation,” or change in parameters, models can effect a
transition from non-seizure states to seizure states (39–42).

Each model generates a probability map that depicts the
likelihood of brain areas being responsible for interictal or ictal
source activity depending on the nature and the assumptions that
a method or model employs. Such probability maps can then be
used to assess the concordance level with resection bed. Using
concordance levels and post-surgical outcomes, the performance
of models and approaches can be tested. Two patient examples
are given in Figure 2.

3. FUNCTIONAL AND STRUCTURAL
NETWORKS IN FOCAL EPILEPSY

With ongoing advances in neuroimaging techniques, high-
resolution functional and structural neuroimaging data can
be obtained from epilepsy patients for assessment, diagnosis,
treatment, and research. Connectivity methods have commonly
been used to construct functional and structural networks
using neuroimaging data. This subsection discusses findings
from studies using functional and structural connectivity and
problems and limitations associated with connectivity analysis
in epilepsy.

3.1. Structural Networks in Focal Epilepsy
When studying functional brain networks, an intuitive question
to ask is how structural networks constrain functional
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FIGURE 1 | A generic workflow. EEG and MEG signals are acquired for presurgical evaluation. Preprocessing of EEG and MEG signals is often required before source

modeling to remove artifacts. The head model and the co-registered source space are then prepared using individual structural MRI data to generate a forward

solution. Inverse solutions can be then generated using forward solutions and EEG/MEG signals. Using inverse solutions, source activity can be localized and

reconstructed. Next, functional networks can be constructed using source signals and dynamical network models can be applied to identify brain areas that are

responsible for ictal or interictal discharges. Dynamical network models can be then clinically validated against surgical resection margins linked to histology and

post-surgical outcome.
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FIGURE 2 | Examples of applying dynamical network models to non-invasive (MEG) and invasive (iEEG) data to identify brain areas that are responsible for

ictogenesis. Three approaches are applied to MEG and iEEG data, respectively, to identify brain areas that are responsible for seizure generation (red highlight). These

areas are then compared against the resection margin and surgical outcomes to validate the results of employed approaches. The Sync approach uses

synchronizability and control centrality (19) to identify nodes that increase or decrease of the stability of the synchronous states of the network. AEC-VIZ and MI-VIZ

represent the ictogenic zone identified using virtual iEEG signals reconstructed by ictal MEG and dynamical network models. Amplitude Envelope Correlation (AEC)

and Mutual Information (MI) can be used to construct functional networks that are then fed to dynamical network models. Here, a Theta model is used to simulate ictal

waveforms and a virtual resection technique to estimate the influence of each node on ictogenicity. The Epileptogenicity Index (EI) (43) estimates spectral and temporal

features of ictal iEEG signals and provides a quantitative measure to identify epileptogenic areas. iEEG SOZ is the conventional clinical analysis of ictal iEEG signals to

identify iEEG electrodes where seizures arise. For both patients, brain areas involved in epileptogenesis identified by noninvasive dynamical approaches are

comparable to the areas identified by traditional invasive intracranial means. Both patients had an Engel 1 outcome—Patient 1 (left) had focal cortical dysplasia Type

1 and Patient 2 (right) had post-infectious cortical gliosis.

networks. MRI techniques and structural connectivity have
been introduced to address this. MRI techniques are widely used
in clinical workup to localize pathological brain regions and
understand epileptogenesis (1, 44). Diffusion MRI (dMRI) is a
variant of standard MRI and one of the mainstream structural
imaging techniques (45).

In a typical connectivity analysis, a standard MRI scan is
required to capture an individual’s neuroanatomical structure.
Analytical software, such as Freesurfer (46), can be used to
segregate the whole brain into subregions based on a standard
brain atlas or customized boundaries (47, 48). With dMRI,
software that tracks fiber density or integrity can be then
used to detect, count and quantitatively characterize fibers
that communicate between parcelated brain regions. This fiber
density analysis results in a two-dimensional connectivity matrix,
representing how strongly subregions are interconnected via
white matter. This two-dimensional connectivity matrix may
become a “fingerprint” of an individual’s structural networks.
Properties of the individualized connectivity matrix may
characterize critical features of a pathological brain (49, 50).
Early studies using dMRI and connectivity analysis suggest a
change in structural connectivity in the epileptogenic zone and
surrounding brain regions in focal epilepsy (44, 51, 52).

More specifically, in temporal lobe epilepsy (TLE) patients,
structural alterations were reported in the epileptogenic zone
in frontal and temporal lobes, but particularly at the temporal
poles. These structural alterations revealed by tractography and
connectivity analysis indicate distinct unilateral features and
specific impacts on global structural connectivity (52). Despite
variance introduced by individual differences and heterogeneous
pathologies in group-level analysis, studies comparing TLE
patients and healthy cohorts demonstrate extensive weakened
temporo-parietal connections in TLE structural networks,
which support the clinical observation of cognitive impairment
in memory and speech (53, 54). Focke et al. (54) also
demonstrate altered structural connectivity between para-
hippocampal structures, providing a neuroanatomical basis
for theoretical models of seizure propagation. In frontal lobe
epilepsy, structural connectivity may remain intact in frontal
regions, while nearby regions can be affected by interictal
and ictal activity (55). Epilepsy involving mesial frontal areas
preserves a robust connectivity in the supplementary motor area.
Similar lower fiber intensity found in the superior longitudinal
fasciculus, but not in the cingulum, suggests particular functional
abnormalities for children with focal epilepsies (56). Diffusion
imaging may also be used in animal models to study the extent of
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white matter impairment. A rat model of focal epilepsy has been
studied using dMRI and shows widespread reductions in white
matter density in extensive brain regions beyond the epileptic
focus, indicating the impaired efficiency of functional networks
(57). Animal models, however, are not the focus of this review.

Structural networks defined by structural connectivity are
not a complete representation of a pathological brain. Due
to limitations of current techniques, structural MRI can only
capture a small proportion of network connections on the
macroscopic level. Whether this limitation affects interpretation
of current studies in focal epilepsy remains unclear (45).
Computer simulations show structural alterations are not
necessary to generate seizure-like activity and epileptic networks
are also believed to be fast-evolving dynamical networks
(58). Therefore, rather than characterizing interconnected
brain regions, static structural connectivity is more likely to
answer how functional networks can be constrained by their
corresponding structural substrates. This is important to keep
in mind when interpreting findings on functional networks in
focal epilepsy.

3.2. Functional Networks in Focal Epilepsy
Previous studies using functional connectivity mainly focus on
time-series analysis of interictal and ictal events and report
on network structural alterations over time before, during and
after a seizure. To gain insights into the fast-evolving functional
networks of seizure activity, recording techniques with high
sampling rates, such as EEG, iEEG, and MEG, are broadly
employed for epilepsy research. A number of studies have
demonstrated the capacity of functional network structures of
fast-evolving seizures to reflect properties of the putative EZ
(13, 18, 58–61).

Using sEEG recordings, Bartolomei et al. (14) are credited as
the first study to apply network analysis to explore non-linear
relationships between different brain regions in temporal lobe
epilepsy patients. Bartolomei et al. (62) offers a comprehensive
review of network analysis specific to sEEG in epilepsy surgery.
Khambhati et al. (19) show functional connectivity changes
rapidly over time before focal seizure onset but not as much as
it does during the seizure. By clustering time windows of iEEG
data based on functional connectivity commonalities, Khambhati
et al. (63) also find higher levels of synchronization in brain
states that are close to focal seizure termination as opposed
to brain states at the beginning or the middle of the seizure.
These findings indicate that the epileptic brain has different
functional network structures underlying seizure generation vs.
termination. Schindler et al. (64) also demonstrated the shift in
functional network structure toward a normal network state with
transition from the pre-ictal to the ictal state.

Studies have reported that the ictal network structure for
generalized seizures was more regular than the corresponding
interictal network structure, thus suggesting that seizure events
with seemingly “random” functional connectivity may preserve
common patterns (65–67). Distinct patterns of functional
connectivity have also been reported around seizure onset.
Kramer et al. (68) demonstrated the SOZ presents a dominant
regular sub-network with densely connected nodes. As a seizure

progresses, the sub-network becomes divided into smaller
randomnetworks and hence the authors argue that these network
features during the seizure progression may reflect decreased
susceptibility of the network to become synchronized (68).

Interictal brain networks have also been examined in
functional network studies. Resting-state EEG and MEG
recordings in focal epilepsy patients show an increase in
functional connectivity, which could reflect increased cortical
excitability predisposing to epileptic seizures (69, 70). These
authors also identified a decrease in network efficiency
compared to control networks, perhaps indicating brain network
disruption associated with interictal activity. Others employing
network analysis of interictal data report conflicting results.
Bartolomei et al. (71) presented decreased clustering coefficients
and path lengths, while Horstmann et al. (72) show an
increase in the same metrics. These inconsistencies could be
due to differences in patient selection and methodologies.
Current techniques representing functional networks may well
need further refinement to characterize a pathological brain,
particularly a brain predisposed to seizures.

Functional networks have also been studied using fMRI in
generalized and focal epilepsies. In temporal lobe epilepsy, a
general decrease in functional connectivity has been reported
in the ipsilateral hemisphere and subcortical structures (73,
74). Another study reports that besides a general decrease
in global functional networks, there is a relative increase in
functional connectivity within the affected temporal lobe (75). In
generalized epilepsy, a decreased intra-hemispheric connectivity
and an increased inter-hemispheric connectivity are reported
(76). Although associations between hemodynamic signals and
electromagnetic signals require more investigation, these fMRI
findings provide a different perspective on network behavior
based on interictal data.

3.3. Relationship Between Structural and
Functional Connectivity and Limitations of
Connectivity Analysis
To date, a well-defined relationship between functional and
structural connectivity is still missing in the literature for
several reasons. First, functional connectivity in meso-scale
brain networks still lacks sufficiently accurate neurophysiological
and neuroanatomical substrates to interpret findings; to begin
with, the coupling of structural to functional networks is not
straightforward as findings from structural connectivity may
not directly translate to neural dynamics governing interictal
and ictal states. Second, structural connectivity is not always
static and, as revealed by work in neuroplasticity, can change
over longer time scales. Therefore, studies with different follow-
up protocols are not always comparable. Third, individual
differences make findings difficult to generalize statistically,
especially when dealing with pathological substrates. For
example, pathologies residing in different cortical regions may
result in different functional and structural network structures
complicating group analysis and potentially introducing errors
to epileptic network modeling at the level of the individual.
Such limitations of current connectivity analysis make it
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difficult to clearly define the extent by which structural
connectivity constrains functional connectivity. In the context
of epilepsy, multiple factors potentially influence connectivity
analysis findings. For example, the effect of anti-epileptic drugs
(AEDs) on functional and structural connectivity is unclear (59).
Heterogeneity of epilepsy patients is also non-trivial. Different
lesion types and locations might exert different effects on
functional and structural connectivity properties (77). Normally
in epilepsy studies, patients with the same pathology and similar
locations are grouped and studied together. Patients with the
same pathology and similar locations may have very different
ictal or interictal electrographic activity, while patients with
different pathologies may demonstrate similar electrographic
features (59). These factors need to be considered when
validating network models in cohorts obeying conventional
patient selection.

Contradictory results from different imaging modalities also
influence how findings should be interpreted. EEG and MEG
studies usually show global increases in functional connectivity
compared to healthy controls, while fMRI studies show a general
decrease. This might reflect fundamental differences between
hemodynamic coupling and electrophysiological dynamics
in epilepsy, not least in their respective temporal and spatial
resolutions (78). Future studies that assess the relationship
between neurophysiologic and hemodynamic connectivity
are needed, possibly through simultaneous multi-modal
neuroimaging studies (16, 59, 79, 80).

4. NETWORK ANALYSIS OF FUNCTIONAL
BRAIN NETWORKS

Networks are an abstract mathematical construction that aim
to represent the interaction of complex real-world systems.
This concept has been introduced to many disciplines including
physics, biology, ecology and neuroscience, to describe the
mathematical behavior of complex systems. In neuroscience,
networks are generally derived from functional and structural
connectivity pathways, where “nodes” stand for different brain
regions and “links” represent anatomical paths between brain
regions or statistical correlations between neural activity (81).
Network analysis using graph theoretical metrics, for example,
has offered insights into how different brain regions are
structurally connected and how different brain regions interact
with each other spatio-temporally (49).

Over the last 5 years, network analysis has become a hot topic
in clinical neuroscience research, as a pathological brain shows
distinct features in structural and functional networks against
a healthy brain (66, 67, 82). These brain network features can
be used as biomarkers for clinical application. As epilepsy is
becoming more recognized as a brain network disorder, network
analysis allows us to study epilepsy and epileptic seizures from a
novel perspective (18, 83, 84). The next section discusses how to
define networks using connectivity methods and extract network
features using graph-theoretical metrics. It also discusses findings
and their interpretation from network analysis, and potential
biomarkers that can be used for clinical applications.

4.1. Nodes and Edges
A network is composed of nodes and edges that link nodes. In
functional brain networks, nodes stand for different brain areas
and edges stand for functional dependence between regional
activities (85). The way nodes and edges are defined often
depends on the imaging modality that is used. For example, with
fMRI, we can use a voxel, or several neighboring voxels as a node
(86); independent component analysis (ICA) can also be used
to aggregate voxels into nodes (87). Time-series of nodes that
have the same independent component can be aggregated into
a node. For sensor-based modalities, such as EEG and MEG, the
preference is to directly use sensors as nodes or assign nodes in
reconstructed source space (88). Brain parcelations of structural
MRI also provides a sophisticated means of assigning brain areas
to nodes, although this requires a-priori knowledge of individual
brain structures and a standard brain atlas (89).

Edges are typically estimated by quantifying statistical
dependency of neural activity between two regions (90).
However, edges are not necessarily equal to connectivity
matrices, as network edges can be binary (edge is either zero
and not connected, or one and connected) or weighted (when
normally a graph filter is applied to extract important edges). The
reason to apply a graph filter is that functional connectivity can
be affected by noise and other measures and graph filtering can
remove such connections (91).

There are multiple ways to apply graph filters to brain
networks. Setting a threshold to connectivity matrices can extract
dominant connections. However, one of the problems with
setting a hard threshold to a matrix is that edge weights can
significantly increase or decrease depending on the brain state.
Therefore, a constant hard threshold for different time windows
may bias global network structures. Proportional thresholding
can help with time window problems as it iteratively extracts top-
ranked connections. However, a common problem of network
thresholding is that without defining connections of interest,
dominant connections across a certain time window could be
irrelevant to analysis or might have even been generated by
artifacts (92). In an effort to address such issues, Langer et al.
(92) proposed the use of sophisticated statistics in their study, but
given the enormous complexity of neural activity, it is difficult to
select neural activities that are relevant for study by examining
whether or not they are statistically correlated.

4.2. Graph Theoretical Metrics
With established functional networks, graph-theoretical metrics
can be applied to study network properties. A number of graph-
theoretical metrics have been developed to measure different
network topological features and each of them has specific
assumptions and requirements of the network (81). In general,
graph-theoretical metrics extract four categories of network
features: integration, segregation, motif, and centrality (93).
For example, clustering coefficients and community detection
metrics quantify how densely subgroups are connected in a
network. Shortest path metrics, such as global efficiency and
characteristic path length, estimate levels of network integration.
Betweenness centrality and closeness centrality detect important
hubs that bridge multiple sub-groups. Different metrics, by their
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TABLE 1 | Commonly used graph-theoretical metrics and their scales, features, and requirements (81, 93).

Scale Metric
Features Requirements/

ConnectedCategory Weighted Directed Negative

Whole

brain

network

Characteristic

path length
Integration Yes Yes No Yes

Global

efficiency
Integration Yes Yes No No

Clustering

coefficient
Segregation Yes Yes No No

Local efficiency Segregation Yes Yes No No

Modularity Segregation Yes Yes Yes No

Sub-

networks

Motifs Motif Yes Yes No No

Transitivity Segregation Yes Yes No No

Edge

betweenness
Segregation Yes Yes No No

Nodes

Degree Basic metric Yes Yes No N/A

Number of

triangles around

a node

Basic metric

for

segregation

Yes Yes No N/A

Shortest path

length

Basic metric

for

segregation

Yes Yes No N/A

Closeness

centrality
Centrality Yes Yes No No

Betweenness

centrality
Centrality Yes Yes No No

definition, extract different network properties, as shown in
Table 1.

Selecting appropriate graph-theoretical metrics in studies
is non-trivial. This metric selection normally depends on the
research question, assumptions, and hypothesis (78). Several
questions may be asked when choosing metrics, such as does the
study focus on whole brain networks or sub-region networks? Is
the study assuming its networks are fully connected or operating
as isolated nodes or sub-groups? Does the study look at important
nodes in networks? Specific hypotheses may lead studies to
mainly look at a subset of nodes and edges, which may require
tailored metrics to extract features of interest. Metric selection
should also consider what imaging modality functional networks
are derived from. Just as different imaging modalities have
different spatio-temporal resolutions and reflect neural dynamics
at different spatio-temporal scales, functional networks have
different features and properties (94). Graph-theoretical metrics
applied to these networks should take the inherent assumptions
of specific network properties into account.

Thorough statistical tests of networkmodels are critical. There
are two ways of testing network models: (1) compare against
numerically simulated reference models and (2) compare with
models derived from other conditions, such as task vs. resting-
state or healthy vs. pathologic (93). A statistically “null model” is
often used as a reference model to test whether the phenomena
that a model observes is random (95). However, a null model is
not always statistically random. A null model is often assigned

properties that the derived model shares. For example, a null
model normally has the same node degree distribution and
similar modular structure. Although network link weights of a
null model usually remain random, they still follow distributions
of the derived model (96).

4.3. Interpretation and Biomarkers
A question that is often raised when results are obtained from
network analysis is how to interpret findings. Unfortunately, this
question is not easy to answer. As discussed in previous sections,
connectivity methods and graph-theoretical metrics reduce the
dimensions of neuroimaging data but also increase levels of
abstraction (97). Although new information can be obtained
with higher levels of abstraction, we also lose the ability to
directly interpret results and to understand neurophysiological
substrates (98). Specifically, a small change in original neural
signals will propagate through levels of abstraction, along with
added complexity. In other words, any change at a high level
of abstraction may not have a one-to-one mapping to original
signals. Current studies use variable-control strategies to rule out
factors that do not affect final results (99). However, this strategy
may not be available when using complex approaches, such as
network analysis. Interpreting results has remained a challenge
in this area and current studies are generally conservative and
cautious with interpretation.

Although interpreting findings from complex network
analysis remains challenging, these findings can still be used
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as potential biomarkers for clinical applications. For example,
functional and structural coupling and decoupling have been
found to be complex and mechanisms remain unknown
(100). However, distinct patterns of decoupled functional and
structural network structures may reflect long-term impairment
in idiopathic generalized epilepsy patients and may be used
as a biomarker to detect subtle brain abnormalities (100).
Zweiphenning et al. (101) found high-frequency functional
networks have distinct biomarkers that statistically predict the
location of the seizure onset zone using interictal iEEG data.
These biomarkers are useful for patients who do not have
frequent clinical or sub-clinical seizures on iEEG monitoring.
Studies using network modeling and network analysis have also
discovered biomarkers with the potential to predict outcomes
of epilepsy surgery (19, 29, 32, 102). These biomarkers may
prove to be useful for presurgical evaluation if findings
can be validated clinically through prospective studies and
clinical trials.

4.4. Volume Conduction and Source
Connectivity
The biophysical nature of volume conduction from neural
sources to recorded signals can introduce field spread or
smearing in connectivity calculations, whereby instantaneously
correlated signals are reconstructed in localized brain areas
and spurious connections are identified by conventional
connectivity analysis. The early work in the biophysics of brain
volume conductor modeling for electrophysiological signals has
discussed this issue and is summarized in the review by Vorwerk
et al. (103).

Unfortunately, this issue is not alleviated when simpler
forward solutions are applied to MEG source reconstruction.
Volume conduction also raises the concern as to whether or
not non-invasive source analysis can achieve the spatial accuracy
of invasive intracranial approaches. This is because volume
conduction smears the electrical potential field (as well as the
magnetic field) generated by a current dipole in the brain,
particularly when the smeared field is observed from far afield.
Fortunately, volume conduction only “mixes” neural activity
in a linear fashion with zero delay in phase synchrony. This
opens the door to find ways to limit volume-conduction related
spurious connections interfering with connectivity calculations.
By understanding the principle of volume conduction, various
techniques have been developed over the last two decades to
remove instantaneous correlation and phase synchrony between
a pair of signals (65, 104–108). Unfortunately, a recent study
that assesses these techniques demonstrates that none guarantee
full identification and removal of spurious connections (109).
Some approaches perform better than others in certain simulated
paradigms but these may also turn out to be too conservative
to remove real connections (110). While volume conduction can
complicate the use of brain network approaches for the study of
neural mechanisms, some argue that volume conduction is not
a major concern when a biomarker of a certain phenomenon
is the goal.

4.5. Studies Using Network Analysis for
Epilepsy Surgery
Early work by Kramer at al. (111) looked at pre-seizure,
seizure and post-seizure functional networks in four patients
and uncovered localized brain structures that appear to
facilitate seizure generation. This finding suggested that network
analysis can assist identification of pathological brain areas and
potentially target these areas for surgical treatment (111). Later,
Wilke et al. (112) used directional networks and graph theoretical
metrics to investigate interictal and ictal iEEG networks. More
recently, a new technique, virtual cortical resection, has been
developed using functional networks and validated against
clinical iEEG data (19, 63, 94, 113). By analysing functional
connectivity patterns of ictal iEEG data, Khambati et al. (63)
developed a framework that statistically describes network
dynamics in seizure generation, propagation, and termination.
The topographic and geometrical changes captured by their
model suggest strengthened synchronous connectivity near
foci may help seizure termination. This finding suggests that
modulating certain circuits near pathologic foci may disrupt
seizure propagation or control seizure generation. Khambhati
et al. (19) later extended the network model by analysing focal
seizures with and without secondary generalization. The authors
hypothesized that focal seizures with secondary generalization
are more likely to synchronize in the pre-seizure state and there
is a regulatory network mechanism that controls whether a focal
seizure generalizes secondarily. A measure, synchronizability,
which has been used in stability analysis of complex systems
(114), was used to quantify stability and heterogeneity of time-
varying functional networks in the model. And a novel metric,
control centrality, was proposed to quantitatively estimate how
the synchronizability of a network changes when a node is
virtually removed from the network (virtual cortical resection).
Counter-intuitively, brain regions that regulate seizure dynamics
and control secondary generalization were often found to sit
outside the SOZ. The implication here is that surgical resection
of the SOZ alone does not necessarily lead to long-term seizure
freedom. Their novel approach also provides a framework to
develop techniques that can computationally simulate epilepsy
surgery in order to provide an optimal surgical strategy. Kini
et al. (113) further extend the framework using ictal events from
iEEG and provide a statistical bio-marker that supports the idea
that synchronizing nodes in the network should be removed in
surgery, pending overlap with eloquent cortex.

A study by Jiang et al. (115) independently revealed similar
“push-pull” dynamics that regulate secondary generalization
of focal seizures. Differing from the specific gamma band
of Khambhati et al. (19), Jiang et al.’s (115) push-pull
dynamics comes from within- and across- frequency oscillations.
Sohrabpour et al. (20) applied network analysis to the EEG source
space to provide a non-invasively derived prediction of the EZ.

Other studies (112, 116) use directional networks to identify
a subset of brain areas for potential surgical removal. Hassan
et al. (117) and Juarez-Martinez et al. (118) extend network
approaches to EEG and MEG source space with relatively small
numbers of patients compared to Sohrabpour et al. (20). These
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studies provide further insights into how network analysis can
be translated from invasively recorded data to non-invasively
recorded and ideally whole-brain data. Other network analysis
studies using pre- and post-operative EEG, MEG, and fMRI data
also found significant changes in functional connectivity patterns
that were predictive of surgical outcomes (13, 18, 119, 120). A
summary of studies using network analysis is given in Table 2

and a comparison of network analysis and network modeling
approaches by modality and source-sensor space is given in
Table 3.

Despite the growing number of studies using network analysis
for epilepsy surgical localization, prospective clinical studies
are lacking. The numbers of patients included in studies has
increased from one patient (117) to 36 patients (20). The
retrospective nature and modest number of patients combine
to limit the applicability and generalizability of network analysis
approaches to clinical work-up for epilepsy surgery.

5. NETWORK MODELS FOR EPILEPSY
SURGERY

Dynamical network modeling is a branch of network science
employing mathematical and computational techniques to
depict, analyse and understand the dynamical behavior of the
network i.e., how a specific network structure impacts on the
system behavior, particularly state transitions and bifurcations,
through a set of evolution equations that yields quantitatively
accurate depiction and prediction (123). Such techniques enable
the properties of patient-specific functional network structures
to be interrogated and the ensuing dynamics to be explained
and predicted. In the case of diseased brain networks such
as epilepsy, the evaluation and prediction of pathological state
transitions such as seizures is invaluable in a clinical context such
as epilepsy surgery. As opposed to network analysis, network
models use established network structures as a basis and embed
dynamical mathematical models to network nodes coupled by
edge weights to simulate overall network dynamics. The process
uses static functional networks derived from time-series data to a
dynamical mathematical system that changes over time such that
various states of brain networks can be numerically simulated for
analysis. Here we present established networkmodels for epilepsy
surgery and include studies that have applied these models to
empirical data.

5.1. Network Models
Four main network modeling techniques have been applied to
epilepsy surgery: “Virtual Epileptic Patient” using the “Epileptor”
model from Jirsa et al. (36), “Virtual Cortical Resection”
model using network synchronizability and control centrality
from Khambhati et al. (19), a computational model using
network excitability from Goodfellow et al. (29) and another
computational model similarly using network excitability from
Sinha et al. (31).

The Virtual Epileptic Patient (VEP) model is a hybrid
model using a phenomenologically derived neural field model,
the Epileptor model (124). Each network node is defined in

combination with structural networks and hypotheses derived
from MRI lesions and other clinical information. This model
uses the theory of fast-slow non-linear dynamics to characterize
the bifurcations for seizure onset and offset. The VEP model
demonstrates the prediction of ictal spatial patterns and
confirmation of presurgical hypotheses (30, 124, 125), which
may benefit presurgical evaluation and planning of invasive
intracranial monitoring. It models epileptiform discharges in
computational simulations and identifies the similar bifurcation
mechanisms that produce epileptiform discharges using real data.
The Epileptor model has demonstrated a capacity to predict
seizure propagation using ictal sEEG data (124, 125).

Later work (21, 30, 36, 126) proposed an individualized whole-
brain model that incorporates functional and structural network
models. The Epileptor signifies an advance in mathematical
modeling of epileptic seizures not only because the model
provides a form of taxonomy of seizure activity using nonlinear
coupled oscillators, but it also provides a mathematical etiology
of seizure dynamics. Another advantage of this Virtual Epileptic
Patient (VEP) is that, by combining the modeling of neural
dynamics with the modeling of structural networks, the
approach provides explanatory and predictive capacity in a
clinical setting. Using sEEG combined with structural imaging
modalities, this integrated approach virtually reproduces the
seizure spread over the network that predicts the EZ (36).
It is worth noting though that the VEP model requires
sophisticated iEEG and neuroimaging workup and demands
much of computing resources.

Although neuroimaging modalities, including DTI and fMRI,
have been routinely used by some centers in presurgical epilepsy
workup, scanner availability and scanning time are still limited in
many surgical centers, especially those in developing countries.
Despite the limitations of the VEP model, the findings encourage
the use of the VEP model in a multi-center clinical trial. Such an
integrated approach has the potential to be extended to the study
of normal brain networks and to other neurological diseases.

The virtual cortical resection model provides specific insights
into seizure evolution, particularly seizure initiation, and
termination (19). Unlike the Virtual Epileptic Patient (36), the
virtual cortical resection model only uses data from invasive
intracranial recordings. By converting intracranial signals into
fast evolving functional networks over time, two network
metrics from network control theory (synchronizability and
control centrality) are used to explore the contribution a
node makes to the network dynamics. The virtual resection
technique employed Master Stability Function (MSF) to estimate
stability of synchronization (i.e., synchronizability) by looking
at eigenspectra over time. However, MSF treats each node
in the network as identical and synchronized and hence, is
less concerned with individual dynamics (127). By correlating
the mathematical change in functional network structure to
clinical resection margins and surgical outcomes, the model
suggests network nodes with high control centrality are likely
to be included in the resection when a patient achieves a
favorable outcome. The synchronizability values of functional
networks using data before seizure onset successfully predict
whether a focal seizure secondarily generalizes. This model
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TABLE 2 | A summary of network analysis studies for epilepsy surgery.

References Functional

network

Patient

number

Clinical data Pathology Findings Comments

Bartolomei et al. (14) Undirectional&

directional

18 Ictal SEEG Various pathologies in

temporal lobes

Confirmation of network phenomena

during temporal lobe epilepsy

seizures

The first study that analyzed

the network phenomena in

focal epilepsy

Jiang et al. (115) Directional 24 Ictal iEEG Various pathologies and

locations

Secondary generalization of focal

seizures is regulated by cross

frequency push-pull dynamics

Second publication in

literature on push-pull

mechanisms of focal seizure

Sohrapour et al. (20) Directional 36 Interictal & ictal iEEG +

numerical simulations

Various pathologies and

locations

Khambhati et al. (19) Undirectional 10 Peri-ictal iEEG Various pathologies and

locations

Identify a push-pull mechanism that

regulates focal seizure secondary

generalization

First paper reported such

finding

Kini et al. (113) Undirectional 28 Ictal iEEG Various pathologies and

locations

Synchronizing nodes should be

considered to remove in surgical

planning

Subsequent work of

Khambhati et al. 2016 (19)

Lin et al. (116) Undirectional 13 Ictal iEEG Not available

Wilke et al. (112) Directional +

graph theory

25 Ictal and interictal iEEG Various pathologies and

locations

Kramer et al. (111) Undirectional 4 Ictal iEEG Various pathologies and

locations

Localized brain areas that facilitate

seizures and potential target for

surgical removal

Early work analysing

functional networks of ictal

events using iEEG

Juarez-Marineza et al. (118) Undirectional

+ source

imaging

9 Ictal sEEG + interictal MEG Various pathologies and

locations

Reproduce seizure onset zone

non-invasively and potentially identify

biomarker for EZ

First MEG non-invasive

source space analysis

Hassan et al. (117) Undirectional

+ source

imaging

1 Ictal sEEG + ictal EEG Not available Identify epileptic focus that also

matches findings from sEEG

recordings
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TABLE 3 | A comparison matrix demonstrates current state of each direction of network analysis and network models using different imaging modalities.

Network analysis/

Models
Network analysis Network mode

MEG

Source

Main field

(diagnosis, prognosis, surgical strategy),

but no comparison against source localization

No

Sensor
Sensor-level analysis is more significantly affected by

volume conduction and field spread than source space
No

Scalp EEG

Source

Main field

(diagnosis, prognosis, surgical strategy),

but no comparison against source localization

(121) is the first study.

One study from Lopes et al. (122)

Sensor
Main field

(diagnosis, prognosis, seizure prediction)

Main field

(diagnosis, prognosis, seizure prediction)

iEEG

Source No No

Sensor
Main field

(diagnosis, prognosis, surgical strategy)

Main field

(diagnosis, prognosis, surgical strategy)

provides important insights into this field. It offers an objective
approach for surgery and carries the potential to optimize the
surgical strategy.

The computational model from Goodfellow et al. (29) uses
the Wendling Model (33, 128) to describe nodal level neural
dynamics from functional connectivity analysis of ictal iEEG
signals. While each node has the same dynamics characteristics,
the network topology determines how the network transitions
from the non-seizure state to the seizure state. The model is
calibrated to assume that 50% of the nodes in the network
transition into a seizure state with the whole network spending
50% of its time in a seizure state (29, 35). The total amount
of time the network spends in the seizure state may increase,
decrease, or remain the same when the network topology is
changed with the removal of a given node. The assumption
of this model is that virtually removed nodes that shorten
seizure state time should be removed to reduce the risk of
ictogenesis. A series of studies based on the theta model (35),
which is a simplified version of the Wendling model, showed a
correlation between model prediction and surgical outcome. By
doing so, the model offers an opportunity to optimize surgical
strategy for cases with unfavorable surgical outcomes. Another
computational model from Sinha et al. (31) uses a similar
mathematical framework (23, 129) to predict surgical outcomes
and alternative surgical strategies.

5.2. Studies Using Network Models for
Epilepsy Surgery
The work from Goodfellow et al. (29) and Jirsa et al. (36) are
the early attempts to apply network models to intracranial data
obtained for epilepsy surgery. These fundamental contributions
motivated by earlier theoretical work (23, 124, 129–131) led to a
series of publications aiming to more objectively and accurately
predict the EZ. Goodfellow et al. (29) employed a full Wendling
model to simulate excitability at the nodal level and predict

surgical outcomes based on degree of overlap between model-
predicted ictogenic nodes and resection margins. The study
suggested that at least one node of high ictogenicity should be
included in the surgical resection to achieve a more favorable
surgical outcome. To better understand the relationship between
SOZ and EZ, another measure, Seizure Likelihood was developed
together with an earlier measure, Node Ictogenicity (NI) (29)
to systematically compare the SOZ with the EZ. It was found
that the SOZ may not be the best predictor of the EZ when
there is significant heterogeneity in network topology and node
excitability (132). This is perhaps in line with the clinical
observation that SOZ-based resections do not always provide
optimal outcomes (5). A later study on the same dataset reveals
that a so-called “rich-club” organization (133) (a structure with
multiple hub nodes that densely interconnect sub-networks) can
be found in epilepsy surgical candidates and that disruption of
rich-club modules might optimize surgical outcomes (35). This
finding is also predicted by simulations using the same theoretical
model that is simpler than the Wendling model. The most recent
work by Lopes et al. (122) has extended their network model
to non-invasive EEG source space. Using a simplified Wendling
model and minimum-norm estimation, EEG source signals are
modeled in a similar fashion to iEEG signals. Their results
suggest that the network model predicts the lateralization of
epileptogenic sources with modest spatial resolution. This work
represents an important step in the effort to more objectively
characterize the EZ non-invasively using source space signals and
network models.

By extending the work of Jansen et al. (134) to also include a
slow inhibitory population, Wendling et al. (129) model seizure
onset by mathematically simulating the fast and slow oscillations
of both excitatory and inhibitory neuronal populations. This
model was used by Terry et al. (23) to inversely fit intracranial
EEG data. Bettus et al. (69) andWendling et al. (135) also applied
the model to both intracranial EEG and scalp EEG. Wendling
et al. (136) then extend the network model to understand seizure
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generation and propagation networks. More recent work has
looked at the effects of disrupting network nodes that regulate
seizure propagation (19, 113, 137) with results that challenge the
traditional approach of SOZ resection as best practice for epilepsy
surgery (19, 29, 94, 113, 132).

A multi-level computational model has lately been proposed
to better replicate observed signals from experimental data for
improved prediction of ictogenesis. This networkmodel has been
extended to EEG source space with promising results that reflect
a good match between the interictal EEG source network and
the interictal sEEG network (138). The study also found that the
multi-level network model performs better in the localization of
multi-focal epilepsy.

5.3. Summary of Network Models for
Epilepsy Surgery
It is difficult to compare different studies using network models
to predict the EZ owing to differences in the initial modeling
assumptions and variation in patient cohorts, iEEG approaches,
pathologies, and post-operative follow-up. The dominance of
small studies and single case reports also limits the translatability
of these approaches to the clinical setting. As presented in
Table 4, there is accumulating evidence that network models
can (a) predict the EZ using invasive neurophysiological data
and non-invasive EEG data, (b) help unravel mechanisms of
ictal and interictal discharge generation and propagation, and (c)
allow the study of brain networks to be conducted in a patient-
specific fashion. Long-term prospective studies are now needed,
particularly with network modeling approaches based on the
use of non-invasive, whole-brain data in an effort to reduce our
reliance on invasively acquired data.

6. DISCUSSION

Dynamical network models have the potential to improve
characterization and delineation of the EZ. While initially based
on iEEG recordings, these models have more recently been
extended to the analysis of non-invasive EEG and MEG whole-
brain recordings that, unlike iEEG, are not affected by limited
spatial sampling, nor sensor positions.

6.1. Advantages of This Approach
Dynamical network modeling approaches represent an
important shift away from a subjective interpretation of
iEEG recordings toward an objective quantification of the
putative EZ with their novel analyses of EEG and MEG interictal
and ictal electrophysiological signals. By testing the effects
of candidate epileptogenic nodes on network excitability and
seizure transition states, these approaches permit deliberate,
step-wise hypothesis testing of neural pathways that are
critical for seizure generation and propagation before any
surgical intervention takes place (29, 31, 32, 35). And, while
not the focus of this review, in patients who are not deemed
surgical candidates, these approaches may still be useful for
neuromodulation targets. Recent work from Li et al. (40) and
Scheid et al. (39) suggests “weak” nodes can be identified using
network models for which neuromodulation strategies may

be devised to reduce seizure susceptibility. Further study is
required to clinically validate this concept. The interrogation of
whole-brain structural and functional networks overcomes the
major limitation of traditional invasive monitoring that is highly
dependent on the implicit assumption that iEEG electrodes are
placed in the ideal position for accurate delineation of the EZ
(20). The approach also minimizes the influence of subjective
clinical interpretation of seizure semiology in the pre-surgical
work-up of these patients. For pre-operative planning, the
quantifiable nature of dynamical network modeling facilitates an
objective comparison with traditional non-invasive methods of
EZ mapping, such as PET (positron emission tomography) and
SPECT (single-photon emission computed tomography).

6.2. Limitations of This Approach
There are several limitations of dynamical network modeling
combined with EEG and MEG source imaging. As discussed
previously, field spread and signal leakage reduces the spatial
resolution of source solutions and may limit the capacity of
models to accurately identify the EZ (109, 140). Modeling is
also dependent on the acquisition of high quality EEG or
MEG interictal and ictal signals with minimal noise and artifact
interference (141, 142). As also noted, all network models have
underlying mathematical and physiological assumptions that
may not be entirely valid such that, to date, no favored systematic
approach exists (33). The veracity of these assumptions
can only be rigorously tested with prospective epilepsy
surgery studies, which are currently lacking. Indeed, dynamic
network modeling is still in its infancy and the relationship
between structural networks and functional networks is not
yet clear, particularly with respect to a complex problem
such as epilepsy. To date, these approaches cannot reliably
distinguish between different anatomical structures based on the
specific pathology.

6.3. Next Steps
Multi-modal neuroimaging techniques have assisted pre-surgical
characterization of the putative EZ in pharmaco-refractory
focal epilepsy. Better techniques are needed for the more
challenging patients withMRI-normal and complex lesional focal
epilepsy (141, 143, 144). To this end, network analysis and
dynamical network models have shown considerable promise
with their more objective computational approach to finding
a surgical solution in these difficult cases (29–31). As pointed
out here and by others (13, 18, 50, 113, 145), large cohorts
are required to assess the effectiveness of these approaches
in the clinical setting. Dynamical modeling may further assist
by combining with different neuroimaging techniques, such as
fMRI and tractography, to better model patient-specific brain
structures and pathological dynamics to improve the efficacy
and clinical utility of epilepsy surgery. How such a combined
approach provides clinical value is yet to be fully elucidated
but recent achievements by Jirsa et al. (124) and Proix et al.
(30) demonstrate the merit of incorporating functional and
structural information into the predictive model. It is conceivable
that whole brain dynamic network modeling approaches may
eventually render intracranial exploration unnecessary or even
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TABLE 4 | A summary of studies using network models for epilepsy surgery.

References Network model Patient

number

Clinical data Pathology Findings Comments

Goodfellow et al. (29) Wendling model 16 Ictal iEEG (grid) + numerical

simulations

Various, lesional and

nonlesional

Predict surgical outcome. Alternative

or optimal surgical strategy can be

offered

First attempt on clinical data

in this series

Lopes et al. (32) Wendling + Theta

model

16 Peri-ictal & Ictal iEEG (grid)

+ numerical simulations

Various, lesional and

nonlesional

Alternative or optimal strategy may be

offered by removing rich-club

structures

Subsequent work of

Goodfellow et al. (29)

Lopes et al. (35) Theta model 16 Peri-ictal iEEG (grid) Various, lesional, and

nonlesional

Predict surgical outcome using a

metric derived from network model

Subsequent work of Lopes

et al. (32)

Lopes et al. (132) Theta model 16 iEEG (grid) Various, lesional, and

nonlesional

SOZ is not a good predictor of EZ for

focal epilepsies with a multi-focal

nature

Subsequent work of Lopes

et al. (35)

Lopes et al. (122) Theta model 15 Scalp EEG Various, lesional and

nonlesional

Lateralization of EZ Non-invasive EEG source

space

Jirsa et al. (124) Epileptor model 24 iEEG + data from animal

model

Various, lesional, and

nonlesional

Reproduce seizure propagation in

brain networks as observed by iEEG

Propose the model

Proix and Jirsa (125) Epileptor model 18 Ictal sEEG Various, lesional, and

nonlesional

Predict the seizure propagation First attempt to use clinical

data

Jirsa et al. (36) Epileptor model +

structural brain

network

1 Ictal sEEG + structural

neuroimaging data

Nonlesional Individualized model, predict subset

of brain structure responsible for

seizure generation

Subsequent work of Jirsa

et al. (124)

Proix et al. (30) Epileptor model +

structural brain

network

15 Ictal sEEG + structural

neuroimaging data

Various, lesional, and

nonlesional

Structural networks are able to

explain change in functional

connectivity

Subsequent work of Jirsa

et al. (124)

Wendling et al. (129) Wendling model 5 Ictal sEEG + numerical

simulations

mTLE (lesional and

nonlesional)

Theoretical model produces realistic

epileptic signals that match sEEG

recordings from mTLE

The original theoretical work

along with data validation

Wendling et al. (136) Wendling model +

Functional

connectivity

1 sEEG mTLE Potential to identify epileptogenic

networks

Subsequent work of

Wendling et al. (129)

Wendling et al. (139) Wendling model 1 sEEG + animal model mTLE Replicate observed signals and

predict the mechanisms validated by

experiments and clinical data

A multi-level computational

model
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obsolete. The limitations of intracranial monitoring in its current
forms disqualifies it as a true gold standard for mapping
EZ networks. The evolution of more sophisticated whole-
brain dynamic modeling approaches, which can overcome the
sampling problem, might establish a new standard for pre-
surgical epilepsy planning that is closer to the ground truth for
unraveling EZ pathways. Potential benefits for epilepsy surgery
patients might include reduced peri-operative morbidity and
improved post-operative outcome. Routine clinical application
might help elucidate the structural and functional substrates that
link seizure semiology to seizure onset and propagation (146)
with less clinical subjectivity to the point where elements of the
semiology, not routinely included in existingmodels, could refine
future network modeling strategies.

7. CONCLUSION

This review provides an update on the emerging roles of network
analysis and dynamical network modeling in the surgical work-
up of patients with pharmaco-resistant epilepsy. While still
in their relative infancy, these novel approaches lend more
objectivity to identification of the epileptogenic zone and they
add much-needed specificity and flexibility to hypothesis testing
of neural networks that are involved in epileptogenesis at the
individual patient level in the spirit of twenty-first century

“precision” medicine. The increasing sophistication of structural
and functional connectivity analysis (from MRI, fMRI, DTI,
EEG, and MEG) has paved the way for the evolution of
many promising dynamical network modeling strategies. Most
importantly, in the clinical context of epilepsy surgery, the aim is
to improve patient evaluation and perform a successful resection
that grants patients long-term seizure freedom for a better
quality of life. The potential clinical impact of dynamical network
modeling to improve post-surgical outcomes and to limit the
subjectivity and invasiveness tied to current-day intracranial
monitoring will only be realized with successful translation of
these approaches to large prospective clinical studies.
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