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Motifs are patterns of recurring connections among the genes of genetic networks that
occur more frequently than would be expected from randomized networks with the same
degree sequence. Although the abundance of certain three-node motifs, such as the
feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate
disruptions to gene expression, little is known regarding the connectivity of individual
genes participating in multiple motifs. Using the transcriptional network of the bacterium
Escherichia coli, we investigate this feature by reconstructing the distribution of genes par-
ticipating in feed-forward loop motifs from its largest connected network component. We
contrast these motif participation distributions with those obtained from model networks
built using the preferential attachment mechanism employed by many biological and man-
made networks. We report that, although some of these model networks support a motif
participation distribution that appears qualitatively similar to that obtained from the bac-
terium E. coli, the probability for a node to support a feed-forward loop motif may instead
be strongly influenced by only a few master transcriptional regulators within the network.
From these analyses we conclude that such master regulators may be a crucial ingredient to
describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

Keywords: gene regulatory networks, feed-forward loop motif, complex networks, preferential attachment network
models, motif centrality

INTRODUCTION
Many natural and engineered systems can be expressed as net-
works of nodes connected by links, such as interacting genes or
communicating sensor motes. For biological systems,autonomous
processes drive formation and maintenance of these networks,
such as evolutionary pressures on genetic networks (Crombach
and Hogeweg, 2008). Genetic networks are particularly interest-
ing, because they are known to tolerate noise in gene expression
(Prill et al., 2005), an ability termed robustness (e.g., see, Kitano,
2004 and references therein). Moreover, it was discovered that
genetic networks host repeating patterns of smaller subnetworks,
termed motifs (Shen-Orr et al., 2002), that occur far more fre-
quently than would be expected in randomized networks with the
same degree sequence. These patterns are thought to be the basic
building blocks of complex networks (Milo et al., 2002). While
much attention has been directed toward the study of their indi-
vidual functions, both experimentally (e.g., autoregulatory motifs
Wu and Rao, 2010) and theoretically (Magnan and Alon, 2003),
much less is known relating their coupling and positions within
the network to its robustness.

Feed-forward loops are one of the most common motifs in
genetic networks and are well studied in a variety of biological
contexts. In a genetic network, if one gene is linked to another,
then it may either enhance or repress the expression level of
the target gene, respectively termed up- and down-regulation.
A feed-forward loop consists of three genes or nodes, the first
of which regulates a second, and both of these co-regulate a

third (Figure 1). Recently, Alon and collaborators (Magnan and
Alon, 2003) discovered that individual feed-forward loops possess
interesting dynamical properties, such as signal delay and pulse
generation. Although it is not generally clear how coupling among
these motifs affects the overall network function, several groups
are beginning to move in this direction. For example, exhaus-
tive experiments with the bacterium Escherichia coli (herein E.
coli), in which 598 gene promoters were altered to “rewire” its
genetic network, showed that most of these new connections are
tolerated by the bacteria (Isalan et al., 2008). Mathematical mod-
eling of gene transcription and translation has also been used to
investigate the relationship between coupling and function among
differing motif configurations (Kim et al., 2007; Kwon and Cho,
2008; Wu and Rao, 2010). However, a requisite for using these
results to understand complex features at the network level, such
as robustness, is a more basic understanding of how motifs are
coupled together and distributed throughout such transcriptional
networks.

Here we begin to address this problem by measuring the par-
ticipation of individual genes in each feed-forward loop of the
genetic network of the bacterium E. coli. We use computational
methods to count the number of unique motifs in which a single
gene participates, for all genes in the network. To aid in the inter-
pretation of these motif participation distributions, we contrast
them with those arising from model networks built using a prefer-
ential attachment scheme, employing both linear and non-linear
attachment kernels (Krapivsky et al., 2000). The shape of these
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FIGURE 1 | Genes of feed-forward loops (open circles) may be
connected by the participation of common genes.

motif participation distributions contains valuable information
that allows us to quantify the extent to which feed-forward loops
couple to the whole-network.

MATERIALS AND METHODS
PARTICIPATION OF GENES IN MOTIFS DISTRIBUTED THROUGHOUT A
NETWORK
Here we consider the transcriptional regulatory network of the
bacterium E. coli as a prototypical genetic network, by which we
mean that genes interact with one another when transcription
products affect the transactivation of other “target” genes by inter-
acting with their promoter regions. Not only are all connections
among genes in E. coli’s genetic network well validated by exper-
iments (e.g., see. Shen-Orr et al., 2002), but these data are also
easily sampled using the software tool GeneNetWeaver (Schaffter
et al., 2011), first introduced to aid the development of more accu-
rate gene regulatory network inference algorithms. E. coli’s genetic
network supports 23 disjoint subnetworks that together form a
network of 1565 genes and 3758 links, and it is not completely
connected. Based on this observation we restrict our analyses to its
largest connected component (LCC), which is sparse, supporting
1477 genes and 3671 directed links.

For each gene in the LCC of this genetic network, we count
how many feed-forward loop motifs a gene participates in as one
of its three elements, illustrated as nodes i, j, or k in Figure 1. The
software tool mFINDER (Milo et al., 2002) was used here to iden-
tify feed-forward patterns in the network, independent of whether
one gene up- or down-regulates another. So we did not distinguish

between, for example, coherent and incoherent feed-forward loops
in the counting procedure. Motifs were compared to one another
to ensure that they were only counted once for each gene. These
steps were repeated for the model networks built from procedures
described below.

DEGREE DISTRIBUTIONS FOR GROWING NETWORKS
Because E. coli’s LCC is a directed network, it supports two distinct
distributions that together describe the total-degree distribution.
For a network of n nodes, these are (i) the fraction of the network
hosting K -many outgoing links, p(K, R, n), termed the out-degree
distribution, and (ii) the fraction of the network hosting R-many
incoming links, q(K, R, n), termed the in-degree distribution.

The growth of several man-made or technological networks,
such as citation, internet, actor, and scientific co-authorship net-
works has been measured before (Jeong et al., 2003), and their
growth was modeled by a scheme that adds links to new nodes in a
way that depends on the degree of a candidate node of the existing
network – a mechanism for network evolution termed prefer-
ential attachment (Barabási and Albert, 1999). Although these
man-made networks have been observed to “grow” according to
preferential attachment, gene networks in E. coli and other organ-
isms may instead evolve in response to environmental stressors
realized as horizontal gene transfers (Pál et al., 2005) or gene dupli-
cation events (Lagomarsino et al., 2007). While these and other
mechanisms may indeed drive transcriptional network growth, it
remains unclear what role they play in the creation and persis-
tence of genetic motifs. Because preferential attachment offers a
simplified view of network growth and has been relatively well
studied, we employ it here to develop formulas for the creation of
directed networks, wherein the network evolution is determined
by an attachment kernel taking one of several forms explained
below, either linear, power-law, or sigmoid types.

Consider a network of n nodes, wherein each of its nodes
labeled by the subscript i= 1, 2,. . ., n hosts Ki outgoing links and
Ri incoming links. A randomized network is grown by adding
nodes one at a time, increasing its size by exactly one node during
each round of attachment (also termed a simulation step). These
“new” nodes are attached to the existing network by an average of
m directed links to “candidate” nodes of the network, chosen with
equal probability among all existing network nodes. The probabil-
ity for an edge to link a candidate node i with the new one directed
from the candidate to the new one is generally given by A(Ki, Ri),
wherein Ki and Ri label the out- and in-degrees of the candidate
node, respectively. The probability for a link to be drawn from the
new node to a candidate node i is similarly given by B(Ki, Ri).
These probabilities are normalized against all nodes of the exist-
ing network, and are termed attachment kernels (Krapivsky et al.,
2000).

The number of nodes in the existing network with degree K
can be written as np(K, n)mA(K ), wherein p and A are assumed to
be independent of the nodes’ in-degree R. Using this expression,
a master equation may be written that describes the evolution of
this out-degree distribution:

(n + 1) p (K , n + 1)− np (K , n) = np (K − 1, n) mA (K − 1)

− np (K , n) mA (K ) , (1)
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Equation 1 holds for all cases except K=m, which describes the
links extending from the new node to the existing network. For
this case we have

(n + 1) p (m, n + 1)− np (m, n) = 1− np (m, n) mA (m) . (2)

Equations 1 and 2 are difficult to solve exactly. In light of this
difficulty we instead simulated the growth algorithm directly using
computational means using attachment kernels listed in Table 1,
and described by the algorithm given below. Nevertheless, by using
suitable approximations for Eqs 1 and 2 we can infer a general
form for the degree distribution; however, the exact relationship
reflecting the frequency of degrees observed for network nodes
depends strongly on the specific form of the attachment kernel, as
demonstrated here.

By taking an approximation valid for very large networks,
n→∞, we can solve for the degree distribution near this lim-
iting value. Here we label p(K, ∞)= p(K ), so that (n+ 1)p(K,
n+ 1)− np(K, n)∼p(K ). Then, Eqs 1 and 2 become (Newman,
2010)

p (K ) = np (K − 1) mA (K − 1)− np (K ) mA (K ) , and (3)

p (m) = 1− np (m) mA (m) . (4)

As shown in the appendix, Eqs 3 and 4 can be solved to give

p (K ) =
1

nmA (K )
e
−

K∑
i=m

1/nmA(i)
, (5)

wherein the attachment kernel is “small,” i.e., for A(K ) > 1/nm.
Equation 5 can be further reduced when the actual dependence of
A (or B) on the out- or in- degrees is known (for an example, refer
to the Appendix).

ALGORITHM TO GENERATE MODEL NETWORKS
Synthetic networks are grown step-wise according to the following
protocol. First, a candidate node, denoted by subscript i here, is
chosen randomly with equi-probability from the existing network
of size n. Next, a link directed from the candidate node to the
new one is drawn if a number selected at random from an equi-
probable distribution on the interval d∈ (0, 1) generally satisfies
d≤A(Ki, Ri). This process is then repeated for a link to be drawn
from the new node to the candidate, wherein a newly drawn ran-
dom number from this same distribution instead generally satisfies
d≤B(Ki, Ri) These steps were repeated mi− 1 times, wherein mi

Table 1 | Normalized attachment kernels used to create the model

networks.

Functional

type

Attachment kernel (e.g., A = a/z)

a z =
∑

i ai b z =
∑

i bi

Linear K
∑

K Kp(K ) R
∑

RRq(R)

Power-law

(γ=0.8)

K γ
∑

K Kγp(K ) Rγ
∑

RRγq(R)

Sigmoid K / (K+R)
∑

K
∑

R
Kp(K )q(R)

K+R R / (K+R)
∑

K
∑

R
Rp(K )q(R)

K+R

is another number drawn at random, and the final sequence of
such numbers after S growth steps {ml:l= 1, 2, . . ., S} satisfies the
following exponential distribution:

ρ (mi) =
(

f 1/(1−m0) − 1
)

f −mi/(1−m0). (6)

Parameters here are chosen so that ρ(mi=m0)/ρ(mi= 1)= f,
with the values f= 1/4 and m0 varied for creation of the model
networks between 2, 3, and 4, which skews the distribution toward
larger values of average mi. The average number of links chosen
per growth step, m, is given in terms of these parameters as

m =
∞∑

mi=1

miρ (mi) =
1

1− f 1/(m0−1)
.

So, in view of this expression the average number of links
supported by model networks built using mi= 2, 3, and 4 is
approximately m= 1.33, 2, and 2.7, respectively.

The form of this distribution of link enumerations, Eq. 6, was
chosen partly because the majority of E. coli’s genes support only
1 or 2 links, rather than many more. Computer experiments using
other link distributions, such as mi= constant, generated motif
participation distributions in greater variance with the E. coli dis-
tributions than generated using Eq. 6 (data not shown here). We
note that model networks were built over a “seed” network of eight
nodes fully connected supporting 42 links. This ensures that early
in the growth process, when the network is “small,” it is much less
likely for values of mi to force the creation of duplicate links. That
is, more than one link of the same direction connecting two nodes
is not permitted.

CHOICE OF THE ATTACHMENT KERNELS
As evidenced by Eq. 5, the dependence of the attachment ker-
nel on the degree determines the ultimate shape of the in- or
out-degree distribution. In a celebrated publication (Barabási and
Albert, 1999), Barabási and Albert demonstrated how a variation
of the “Matthew effect” – the idea that already-famous individu-
als are awarded credit disproportionately (Merton, 1968) – can be
employed to generate model networks presenting power-law tails
in their degree distributions. In the attachment kernel formal-
ism of evolving networks (Krapivsky et al., 2000, 2003; Krapivsky
and Redner, 2001), the Barabási–Albert model is equivalent to an
attachment kernel that is linear in the node degree. Because it is
well known that E. coli supports degree distributions presenting
similar power-law type distributions (Shen-Orr et al., 2002) we
employ it here to generate model networks.

Until recently, network evolution was investigated primarily by
studying the growth of model networks possessing qualities sim-
ilar to biological and technological (i.e., man-made) networks.
While direct study of growth regarding some networks, such as
the internet (e.g., Pastor-Satorras et al., 2001), has been conducted
on a limited scale by measuring properties at discrete time points,
only recently has a direct measurement of the attachment kernel
been made as the network continues to grow. Building on previous
works (Newman, 2001; Barabási et al., 2002), Jeong et al. (2003)
inferred the form of these kernels by employing a best fit statistical
method to the network of co-authorship among scientists working
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in neuroscience (between the years 1991 and 1998); the citation
network between published papers in the journal Physical Review
Letters beginning from the year 1998; a collaboration network
among actors appearing in the same movie and debuting between
1920 and 1940 and continuing through to 1993; finally, to the
internet beginning with the year 1997. While it is clear that these
networks do not all grow identically, e.g., actors die or retire while
citation records remain immutable, all of these networks were
found to grow according to preferential attachment. In particu-
lar, attachment kernels for these networks are well described with
a power-law of exponent ∼1 (internet and citation networks) or
∼0.8 (actor and collaboration networks). While we consider net-
work models using the former kernel by using the Barabási–Albert
model of (directed) linear preferential attachment as described
above, we additionally use here model networks built using power-
law kernels with exponent 0.8 to contrast the motif participation
networks derived from E. coli. Data supporting these results has
been recently reported to arise in networks of Wikipedia pages
(Capocci et al., 2006).

It is possible for evolved networks to have been created dynam-
ically according to preferential attachment under evolutionary
conditions – a conclusion based on data obtained from protein-
interaction networks of yeast (Saccharomyces cerevisiae) evolving
under gene duplication events (Eisenberg and Levanon, 2003;
Wagner, 2003; Berg et al., 2004). So, preferential attachment lead-
ing to power-law type networks may provide a reasonable model of
network growth over such long time scales. We explore the impli-
cations of a strongly non-linear attachment kernel on network
growth, which we consider to be proportional to the ratio of either
the out-degree or the in-degree to a nodes’ total-degree: K /(K+R)
or R/(K+R), respectively. Under this hypothesis, nodes have a
tendency to support incoming or outgoing edges relative to its
total-degree, which is a manifestly local feature of these nodes. As
an example, we note that sigmoid type growth kinetics are ubiqui-
tous throughout biochemical networks, commonly used to model
the yield of enzyme-mediated reactions that create or degrade
biomolecules.

PROBABILITY FOR A NODE TO PARTICIPATE IN A FEED-FORWARD LOOP
As shown in the appendix, the number of feed-forward loop motifs
that a node with K outgoing links and R incoming links supports
is proportional to the probability that a node participates in a feed-
forward loop motif, pmotif(K, R), which is given by the following
formula (Eq. A13 of the Appendix):

pmotif (K , R) = p (K ) q (R)
n2

L3

[
K 2 〈R2〉

〈KR〉 + R2 〈K 2〉
〈KR〉

+KR
〈
K 2〉 〈R2〉] . (7)

Note that Eq. 7 is a function of K and R, and cannot be directly
compared to the result of the motif counting procedure directly,
which relates how many nodes host a particular number of motifs.

MAXIMUM LIKELIHOOD ESTIMATION OF CUMULATIVE DISTRIBUTION
FUNCTIONS
Many features of interest in biology when subjected to repeated
measurement show a cumulative probability distribution that fol-
lows power-law type mathematical relationship (Clauset et al.,

2009). For reasons discussed above, the in-, out-, or total-degree
distributions of a network may support a power-law type tail
depending on the form of the attachment kernel used to build
it (e.g., Eq. 5). However if there are no a priori theoretical consid-
erations to predict whether experimental data should best fit to a
particular distribution, then curve-fitting methodologies are com-
monly used to justify empirical relationships among features in
these data. It is known, for example, that using a least squares based
optimization algorithm does not accurately determine whether the
data are power-law distributed (Hoogenboom et al., 2006; Clauset
et al., 2009).

Addressing this problem, Hoogenboom et al. (2006) presented
a maximum likelihood estimation based approach that determines
whether data are power-law distributed or not. For illustration, let
p(K ;γ) be an out-degree distribution function that depends on a
parameter γ, such as p(K ;γ)∼K−γ. A likelihood function is then
defined from this distribution so that L(γ) =

∏
K

p(K ; γ). To find

the parameter γ that best fits the experimental data, this likelihood
function is maximized with respect to it. To carry out these analy-
ses on the motif participation and degree distributions extracted
from the experimental and synthetic networks described above, we
employed MATLAB implementations of the maximum likelihood
estimation method of Hoogenboom et al. as described by Clauset
et al. (2009).

RESULTS AND DISCUSSION
CUMULATIVE DEGREE DISTRIBUTIONS
Figure 2 illustrates the cumulative degree distributions of one rep-
resentative network generated computationally using the attach-
ment kernels listed in Table 1 for varying distributions of the
link enumeration as given by Eq. 6, contrasted against the associ-
ated distributions arising from the E. coli network (black circles).
Straight lines are the result of the maximum likelihood estimation
of the validity of a power-law fit to these cumulative distributions,
p(degree≥K ), which measures, for example, the probability that
observation of the out-degree for any network node is greater than
K. The cumulative distribution is related to the degree distribution,
p(K ), by the equation

p
(
degree ≥ K

)
=

∞∑
i=K

p (i). (8)

Similar equations exist relating in and total-degree distributions
to their associated cumulative distributions.

In, out, and total cumulative degree distributions arising from
the linear attachment kernel are displayed here in Figures 2A–C.
Notably, scaling exponents for power-law type equations fit to
these distributions, such as p(degree≥K )∼K α, do not differ
greatly between m0= 2, 3, or 4; exponents are collected for m0= 2
networks (cyan in Figure 2) into Table 2. A point-wise inspection
of the cumulative total-degree distribution over its whole domain
K+R, however, closely resembles that for E. coli (Figure 2C), while
the cumulative in- and out-degree distributions do not match
qualitatively with E. coli very well. This observation is consistent
with power-law (Figures 2D–F) and sigmoidal (Figures 2G–I)
attachment kernel constructed networks.
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FIGURE 2 | Cumulative degree distributions for synthetic networks created using linear attachment kernels (A–C), power-law kernels (D–F), and
sigmoidal type kernels (G–I).

As expected, when more links are added (e.g., m0= 4) the dis-
tributions illustrated in Figure 2 are shifted more toward the right,
demonstrating that nodes of such networks support larger degrees
merely because the density of links has increased. The form of these
distributions remains similar, however, appearing to be mostly
independent of the choice of m0. For example, in networks built
using the linear (Figures 2A–C) and power-law (Figures 2D–F)
attachment kernels, a plateau arises in the cumulative distribution
that persists across a decade or so in each degree type. This plateau
describes a region in the degree (i.e., x-axes of Figure 2) for which
there is constant probability that a measurement of a node’s degree
gives a greater value than the considered one. Given the definition
of the cumulative distribution, Eq. 8, the existence of the plateaus

mean the degree distributions for the model power-law networks
are bimodal, with a longer plateau indicative of a longer span in
the degree between maxima of the degree distribution.

The cumulative total-degree distribution for E. coli, illustrated
by black circles Figures 2C,F,I, begins to moderately vary from the
power-law fit obtained from the maximum likelihood estimation
method (black line) at approximately K +R= 20, lasting until
approximately K +R= 200. This variance is not strictly indica-
tive of a plateau, but does hint that power-law-type factors may be
ingredients in the evolutionary pressures leading to the shape of
the final transcriptional network distribution. Interestingly, pref-
erential attachment mechanisms have indeed been suggested for
this purpose yielding scale-free protein-interaction networks (see,
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Table 2 | Scaling exponents α, defined for cumulative distribution

functions p(feature ≥x )∼x−α, identified using the maximum

likelihood fitting procedure explained in the section “Materials and

Methods” for the degree and motif participation distributions

illustrated in Figures 2 and 3.

Distributions Features

In-

degree

Out-

degree

Total-

degree
Motif

Model networks Linear 2.7671 2.6973 2.9765 1.8289

Power-law 2.7452 2.5378 2.7373 1.8484

Sigmoid 2.7462 2.8632 2.9953 1.8856

Experimental network E. coli 1.871 3.4922 2.4078 2.0079

Data are collected here for networks with m0=2.

e.g., Barabási and Oltvai, 2004). It was also shown that highly
connected genes evolve more slowly (and are therefore older) than
their loosely connected peers and that co-expressed genes evolve at
similar rates (Jordan et al., 2004). (There are, however, exceptions
to this conclusion in the case of protein-interaction networks, e.g.,
Kunin et al., 2004.) These data suggest preferential attachment
contributes to transcriptional network evolution, lending weight
to our conclusion that a moderate departure from scale-free topol-
ogy observed in the E. coli (Figures 2C,F,I) cumulative total-degree
distribution data is consistent with a power-law-type preferential
attachment growth mechanism. However, the reason even minor
bimodality should present in the E. coli transcriptional network
topology remains unknown.

PARTICIPATION OF E. COLI GENES IN FEED-FORWARD LOOP MOTIFS
Figure 3 illustrates the cumulative motif participation distribu-
tions for networks constructed using each of the three attachment
kernels: linear (Figure 3A), power-law (Figure 3B), and sigmoid
(Figure 3C). As with the distributions of Figure 2, scaling expo-
nents for these motif participation distributions are also collected
into Table 2.

As the number of motifs associated with a node,µ, increases, the
probability that a node will host a greater number of such motifs
decreases for all networks (Figures 3A–C) – a result consistent with
the E. coli data (depicted with black circles). As expected, when
more links are added on average per growth step (i.e., increasing
m0), or more generally as the network density increases, feed-
forward loop motifs are more likely to be created by the attachment
procedure. This is the reason these cumulative motif participation
distributions mostly shift toward the right in Figures 3A–C with
increasing m0. While differences between the cumulative distri-
bution scaling exponents for these representative networks built
using m0= 2 and E. coli’s motif participation distribution are the
largest of any m0 values considered here, these m0= 2 networks
nevertheless more closely resemble the overall E. coli motif distri-
bution. Of these, the m0= 2 network of Figure 3A provides the
closest match to the E. coli data for the kernels considered here.

FEED-FORWARD LOOP MOTIF PROBABILITY
Another way to understand the overlap of feed-forward loop
motifs among network nodes is to determine how likely a node
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FIGURE 3 | Cumulative distribution functions measuring the
probability that a measurement made on a network node gives a
number of motifs greater than µ, for each of three model networks
built using (A) linear attachment kernels, (B) power-law kernels, and
(C) sigmoidal kernels.

is to participate in such a feed-forward loop motif. This quantity
can be computed directly from the degree distributions of the net-
works we have considered here, which is given by Eq. 7 above. So,
for any given pair of in- and out-degrees, Eq. 7 returns the prob-
ability that a node will not only possess those values, but will also
participate in a feed-forward loop motif, playing the part of any of
its three nodes i, j, or k (as depicted in Figure 1). Figure 4 reports
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these probability distributions using degree distributions obtained
computationally from the experimental and synthetic preferential
attachment networks, as a function of K and R, but scaled so that
their global maximum is unity. Distributions so scaled are denoted
by p̃motif(K , R).

Measured in this way, it is clear that the motif structure of
E. coli (Figure 4A) is qualitatively very different from that of
the model networks (Figures 4B–D), in direct contrast to the
similarity observed between the motif participation distributions
illustrated in Figure 3. For E. coli, the probability to find a motif
in the network is greatest for larger values of R (but smaller val-
ues of K ). This feature may arise because nodes possessing larger
degrees will be more strongly coupled with the rest of the net-
work. In this view, a higher density network is favorable because
it is more abundant in motifs. However, this explanation cannot
be the whole story, because the maximum probability occurs also
when K is minimal.

This asymmetry between the influence of the out- and in-
degrees on the motif probability suggests that biological mech-
anisms driving the evolution of the degree distributions are them-
selves asymmetric, favoring one over the other. One way for this
to occur is if genes are more frequently regulated than are actively
regulating other genes. Such“master regulators”are known to exist
in the E. coli network (Babu and Teichmann, 2002). In view of this
evidence, in-degrees should be more frequent within the network;
however, if most genes are not actively regulating other ones, then
there are many more combinations of genes with high in-degree

but low out-degree. A consequence of this regulatory strategy is
that genes with higher in-degree but lower out-degree are more
likely to participate in a feed-forward loop motif – a result that
may be responsible for the global maximum at small K but large
R in Figure 4A.

This “regulatory asymmetry” is not an ingredient in the model
networks, which treat the building of the in- and out-degrees
equally because the form of the attachment kernels is the same for
both in- and out-degree distributions. This fact manifests as the
symmetry observed in the motif probability distributions shown
in Figures 4B–D. Especially interesting is the existence of a global
minimum at values intermediate to the minimum and maximum
out- and in-degrees of model networks built using linear and
power-law type attachment kernels (Figures 4B,C).

The global minimum observed at intermediate values of K and
R in Figures 4B,C results from the bimodality of the power-law
type cumulative in- and out-degree distributions (Figures 2A–F),
because these plateaus describe a local minima in the degree
distributions. However, networks built using sigmoid type attach-
ment kernels (Figure 4D) exhibit no such distinctive plateaus
(Figures 2G–I). Indeed the global minimum of the motif proba-
bility distribution for the sigmoid based preferential attachment
network (Figure 4D) occurs at maximum K and R, which might
result directly from the attachment kernel: nodes with many
in-degrees (larger R), which are already rare (Figure 2G), may
be less likely to also support many out-degrees (larger K ), and
therefore be unlikely to support the links necessary to form a
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Table 3 |Top five genes in the motif participation distribution.

Gene Description No. motifs

ihfA Transcription factor 559

ihfB Transcription factor 529

crp cAMP receptor protein 378

fnr Global transcription factor for anaerobic growth 316

fis Transcription factor 307

complete feed-forward loop motif. In this case, the more loosely
connected nodes stand the best chance of participating in a feed-
forward loop motif merely because they are more likely to acquire
both in- and out-degrees during the preferential attachment
process.

MOTIF PARTICIPATION CENTRALITY AND MODULARITY
The idea that a gene of a transcriptional network can be ordered
according to its motif participation suggests that we may also use
these distributions as a way to define a measure of their network
centrality. Following ideas introduced by Koschützki et al. (2007),
Koschützki and Schreiber (2008), we define here motif centrality
as the number of motifs associated with a gene. The motif partic-
ipation distributions are then used to obtain a sequential ranking
for each gene in the LCC of E. coli’s transcriptional network.

Ranking genes according to their feed-forward loop motif par-
ticipation reveals that five E. coli genes support greater than 300
feed-forward loop motifs, while the majority of genes are mostly
insulated from the network by participating in just a few feed-
forward loop motifs. The top five genes are listed in Table 3, and
we find they are all transcription factors, with the single exception
of one receptor. This result supports the idea that only a few mas-
ter regulators are in feed-forward loop motifs within the E. coli
transcriptional network. We note that the 6th gene in this motif-
participation hierarchy, arcA, participates in approximately 50%
of the number of motifs of the 5th gene, fis: 163, and serves as a
natural cutoff between the top-ranked genes and the rest of the
network.

While we have not examined the clustering relationships among
the motifs themselves, it is already known that feed-forward loops
do not exist in isolation in the E. coli transcriptional network, but
rather exist within modules of higher motif density and connec-
tivity through overlapping genes composing these motifs (Dobrin
et al., 2004). Because Figure 3 demonstrates that only a few genes
disproportionately support many motifs, while many genes sup-
port only a few motifs, we hypothesize that these few genes are
more likely to reside in motif modules of higher density. There-
fore, such genes may prove to be sensitive genes for metrics relying
on an optimal connectivity among them, possibly such as network
robustness.

CONCLUSION
Motifs are thought to be the elementary building blocks of com-
plex biological networks, because they are attributed special func-
tions not present in the nodes themselves. For example, feed-
forward loop motifs can delay signal transmissions or assist with
pulsing behavior when isolated (Magnan and Alon, 2003). Frus-
trating attempts to understand the role of coupled motifs in E.
coli and other transcriptional networks is that some feed-forward
loops may be more or less important than others; specifically, it
has been shown before that not all feed-forward loop motifs are
equally unexpected when compared against certain randomized
networks (Camas and Poyatos, 2008). Because feed-forward loop
motifs within transcriptional networks do not reside in isolation
(Dobrin et al., 2004), they may be organized into compartments
of high density.

Although we did not directly measure such an organization of
motifs in the networks we considered, genes participating in many
motifs (Table 3) are more likely to reside in such compartments.
Additionally, the power-law motif participation distribution we
report above (Figure 3) demonstrates that only a few genes are
integrated throughout the motif network structure; perturbing
the expression patterns of these genes should therefore influence
network metrics that rely on the large-scale connectivity among
motifs. This should be contrasted with the majority of genes,which
are insulated from most other motifs by low participation. Because
it is known that the abundance of feed-forward loop motifs is pos-
itively correlated with network robustness as measured by noise
reduction in gene expression (Prill et al., 2005), genes contributing
to a larger number of motifs may provide natural targets of future
studies investigating this connection.

Finally, measuring the motif probability (Eq. 7) of E. coli sug-
gests that a small number of master transcriptional regulators
are important elements in the distribution of feed-forward loops.
Such regulators are not normally considered when building ran-
domized networks; we have shown that such networks support
feed-forward loop distributions that poorly reflect the biological
foundations of the E. coli transcriptional network. Because the
connectivity between these master regulators and the rest of the
network may strongly contribute to the motif probability distri-
bution (Figure 4A), the effect that such regulators contribute to
network functionality should be added as an ingredient in future
models that hope to realistically describe the coupling among and
distribution of feed-forward loop motifs.
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APPENDIX
THE IN- AND OUT-DEGREE DISTRIBUTIONS
Here we find a solution for the out-degree distribution as given by Eqs 3 and 4. The derivation to obtain a formula for the in-degree
distribution is exactly the same, assuming that the in-degree attachment kernel is independent of a nodes’ out-degree. Therefore, we
restrict ourselves to solving only Eqs 3 and 4. Note that this derivation follows one provided in detail by Newman (2010).

Master equations are given for the out-degree distribution approximated for very large networks (Eqs 3 and 4):

p (K ) = np (K − 1) mA (K − 1)− np (K ) mA (K ) , and (A1)

p (m) = 1− np (m) mA (m) . (A2)

Equation A1 can be written as a recursion between out-degrees K and K−1:

p (K ) =
nmA (K − 1)

1+ nmA (K )
p (K − 1) .

Iterating this recursive relationship, and including Eq. A2, gives

p (K ) =
1

nmA (K )

K∏
i=m

[
1+

1

nmA (i)

]−1

. (A3)

Now, using the fact that x= e lnx , Eq. A3 can be rewritten as

p (K ) =
1

nmA (K )
e
−

K∑
i=m

ln[1+1/nmA(i)]
. (A4)

Equation A4 may be further reduced. By assuming the quantity 1/nmA(i) is “small” (i.e., A(K ) > 1/nm), we may expand
ln[1+ 1/nmA(i)] about 1/nmA(i)= 0 in a Taylor series:

ln [1+ 1/nmA (i)] = 1/nmA (i)− [1/nmA (i)]2/2+ · · · .

Keeping the leading order term and putting this back into (Eq. A4) gives:

p (K ) =
1

nmA (K )
e
−

K∑
i=m

1/nmA(i)
. (A5)

Depending on the relationship between A and K, the summation in Eq. A5 may either be exact or further approximated. Because
Jeong et al. (2003) measured γ= 0.8 for many real-world networks, we have used this distribution as a choice of synthetic network in
the main text. This special case of nA(K )=K γ/z for 1/2 < γ < 1 [with normalization condition z=

∑
K γp(K )] was solved along with

other cases in Krapivsky et al. (2000); see also Newman (2010):

p (K ) ∼ K−γe−zK 1−γ/m(1−γ). (A6)

THE PROBABILITY THAT A FEED-FORWARD LOOP IS ASSOCIATED WITH A NODE
Here we calculate the probability that a network node participates in a feed-forward loop motif in a directed network with arbitrary in-
and out-degree sequences. Suppose we choose a node with out-degree Ki and in-degree Ri. The probability, pi→j, to find a link directed
from node i to a node j can be estimated following an argument presented in Itzkovitz et al. (2003), which we summarize here.

First, the probability to find no edge from node i to j is given by

p
no edge
i→j =

Ki∏
l=1

1−
Rj

L − Ri −
l∑

m=1
Rσm

 , (A7)
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wherein the target for each outgoing link of node i may be contained in a particular set of nodes {σi:i= 1,. . .,k} that does not include
the target j. The total probability to find an edge from i to j, pi→j, is therefore the complement of a sum over all possible ordered sets
{σi}:

pi→j = 1−
1

Ki !

(
N − 2

Ki

)∑
{σ}

Ki∏
l=1

1−
Rj

L − Ri −
l∑

m=1
Rσm

. (A8)

This expression, (A8), can be simplified by assuming that ΣRσ+Ri� L (Itzkovitz et al., 2003), under which Eq. A7 gives

pi→j = 1−

(
1−

Rj

L

)Ki

= 1− e−Ki Rj/L ∼
KiRj

L
. (A9)

The final approximation made above assumes that the network is sparse: Ki Rj� L, a feature that is generally true of biological networks
(Leclerc, 2008; Del Genio et al., 2011). The result (Eq. A9) has a very natural interpretation: a link between nodes i and j might be
established after Ki-many independent attempts to hit a target j of size Rj/L.

To compute the number of feed-forward loops motifs associated with each, we refer to Figure 1. When counting feed-forward loops
we do not distinguish between up- or down-regulated edges. A network node may participate in a feed-forward loop as any of the three
nodes i, j, or k illustrated by Figure 1. Given that a node hosts out-degree K and in-degree R, the probability that a node plays the role
of i in Figure 1, pi

motif , is given by

pi
motif =

n∑
j=1

n∑
k=1

pi→j pi→k pj→k .

Using Eq. A9, this calculation can be carried out to find

pi
motif (K ) =

n2

L3
K 2 〈R2〉

〈KR〉 , (A10)

wherein we have used 1
n

∑n
i=1 Ki =

∑L
i=1 Kp (K , n) = 〈K 〉 or its equivalent. Similar calculations for the other two nodes yield

p
j
motif (K , R) =

n2

L3
KR

〈
K 2〉 〈R2〉 , and (A11)

pk
motif (R) =

n2

L3
R2 〈K 2〉

〈KR〉 . (A12)

The probability that a node plays the part of any of the three motif nodes, pmotif(K, R), is given by the sum of (Eqs A10–A12) multiplied
by the probability that the node carries the values K and R, p(K ) and q(R), respectively. Carrying this out yields

pmotif (K , R) = p (K ) q (R)
n2

L3

[
K 2 〈R2〉

〈KR〉 + R2 〈K 2〉
〈KR〉 + KR

〈
K 2〉 〈R2〉] . (A13)

Note the number of expected motifs for a node with K and R out- and in-degrees, µ, is proportional to Eq. A13. This proportionality
constant is different from the abundance of motifs in the entire network, which is the sum number of all unique motifs distributed
across it. For example, Itzkovitz et al. (2003) approximate this abundance for the feed-forward loop in a sparse network:

〈K (K − 1)〉 〈RK 〉 〈R (R − 1)〉

〈K 〉3
. (A14)
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