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Abstract
Background: A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-
needed" in completing desired movements. Several research groups are attempting to automate this
principle with robotic movement training devices and patient cooperative algorithms that encourage
voluntary participation. These attempts are currently not based on computational models of motor
learning.

Methods: Here we assume that motor recovery from a neurologic injury can be modelled as a process
of learning a novel sensory motor transformation, which allows us to study a simplified experimental
protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to
impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive
an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk
normally. The problem is posed as an optimization of performance error and robotic assistance. The
optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds
kinematic errors while systematically reducing its assistance when those errors are small. As humans have
a natural range of movement variability, we introduce an error weighting function that causes the robotic
trainer to disregard this variability.

Results: We experimentally validated the controller with ten unimpaired subjects by demonstrating how
it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual
impairment, while also preventing them from experiencing large kinematic errors. The addition of the
error weighting function allowed the robot assistance to fade to zero even though the subjects'
movements were variable. We also show that in order to assist-as-needed, the robot must relax its
assistance at a rate faster than that of the learning human.

Conclusion: The assist-as-needed algorithm proposed here can limit error during the learning of a
dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the
ongoing progression of movement error. This type of algorithm is well suited for helping people learn
dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful
for robot-assisted movement training of walking or reaching following neurologic injury.
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Background
Robot-assisted movement training following neurologic
injury is a promising new field that seeks to automate
hands-on therapy and promote neural recovery [1-4].
Currently, however, it is unclear how robots should assist
in therapy in order to best promote neural recovery. Expe-
rienced rehabilitation therapists advocate "active assist
exercise" or "assisting as needed", which refers to the prin-
ciple of helping a patient perform a movement with the
minimal amount of manual assistance possible [5].

Several robot control strategies have been designed to aid
in active assist exercise following neurological injury, for
both upper extremity and gait training. [1,6-11]. Mechan-
ical guidance of the affected limb through a predeter-
mined trajectory is the predominant training method in
the arms during reaching tasks [1,8,12-14] and the legs
during walking on a treadmill [9,11], although force-
based techniques that increase the patient's effort [8,15]
or amplify subject errors have also been proposed [7,16].

Recent efforts to improve the performance of the widely-
used MIT-MANUS device have focused on making the
device interactive by allowing EMG activity in selected
muscles to trigger robotic assistance to complete move-
ments in the horizontal plane [17], or by adjusting the
robot assistance based on metrics of patient performance
[18]. For locomotion training with the Lokomat device,
robotic assistance is also being designed to be "patient
cooperative" [6]. For example, algorithms that adjust the
desired movement trajectory and impedance of the robot
based on the robot-subject interaction force are in devel-
opment, and visual biofeedback displays are being devel-
oped to inform patients of their contribution to their
imposed movement [19]. However, although cleverly
designed, these algorithms are currently unsupported by
rigorous modelling of the way that the human motor sys-
tem adapts. Developing algorithms based on an under-
standing of the neural computations involved in adaptive
control could provide a theoretical foundation for appro-
priate control strategies, and help direct clinical testing.

In this paper, we assume that the recovery process follow-
ing a neurologic injury can be modelled as the learning of
a novel sensory motor transformation. In other words,
following a neurologic injury, the human motor system
must re-learn the correct spatio-temporal pattern of mus-
cle activation to achieve a desired limb trajectory. To facil-
itate computational analysis of this process, we study a
simplified experimental protocol in this paper. Specifi-
cally, we use a robotic force field paradigm [20] to impose
a virtual impairment on the left leg of unimpaired subjects
walking on a treadmill. This virtual impairment perturbs
the natural walking pattern, and requires the subjects to
learn a novel sensory motor transformation in order to

walk normally again. Thus, this protocol captures a proc-
ess that is computationally similar to a key process
involved in movement training following neurologic
injury – i.e. the learning of new sensory motor transfor-
mation. In addition, the protocol is much more readily
implemented than labor- and time-intensive clinical reha-
bilitation, and more amenable to quantitative analysis.
However, the protocol studied here is not rehabilitation,
and thus represents at best a "starting framework" for
deriving rigorous robot training strategies for rehabilita-
tion.

The key question this paper addresses is: "How can a
robot best assist a person in learning a novel sensory
motor transformation while limiting kinematic errors?"
We formulate this "assist-as-needed" principle as an opti-
mization problem. We assume that the robotic movement
trainer must minimize a cost function that is the weighted
sum of robot force and subject movement error as the sub-
ject learns a novel sensory motor transformation. We use
an experimentally validated, computational model of
internal model formation [21] that uses the perturbing
force and previous kinematic error to predict the future
value of that error. The resulting control law allows motor
learning while constraining kinematic error, and system-
atically reduces its assistance as learning progresses. Here
we experimentally validate the use of this controller and
test a fundamental prediction that in order to assist-as-
needed, the robot must relax its assistance at a rate faster
than the human motor system learns to decrement its
own force. That is, the robot must adapt its performance
to the learning human faster than the human adapts to
the novel sensory motor perturbation. This allows the
robot to stay one-step ahead of the human, always chal-
lenging and not allowing the human to come to rely on it.

Methods
Creating a Virtual Impairment for a Walking Task
To provide a context for the following controller deriva-
tion, assume that we are interested in designing a robotic
control law for step training on a treadmill. We would like
the robotic device to assist in re-training the swing phase
of gait in the presence of an impairment that disrupts the
kinematics of leg swing. In this paper, we use the robotic
device to create a virtual impairment that is applied to
unimpaired subjects as they walk on a treadmill. The vir-
tual impairment is arbitrarily chosen as a force that is
applied only during the swing phase of gait, and that
pushes the leg upward with a force proportional to the
forward velocity of the subject's ankle. Thus, the virtual
impairment tends to make the subject step with an abnor-
mally high step trajectory during swing. When an unim-
paired person is exposed to such a virtual impairment,
they will learn to adapt to it over the course of tens of steps
by learning how to anticipate the perturbing forces; that
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is, by learning a new sensory motor transformation
between the desired step trajectory and the required mus-
cle activations [16].

Assistance-as-needed as an optimization problem
We quantify motor performance for this task by step
height xi on the ith step, and robot performance by the
upward force Ri exerted on the ankle on the ith step. We
would like to design a robotic movement trainer that
allows the subject to learn how to overcome the virtual
impairment, but that also limits kinematic error experi-
enced during this learning process. We therefore require
that the robotic movement trainer minimize a weighted
sum of error and assistance force:

where xf is the desired step height in the field and λR is a
constant which weights the relative cost of the error and
force terms. Notice that minimizing this cost function
requires satisfying two competing goals: applying as little
force as possible and making the person step as close to
the normative step height, xf, as possible. Thus, this cost
function formalizes the principle of "assist-as-needed".

In order to find the controller that minimizes this cost
function, we must model how the leg responds to applied
forces. We assume that the subject adapts to a perturbing
force field, Fi applied to the leg on the ith step with the fol-
lowing dynamics [16,22,23]:

ei+1 = a0ei + b1Fi + b0Fi+1,  (2)

where ei = xi - xd is the kinematic error during the ith step,
and Fi is in the form of a perpendicularly directed viscous
force field applied only during the swing phase of gait. We
quantify step height xi on the ith step at 300 ms following
initial forward motion of the ankle during swing (i.e.
approximately at mid-swing), and the robot force field Ri
as the force exerted on the ankle on the ith step 100 ms fol-
lowing initial forward motion of the ankle (i.e. early in
swing). It can be shown that these parameter values max-
imize the fit of equation 2 to the experimental data,
although other measures such as peak step height and
peak field strength will also suffice [16]. Note for the case
studied here of subjects adapting to an external force field,
xd is the step height during stepping with no applied field
and xf is the steady state step height following adaptation
to the force field. Thus, xf is the desired step height in the
applied field.

The dynamics in equation 2 capture the process of inter-
nal model formation, which has been quantified in sev-
eral experiments examining motor adaptation to imposed

novel dynamic environments [21-23]. We have shown
elsewhere that these dynamics minimize a cost function
containing error, effort, and change in effort terms [21].
Further, they can be viewed as arising from the interaction
of spring-like leg dynamics with the following muscle
controller:

ui+1 = fHui - gHei,  (3)

where ui is force from muscular activity on the ith move-
ment trial, fH < 1 is a human forgetting factor, and gH is the
motor system's feedback gain for error-based correction of
the muscle activity. Thus, our basic assumption about
how the nervous system responds to an applied force is
that it tries to model the force then counteract it, using an
error-based learning controller, on a movement-by-move-
ment basis. The parameters of equation 2 are related to
the parameters of the controller as follows:

where K is the limb stiffness. Model parameters of equa-
tion 4 can be identified through multiple linear regression
of equation 2 using recorded experimental data. In partic-
ular, insertion of the robot forces and step heights meas-
ured during a force field perturbation into equation 2
allows the coefficients a0, b1, and b0 to be identified using
linear regression [16].

We assume now that the force field applied to the leg is
the sum of two perturbations: the force applied by the
assisting robot, Ri, and a force created by the virtual
impairment, Ii:

Fi = Ri + Ii  (5)

The virtual impairment force Ii can be imagined as the
effect of a neural injury expressed as a force. For example,
if an individual has difficulty lifting their leg following
injury, this could be modeled as the consequence of a vir-
tual force that pushes the leg downward, relative to the
normative condition. We studied a virtual impairment
that pushes the leg upward rather than downward in this
paper because a downward impairment could cause trip-
ping when the robot training device does not compensate
for the field, and we wished to analyze and compare
against the learning dynamics without robotic compensa-
tion.

Substituting equation 5 into equation 2 gives the dynam-
ics of motor adaptation in response to the robot assistance
and the impairment field:

ei+1 = a0ei + b1Ri + b0Ri+1 + b1Ii + b0Ii+1  (6)
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We wish to find a robot controller that minimizes the cost
function in equation 1 for the dynamics in equation 6.
Now, the minimum of the cost function in equation 1
occurs when:

Rearranging equation 7 with the partial derivative taken
from equation 6 gives the robot controller that minimizes
this cost function:

which is a simple error-feedback, discrete-time controller.
At this point, the robot controller requires an estimation
of the next error. Here we take advantage of our knowl-
edge about the dynamics of motor adaptation and use the
autoregressive model of equation 6 to provide an estimate
of the next error to the robot. Thus, the robotic assistance
implements a predictive control strategy that combines an
error estimator with a controller that performs a gradient-
descent optimization. This control structure is very similar
to the function performed by the human during motor
adaptation to a novel dynamic environment [21]. In this
case, the robot controller takes the form:

Ri+1 = fRRi - gRKei + cR(fHIi - Ii+1),  (9)

with the following parameters:

As the robot controller minimizes a cost function similar
to one identified for the human motor system [21], it is
not surprising that the controller in equation 9 adjusts the
robot force based on the step height error and uses a for-
getting factor, fR, to decrement the robot force on the next
movement when error is small. The control law also con-
tains a feedforward term related to impairment force, I.
This term is small if the impairment is assumed constant
and the human forgetting factor is near one. One effect of
this feedforward term is to initialize the robot force, R, so
that it limits the initial kinematic error when the impair-
ment is initially experienced. This is a nuance of our
approach using the robotic force field paradigm as we
have control over the virtual impairment. In clinical prac-
tice, the patient's impairment would already have
occurred and the robot would need to be initialized, per-
haps with a high impedance controller to constrain errors.

Stability of the coupled human-robot system
With the control law of the robot and the motor adapta-
tion dynamics established, verification of system stability
in the coupled human-robot system is desired. Taking the
z transform of both sides of equations 6 and 9, and
imposing zero initial values for R, e, and I, we obtain:

(1 - a0z-1)E(z) = (b1z-1 + b0)[R(z + I(z)]

(1 - fRz-1)R(z) = -gRKz-1 E(z)+ cR(fHz-1 - 1)I(z)  (11)

where E(z), R(z) and I(z) are the z transforms of ei+1, Ri+1
and Ii+1, respectively. From the last system of equations,
we obtain the two transfer functions that are relevant for
the stability of the closed-loop system:

The stability condition for the coupled feedback system
requires that the poles of both transfer functions remain
inside the unit circle in the z plane [24], i.e. that:

|fR + a0 - gR| < 1.  (13)

By taking the inverse z transform of the HEI(z) transfer
function in equation 12, the closed-loop dynamics for the
subject when coupled to the robotic training system is
given by:

ei+1 = (fR + a0 - gR)ei + b0(1 - cR)(Ii+1 - fHIi)  (14)

Note that these dynamics arises from the interaction of
two adaptive processes: the robot control algorithm and
the human motor adaptation to the applied forces (Fig.
1).

Substituting gR and fR from equation 10 and a0 from equa-
tion 4 into equation 13, we obtain an expression of the
stability condition in terms of the human parameters and
the robot gain λR:

Thus, the system is stable for all λR > 0 if |fH-H| < 1 and 0
< fH < 1. According to equations 2, 4, and 10, the condi-
tion |fH-H| < 1 corresponds to the stability condition for
the human adaptive system operating on its own (i.e.
without a robot movement trainer). Thus, the situation of
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inappropriate robot gain selection is prevented because
the optimized controller bounds the robot gains in equa-
tion 10 relative to the parameters that determine the sta-
bility of the human adaptive system. In addition, given
the parameters for the human learning system gH, fH and
K, the stability condition imposes a restriction on the
value of the parameter λR in the cost function. Specifically,
λR has to be chosen either:

and any λR outside of this range will result in an unstable
controller because the pole of the transfer function has a
vertical asymptote at λR = -1/K2. As |a0| < 1 and fH < 1, the
right side term in the first inequality in equation 16 is neg-
ative and therefore any λR > 0 will lead to a stable control-
ler.

Optimality Constraints on the Control Gains
In addition to guaranteeing stability, choosing λR > 0
imposes an additional relation between the human and
robot forgetting factors fH and fR. This can be seen by
examining equation 10 for fR, which was derived assum-
ing an optimizing controller. For λR > 0, we have fR < fH

and therefore the robot must attempt to decrease its force
more quickly than the human controller in order to assist
only as needed, as we found previously in simulation
[25]. In other words, this relation can be understood as
the requirement that the robotic trainer must decrease its
assistance (equation 9) faster than the human decreases
its muscle force (equation 3). Thus, the robot must adapt
faster than the human motor system in order to continu-
ally challenge it to learn.

Although the coupled system may be stable for negative
choices of λR within the region defined by inequality of
equation 16, this will result in a situation where fR > fH.
Thus, such choices will lead to a situation in which the
coupled system is stable but the assistance as needed algo-
rithm will not allow the subject to learn to compensate for
the virtual impairment.

Robotic assistance with a continuous error weighting 
function
As described in the previous sections, the robot assistance
depends from step to step on the value of the subject's per-
formance error according to equation 9. A problem of the
previous strategy is that the amount of the virtual impair-
ment compensated by the robot is always non-zero.
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Indeed, as the robot controller minimizes error and force,
the steady state condition presents a finite amount of
robotic assistance. This would have not happened if the
robot only attempted to minimize force, as steady state
assistance would always be zero. In addition, subjects
present a characteristic variability in their step heights that
needs to be considered by the controller. Thus, both the
form of the robotic controller and the subject's error vari-
ability contribute to steady state values of robotic assist-
ance greater than zero.

In order to allow the subject to learn the complete virtual
impairment and to allow the robotic assistance to fade to
zero, we introduce a new next-force estimator in the eval-
uation of the feedback law of equation 6, based on the
assumption that error variability is acceptable within a
known band. The new next-error estimator is given by:

ei+1 = β(ei)(a0ei + b1Ii + b0Ii+1) + b1Ri + b0Ri+1,  (17)

where β(ei) is a non-linear function that smoothly
changes from 0 to 1 as the absolute value of the perform-
ance error increases (Fig. 2). The weighting function is
given by:

where δ defines the width of an acceptable error band and
W characterizes the smoothness of the transition region
from 0 and 1. Thus, the function defines an acceptable
error band of width, 2δ, in which the weighting function
decays to zero.

Every individual has characteristic fluctuations in their
step heights, which are assumed to be normally distrib-
uted with mean xf and standard deviation σ. These inher-
ent fluctuations in step height need to be considered
when training a given force field. That is, step height errors
within and around the mean performance window of step
heights should not be penalized, as noise around a mean
is considered natural. Choosing δ to be equal to 3σ, the
band takes into account 99.7% of the typical step height
fluctuations.

Inserting the estimator from equation 17 into the optimal
robot controller in equation 9, we derive a controller that
adapts its output as a function of performance error with
respect to a desired mean with normally distributed error
fluctuations:

Ri+1 = fRRi - β(ei)(gRKei - cR(fHIi - Ii+1)).  (19)

The resulting action of the controller can be described as
follows. When an individual's error is outside the band of

typical variability, the estimator predicts the next error by
using the ARX model equation 17 with β(ei) = 1 and there-
fore applies the previous defined robot controller of equa-
tion 9. If the individual's error is within the band, we
weight the error as a function of equations 17 and 18.
When errors are both within the band and small, β(ei)
approaches zero and the robot gradually decreases its
assistance following the recursive law:

Ri+1 = fRRi  (20)

thus fading the assistance completely to zero and allowing
the individual to experience the entirety of the impair-
ment force field.

The weighted error band introduces a non-linearity into
the feedback path of the robotic controller. The absolute
stability of the resulting non-linear control system can be
studied using standard approaches such as the Circle's or
Popov's criteria [24]. These methods can be applied to
non-linearities that are bounded between two straight
lines passing through the origin with slopes a and b that
satisfy a < b. In our case, the form of the non-linearity in
the feedback path is given by β(ei)ei, and therefore it is
always bounded between two lines with slopes a = 0 and
b = 1. We have tested the stability of the non-linear con-
troller for different values of the control gains, confirming
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that the system is stable as long as the stability of linear
system is ensured.

Experimental Setup
We tested the above theoretical results with an extensive
set of experiments. Ten healthy, unimpaired subjects (7
male, 23–39 yrs) completed three experiments during
which a lightweight, two degrees-of-freedom, planar
robot (Fig. 3) applied an upwardly directed, viscous force
field (i.e. the virtual impairment) to the subject's lower
shank during walking on a treadmill (Table 1). Details of
this device can be found in [26]. Subjects were instructed
to walk as consistently as possible without directly look-
ing at their feet. Subjects wore a harness suspended from
an overhead body weight support system that served to
catch them if they fell. However, the amount of body
weight support was set to zero such that the harness did
not impede normal stepping. The University of California
– Irvine IRB approved all experiments and the subjects
provided informed consent.

The force field that created the virtual impairment was
proportional to the subject's forward velocity during the
swing phase of gait, such that the force in the vertical
direction was:

The BI gain was chosen such that the peak force exerted on
the subject during swing was equivalent to approximately
6% of the subject's body weight. We have found this mag-
nitude to induce measurable perturbations to the stepping
trajectory but not cause stumbling [16]. The effect of the
virtual impairment was to push the leg higher than nor-
mal during swing.

The robotic assistance for stepping was applied as a sec-
ond force field of the same form but opposite sign:

where the BR gain determined the strength of the assist-
ance. Thus the net force field applied to the subject had
strength of BR-BI. The virtual impairment pushed upward
and the robotic assistance helped by pulling downward
during the swing phase of gait. At a constant treadmill and
thus walking speed, forces and gains are directly propor-
tional. Thus the BR and BI gains were mapped directly to
the I and R forces in equation 6.

Selection of the parameters for the assist-as-needed con-
trol algorithm developed in the previous section requires

knowledge of the K, fH, and gH parameters that describe
normal human adaptation. We previously analysed
motor adaptation by unimpaired subjects to perpendicu-
lar viscous force fields applied to the leg during treadmill
walking [16,21]. Here, we used the mean parameters from
ten subjects adapting to a 6% body weight viscous field
(i.e. the same field type and strength used in this study).
The mean parameters across subjects were K = 3.0 N/cm +/
- 0.62 SD, gH = 0.80 N/cm +/- 0.80 SD, and fH = 0.76 +/-
0.21 SD. We chose the value of λR to be 0.1, a magnitude
that in simulation allowed a reasonable balance between
error and assistance force. Smaller values caused the sim-
ulated assistance-as-needed controller to respond very
strongly to kinematic errors, never reducing its assistance,
while larger values caused it to allow large kinematic
errors. This positive chosen value for λR allows fR < fH and
the coupled system to be stable per equation 16.

Experimental Protocol
In a preliminary experiment (Table 1), subjects first
walked for 100 steps in a null field (N), for which no field
(BI and BR = 0) was applied, to become comfortable walk-
ing in the robot. We have shown previously that the robot
alters the normal pattern of stepping only slightly in this
null field condition, because the robot has low inertia and
we apply simple friction and gravity compensation in soft-
ware during this null field condition [26]. Subjects were
then exposed to a force field (F) for 100 steps. A gain value
for the impairment field, BI, was chosen that approxi-
mated 6% body weight. Finally, the subjects returned the
null field for 100 steps. The data from this experiment was
used to identify the mean peak swing velocity for each
subject, in order to calculate the impairment field gain
that corresponded precisely to 6% of the subjects' body
weight for the subsequent experiments. As a result of this
calibration process, the mean virtual impairment field
strength applied across subjects was 6.2% +/- 0.29 SD of
body weight with the field gain BI ranging from 32 to 46
N-s/m.

Next, an experiment was performed to compare how the
subjects adapted to the force field with and without
robotic assistance. For this first assist-as-needed (AAN)
experiment, subjects first walked for 190 steps in a null
field stage. The robot applied 10 randomly spaced "catch
trials" during which the field was turned on for a single
step. This allowed measurement of the 'direct effect' or the
step height on initial field exposure. During the second
stage, the robot applied a constant gain viscous force field
with strength proportional to 6% of the subjects' body
weight for 100 steps (i.e. the virtual impairment). This
stage allowed quantification of how well subjects could
learn to compensate for the virtual impairment without
robot assistance. From this stage, we also identified the
standard deviation of the step height error in the presence
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of the force field. This stage was then followed by a null
field stage for 100 steps to wash out any learning of the
virtual impairment. We [16] and others [27] have shown
that prolonged exposure to a null field following adapta-
tion effectively "resets" the motor control system so that it
adapts as if from a novice state when exposed to a force
field again.

We then applied the virtual impairment with robotic
assistance. During this fourth stage, the virtual impair-
ment was again turned on for 200 steps, and robot assist-
ance was provided as a function of the subject's step
height error. Specifically, the robot provided a superim-
posed, assisting force field using the "assist-as-needed"
robot control law in equation 9. The robot control law
determined the gain of this assistance force field, which
was of the same form (i.e. vertical viscous force) as the

perturbing impairment force field. Following the initial
100 steps, ten randomly spaced "catch trials" were used to
test for the presence of after effects and thus internal
model formation of the virtual impairment. Finally, the
subject walked for 50 steps in a null field stage to again
reset the motor system to a novice state.

Two modifications of this protocol were performed. The
first modification, which we will term the "Assistance-as-
Needed (AAN) with Noise Insensitivity" protocol, studied
whether the modified assist-as-needed control law in
equation 19 more effectively handled the inherent varia-
bility in the subject's stepping. Specifically, the weighting
function in equation 18 was applied to the error feedback
and feedforward terms of the robot control law per equa-
tion 19. This, in essence, created two styles of robotic
assistance that were dependent on subject performance

Experimental Apparatus for Creating a Virtual Impairment and for Assisting in Motor LearningFigure 3
Experimental Apparatus for Creating a Virtual Impairment and for Assisting in Motor Learning. Picture (left) 
and diagram (right) of experimental setup. The robot makes use of a linear motor with two forcer coils and a V-shaped linkage 
to accommodate and drive motion of the robot's apex in the parasagittal plane. The apex is attached through a padded brace 
and revolute joint to the subject's lower shank. Subjects wore a harness attached to an overhead frame to catch them in case 
they fell. The robot created a virtual impairment by pushing upward on the subject's lower shank during the swing phase of gait, 
making the subject step abnormally high. The robot also assisted the subject in learning to compensate for the virtual impair-
ment with small step height errors by helping counteract the impairment.
Page 8 of 16
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error. If step height error was within a band whose mean
was defined by the subject's mean step height in the field
and whose width was determined by the subject's step-
ping variability, the robot assistance decayed quickly to
zero allowing the subject to experience the full virtual
impairment. However, if the error was near the edge or
outside of this band, the robot assistance still attempted to
decay but was responsive to the magnitude of the error
with respect to the center of the band. This continuous
alteration of the robotic assistance was designed to reduce
or eliminate assistance as the subject began to perform
along a desired movement trajectory with typical fluctua-
tions in that performance.

Only four of the ten subjects participated in the second
modification, which we will term the "Assistance-as-
Needed with Improper Parameter Selection" protocol.
This protocol tested the prediction that the value of the
robot forgetting factor fR cannot be chosen arbitrarily and
indeed is required to be less than the human forgetting
factor fH if the assistance-as-needed technique is to func-
tion properly. A value of fR = 0.90 was chosen to be greater
than the mean fH that we have identified in previous
experiments, but one that still maintains the stability of
the coupled system. Therefore, this value of fR allowed us
to test, as predicted by the equations, that the robot would
'take over' and not allow the subject to experience the vir-
tual impairment.

In all cases, the step height error used by the robot to pre-
scribe the assistance-as-needed was defined as the relative
difference in step height on each step to the mean steady
state step height, xf, achieved following adaptation to the
virtual impairment. This xf was calculated for each subject
for each experiment by taking a running average of steps
50–90 for the stage in which the virtual impairment was
applied without robot assistance. For the Noise-Insensi-
tive AAN experiment only, the standard deviation of step
height error was calculated from the last half of the steps
during exposure to the virtual impairment without robot
assistance in the first AAN experiment (Table 1). This cal-
culation assumed that subject variability would not signif-
icantly change from one experiment to the next.

Data and Statistical Analysis
The position of the robot attachment and magnitude of
force applied by the robot were collected at 200 Hz. Posi-
tion and the calculated velocity were processed into steps
based on zero crossings of horizontal velocity. Steps were
parameterised by taking step height and force measures at
300 ms and 100 ms, respectively, following forward
movement of the robot's apex at the beginning of swing.
Step height error was calculated with respect to the mean
of the null field step heights in the first exposure to the
null field; thus the mean step height error in the first null
field was zero. Abnormally high steps were defined as hav-
ing positive error, and low steps as having a negative error.

To compare the difference in step height errors across con-
ditions with and without robotic assistance, the following
comparisons were performed. First to compare if initial
step height errors were lower with robotic assistance, the
ten null field direct effect errors were averaged per subject.
A one-way analysis of variance (ANOVA) then compared
the mean null field direct effect height to the direct effect
height with robotic assistance across subjects. A similar
ANOVA across subjects was performed on the individual
and mean after effect heights following robotic assistance
and the after effect following exposure to the full impair-
ment field. After effects were defined as the difference
between the step height error on the first trial the field was
unexpectedly turned off following adaptation, and the
mean of the last twenty five trials in the null field before
adaptation. These comparisons were made for all three
experiments in Table 1. Comparisons of robotic assistance
magnitude with respect to zero were made using a one-
sided t-test with the mean of the last half of the robotic
assistance forces (steps 50–100).

Results
Robotic Assistance-as-Needed
We created a virtual impairment for ten unimpaired sub-
jects by pushing upward on their legs during the swing
phase of gait with a robotic device as they walked on a
treadmill. The virtual impairment caused them to step
abnormally high. We then compared how the subjects
adapted to the virtual impairment with and without the

Table 1: Experimental Protocol

Experiment # of Subjects Protocol

Preliminary 10 100N-100I-100N, I peak was approximately 6% of subject's body weight
A: AAN 10 190N(9CTs)-100I-100N-200I+R(9CTs)-50N, I peak was 6% of subject's body 

weight
B: AAN with Noise Insensitivity 10 Experiment A with a 6σ based weighted error band

C: AAN with Improper Parameter Selection 4 Experiment A with fR = 0.90

AAN = Assist-as-Needed, CTs = Catch Trials, N = Null Field (no force field applied), I = Upwardly directed Impairment field, R = Downwardly 
directed compensating Robotic field
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robotic assistance-as-needed controller (equation 9) that
we derived using an optimization approach.

Without robot assistance, the subjects experienced large
step height errors, but gradually learned to compensate
for the virtual impairment by forming an internal model
of it. Specifically, when the subjects first experienced the
virtual impairment without robotic assistance, they
stepped abnormally high (the "direct effect", step 191),
but gradually returned their step height toward normal
with repeated stepping (Fig. 4A, steps 191–240). When
the virtual impairment was unexpectedly removed, the
subjects exhibited after effects of adaptation (Fig. 4A, step
291). The initial after effect indicated that the subjects
learned to predict the force to compensate for the virtual
impairment. The subsequent after effects decreased to
zero with repeated stepping in the null field.

We repeated the exposure to the virtual impairment, but
with the robotic assistance turned on. With robot assist-
ance, the subjects experienced only small errors, and grad-
ually learned to compensate for the virtual impairment
(Fig. 4A, steps 391–440). The robotic assistance decreased
with repeated stepping (Fig. 5A). The subject's initial step
height errors were significantly smaller with robotic assist-
ance (Fig. 6-top, p < 0.001, ANOVA). When the virtual
impairment and robotic assistance were unexpectedly
turned off, the subjects again exhibited after effects of
adaptation (Fig. 4, step 492).

The subjects' compensation for the virtual impairment
was only partial when robotic assistance was provided,
however, because the robot assistance force never
decreased fully to zero. Specifically, the mean of the last
half of the robotic assistance in the first experiment before
the measurement of catch trials, was significantly greater
than zero (Figs. 4E &5A, p < 0.001, t-test). The non-zero,
steady state of robotic assistance was due to the fact that
the robot attempted to minimize error as well as its own
force, and the variability of the subject's performance
errors around the mean. Due to the non-zero robotic
assistance, subjects were never allowed to experience the
full magnitude of the virtual impairment. As a conse-
quence, there was a non-significant trend for the after
effect measured after exposure to the virtual impairment
to be less than those measured after adaptation without
assistance (p = 0.30, ANOVA, Fig. 6-bottom).

Assistance-as-Needed with Noise Insensitivity
Since the robot assistance did not go to zero, we modified
the assist-as-needed controller so that it ignored step
height errors that fell within the normal band of variabil-
ity. Specifically, a non-linear weighting function was
introduced to scale the importance of errors based on
their size. On a per subject basis, the standard deviation of

step height errors following adaptation during the first
exposure to the virtual impairment was used to determine
the width of the error band (δ = 3σ) and the width of the
transition region (W = 1/2 σ). Across subjects, the stand-
ard deviation of step height errors following adaptation
during the first exposure to the virtual impairment was σ
= 1.3 +/- 0.46 cm.

Incorporation of this error weighting function caused the
robotic assistance to decay to zero for all subjects (Fig. 5).
As might be expected, however, the subjects exhibited step
height errors near the edges of the error band. In these
cases, the algorithm transiently increased its assistance to
"assist" in pushing the subject back to the center of the
desired band of step height kinematics. These transients
are shown for all subjects in Fig. 5. These transients were
particular to each subject's performance error and exem-
plify the concept of assist-as-needed.

Allowing robotic assistance to decay to zero allowed the
subjects to experience the entirety of the virtual impair-
ment. Thus, as would be expected, after effect magnitudes
were not significantly different as compared to after effect
magnitudes following adaptation to the impairment field
only (Fig. 6-bottom, p > 0.05, ANOVA). That is, the sub-
jects fully learned to counteract the virtual impairment by
forming an internal model of it only when they were able
to experience the impairment field in its entirety.

Assistance-as-Needed with Improper Parameter Selection: 
Is fR > fH a requirement?
Four subjects performed a third experiment in which the
forgetting factor of the robot was set to 0.90, a value that
was less than one to ensure controller stability, but greater
than the average human forgetting factor value of 0.76
which we had identified previously [16]. In this case, the
assist-as-needed controller still attempted to reduce its
assistance force when the step height errors were small,
but at a rate slower than that of the average unimpaired
learning human. Equation 9 predicts that the robot will
"take over" for the subject with this parameter selection,
fully compensating for the virtual impairment, and thus
not allowing the subject to experience the impairment
field. For the four subjects, the robot assistance cancelled
62%, 88%, 99%, and 117% of the virtual impairment fol-
lowing adaptation, after the robot-human system had
reached a steady state (Fig. 4). Thus the robot did not
allow the subjects to learn to compensate for the virtual
impairment. For all subjects, this robotic over-compensa-
tion for the virtual impairment caused a loss of after
effects upon field removal (Fig. 4C, trials 492–592). The
after effect magnitudes were significantly less than the
after effects experienced following full exposure to the
impairment field (Fig. 6-bottom, p < 0.05, ANOVA).
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Experimental protocol and results for a representative subjectFigure 4
Experimental protocol and results for a representative subject. This subject (30 year old male) participated in each of 
the three experimental protocols – A: Assistance-as-needed (AAN), B: AAN with Noise Insensitivity, and C: AAN with 
Improper Parameter Selection. For each protocol, the subject first adapted to the virtual impairment without assistance (steps 
191–290). The after effect of adaptation, indicative of internal model formation, is apparent at step 291 in A, B, and C. Then, 
following a period in which adaptation was washed out (steps 291–390), the subject adapted again to the virtual impairment 
(steps 391–591), but with the form of robotic assistance associated with the particular protocol. In all three protocols, the step 
height errors when the virtual impairment was turned on were much smaller (step 391, A, B, C). The robot assistance 
decreased for the basic AAN algorithm, but not all the way to zero (E, trace labelled "A"). The robot assistance decreased to 
zero for the AAN with Noise Insensitivity algorithm (E, trace labelled "B"). The robot took over the task for the AAN with 
Improper Parameter Selection algorithm (i.e. with fR > fH) (E, trace labelled "C"). Note that the virtual impairment force (D) 
was unexpectedly turned on or off ("catch trials") to measure direct effects (steps 40–140) and after effects (steps 491–591).
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up of the force field, however, because the assist-as-
needed controller is reactive to performance errors,
increasing or decreasing its assistance when needed.

The controller developed here should also be compared to
previous attempts to make robot-assisted therapy adap-
tive. Krebs et al. (2003) adapted the movement time
imposed by the MIT-MANUS robot for reaching tasks
based on measures of patient performance, terming this
strategy "performance-based progressive robotic therapy"
[18]. Kahn et al. (2004) adapted the level of force assist-
ance provided by the ARM Guide device during reaching
exercise with an error-based learning law in which the
error was the difference between the actual reaching veloc-
ity and a desired, normative reaching velocity [29]. Jez-
ernik et al. adapted the kinematic pattern of the enforced
step based on measurements of the patient's interaction
forces with the Lokomat [19]. The main conceptual
advantage of the current approach compared to these pre-
vious approaches is that the controller developed here is
based on a computational model of motor adaptation, i.e.
it is based on a validated model of how the nervous sys-
tem actually adapts, and is thus guaranteed optimal in a
definable sense, although as we noted above, selection of
the relative costs of force and error still remains heuristic.

A possible negative consequence of assist-as-needed is
that motor adaptation to the virtual impairment occurs
more slowly than without assistance, since subjects are
only gradually exposed to the impairment. We have
shown previously that motor adaptation to the force field
studied here can be accelerated by transiently amplifying
step height errors [16]. Thus, for some tasks, assistance-as-
needed may be inappropriate. Specifically, there are some
movement tasks in which large kinematic errors can be
tolerated without a substantial safety or motivational risk
to the subject. For these tasks, amplifying errors may accel-
erate motor learning, rather than reducing them with
assistance as needed [7,16].

The derivation of the assistance-as-needed controller
ignored the fact that human movement is inherently vari-
able. As a result, the controller responded to the normal
performance variability of stepping, and never fully
decreased its assistance to zero. To solve this problem, we
included an error weighting function that decreased the
importance of errors within a range of acceptable variabil-
ity. As a result, the robotic assistance declined to zero dur-
ing training with the virtual impairment. Other weighting
functions or approaches that use robust or stochastic opti-
mal control theory might also be used to address the issue
of performance noise.

We chose in this study to base the parameters of the
robotic assist-as-needed controller on the mean adapta-

tion parameters that we identified previously for ten sub-
jects using the same type of force field perturbation [16].
This approach was sufficient to achieve a reasonable pat-
tern of assistance-as-needed for all the subjects in the
present study. It is also feasible to instead identify the
model parameters on a subject-specific basis, which may
allow the assistance to be more precisely tailored.

The importance of challenge in learning
As predicted previously in simulations [25] we show
above that λ > 0 leads to a stable controller and that itself
leads to fR < fH. Here we provide experimental evidence
that adaptive robotic assistance only works when the
robot decreases its assistance faster than the rate at which
the subject decreases force in the absence of error. In the
model system presented here, this corresponds to fR < fH.
Thus the robot must 'out forget' the forgetful human who
is trying to reduce their level of effort on each movement
attempt. If this condition is not held, the results here show
that the robotic trainer over controls the human error by
continuing to assist against the impairment. This creates a
condition in which the human comes to completely rely
on the robotic assistance and is not motivated to learn.

An assist-as-needed controller with fR > fH might be com-
pared to a human trainer that always assists. For task-spe-
cific training following spinal cord injury, it has been
hypothesized that rigid assistance might steer the spinal
cord into a state of "learned helplessness" [30-32] in
which the nervous system, not challenged to perform on
its own, defers its effort to the trainer and ceases to learn.
The ability to produce and be aware of one's errors and the
effect of this awareness on the voluntary participation of
subjects has been shown to be important in motor learn-
ing in unimpaired subjects [33-35]. As evidenced here,
one method to stimulate involvement and learning is to
assist-as-needed by having the robot challenge the human
by allowing the human to experience some level of per-
formance error.

Extrapolation to the clinic
We approached the assist-as-needed principle by assum-
ing that the process of motor recovery following neuro-
logic injury is akin to the process of learning a sensory
motor transformation. We defined a motor learning task
that was amenable to computational analysis – unim-
paired subjects had to overcome a virtual impairment
applied to their leg with a robot. Defining a simplified
task to study allowed us to rigorously develop a robotic
training algorithm that mimics the assistance-as-needed
provided by rehabilitation trainers. How might this strat-
egy be extended to actual rehabilitation?

One requirement for extending this work to rehabilitation
is to develop quantitative models of motor learning fol-
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lowing neurologic injury. In order to find the robot con-
troller that minimizes a cost function of kinematic error
and robot force during rehabilitation, the dynamics of
motor adaptation during rehabilitation must be defined.
A key question is whether motor rehabilitation is indeed
akin to learning a new sensory motor transformation, as
we assumed here. In addition, the learning of the new sen-
sory motor transformation studied here occurs after only
a few steps in the virtual impairment, while rehabilitation
takes months. If the index i in the model of adaptation
provided by equation 9 is made to represent training ses-
sion number rather than step number, can this equation
be used to model motor rehabilitation? Another issue is
that neurologic injury produces a range of sensory motor
impairments that are difficult to model, including weak-
ness, abnormal synergies, impaired proprioception,
fatigue, spasticity, reflex hyperexcitability, hypertonia,
and contracture. Development of quantitative mathemat-
ical models of motor learning in the presence of these
impairments is essential for finding the robot controllers
that can best assist in rehabilitation following stroke and
spinal cord injury. We speculate that the form of the assist-
as-needed controller derived here – an error-based learn-
ing law with a forgetting factor – will be generalizable to
rehabilitation tasks. It arises from what are the simplest
possible, non-trivial performance dynamics, and the sim-
plest possible optimization, and thus may have some fun-
damental utility.

We have already applied this control law to modify the
impedance of the ARTHuR robot as it assisted in driving
the limbs of people with a spinal cord injury along a pre-
recorded trajectory while they walked on a treadmill. We
found that the controller reliable shaped the impedance
of the robot so that the subjects stepped with normal kin-
ematics, but with the robot's impedance large only in
problematic areas of the stepping workspace (unpub-
lished results).

Conclusion
Here we developed and experimentally validated a robotic
training algorithm that assists-as-needed in training
unimpaired subjects to compensate for a virtual impair-
ment during walking on a treadmill. The derivation of this
controller stems from an optimization approach, which
attempts to minimize a weighted sum of kinematic error
and robotic assistance. The inclusion of an error weighting
function allowed robotic assistance to fade to nothing and
to allow normal stepping variability. The importance of
selecting the robot parameters such that the robot relaxed
its assistance faster than the subject and thus continuously
challenged the subject was confirmed. Extending this
approach to clinical rehabilitation will require the devel-
opment of mathematical models of motor learning fol-
lowing stroke and spinal cord injury.
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