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Abstract

Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic

signals that are essential to cellular proliferation and survival, and thus represent potential

targets for anti-cancer therapeutic discovery. Despite their significance, there is no method

to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs.

The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for

drug discovery and help advance understanding of cancer biology. Here we introduce a

computational method (MEDICI) to predict PPI essentiality by combining gene knockdown

studies with network models of protein interaction pathways in an analytic framework. Our

method uses network topology to model how gene silencing can disrupt PPIs, relating the

unknown essentialities of individual PPIs to experimentally observed protein essentialities.

This model is then deconvolved to recover the unknown essentialities of individual PPIs. We

demonstrate the validity of our approach via prediction of sensitivities to compounds based

on PPI essentiality and differences in essentiality based on genetic mutations. We further

show that lung cancer patients have improved overall survival when specific PPIs are no

longer present, suggesting that these PPIs may be potentially new targets for therapeutic

development. Software is freely available at https://github.com/cooperlab/MEDICI. Datasets

are available at https://ctd2.nci.nih.gov/dataPortal.
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Introduction

Advances in high-throughput screening technology have enabled broad investigations of

genome-wide gene/protein essentiality in cancer. High-throughput single-gene shRNA/

siRNA silencing [1–4] and CRISPR-Cas9 inactivation [5] are well-established experimental

approaches to study protein essentiality in genome-wide screens. Observing the proliferative

effects of silencing each gene/node in a PPI network can provide insights into tumor biology

and help identify promising therapeutic targets, especially when combined with genomic

characterizations. Whole-genome siRNA screens have been combined with genomic profiles

and drug screens in lung adenocarcinoma to identify context-specific drug sensitivities and

their genetic biomarkers [6]. Project Achilles currently provides a pooled shRNA screening

database with more than 11,000 genes in 216 cell lines [7]. Systematic analyses of these data

have been able to identify specific gene vulnerabilities within genetic contexts in several stud-

ies [7–11].

The PPI interface has become increasingly recognized as a tractable target for small mol-

ecules therapeutics, as evidenced by recent clinical development of p53/MDM2 and BET

bromodomain small molecule inhibitors [2, 12, 13]. Despite the therapeutic potential of

protein-protein interactions (PPIs) as drug targets [14], specific analysis of protein-interac-

tion essentiality or the essentiality of interactions in biological networks (‘edgetics’) is in its

infancy [15, 16]. Current technologies focus on silencing of single genes in large-scale

shRNA screens; however, shRNA silencing of a single gene effectively disrupts multiple

PPIs and masks the contributions of individual PPIs to the overall protein essentiality.

High-throughput technology for interrupting specific PPIs on a whole-interactome scale

does not exist, and methods for experimentally measuring the essentiality of individual

endogenous PPIs at the genome scale will likely remain an unsolved problem for the

foreseeable future. While large-scale PPI screens have measured the effects of disease muta-

tions on specific PPIs [15, 16], they do not provide data on the essentiality of endogenous

interactions for the survival of a cell. Thus, we were motivated to develop a computational

approach to estimate the essentiality of PPIs by integrating PPI network topology with

whole-genome shRNA screens. By measuring the essentiality of every gene (node) in a net-

work, and understanding how proteins are connected through protein interactions (edges),

we aim to estimate the essentiality of individual PPIs that are silenced in aggregate as a gene

is knocked down by shRNA.

The integration of functional screens with PPI networks has been previously explored with

an emphasis on mitigating screening noise to improve the robustness of functional measure-

ments. PPI networks have been integrated with RNAi screens using a diffusion kernel-based

method [17] to successfully reduce false-positive and false-negative results in Drosophila
screens. The IMPACT method used protein interactions as a method for reducing off-target

effects and improving the biological interpretation of screened phenotypes [18]. In addition,

KEGG networks have been integrated with siRNA screens to refine the insulin-signaling net-

work using a network seeding/pruning approach [18]. A shortest path approach for analysis of

PPI networks has been developed and applied to pancreatic cancer [19]. Furthermore, the

NEST approach improves on CRISPR data for analysis of gene or node essentiality [20]. How-

ever, to our knowledge, no available method leverages genome-scale functional screening

resources to compute the importance of individual PPIs within biological networks. Here we

describe MEDICI (Mining Essentiality Data to Identify Critical Interactions), a new computa-

tional approach that leverages high-throughput gene knockdown data and protein interaction

network topology to rank PPIs based on their criticality for the survival and proliferation of
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cancer cells. This approach does not predict new PPIs, but rather ranks the relative importance

of known PPIs within a cancer cell for cell survival.

Methods

We obtained shRNA knockdown measurements from Project Achilles [7] v2.4.3 (http://www.

broadinstitute.org/achilles). The.gct file containing multiple shRNAs for each gene (Achil-

les_QC_v2.4.3.rnai.Gs.gct) was analyzed to produce gene-level measurements. We used the

value of the second most lethal shRNA for each gene to mitigate spurious off-target effects as

previously described [7]. Moreover, the gene solutions for the shRNAs in this dataset have

also been corrected for off-target effects using ATARiS software [21]. Cell line metadata was

obtained from both Achilles and the Cancer Cell Line Encyclopedia[22] (CCLE, http://www.

broadinstitute.org/ccle), including histology and organ site, mutations, copy number variation

and sensitivities to compounds in the CCLE library.

The superpathway was constructed by combining curated pathway models from the

NCI Pathway Interaction Database [23] (PID, http://pid.nci.nih.gov/) which can be

accessed via MSigDB (http://software.broadinstitute.org/gsea/msigdb) [24] with protein-

interaction screening results obtained via TR-FRET [25]. The gene symbols for the PID

pathway were first mapped to the official HUGO symbols to resolve ambiguity and aid in

integration with the Achilles dataset. Pathway entities that could not be mapped to HUGO

were excised from the pathway model. All 196 PID pathways were aggregated to form a

superpathway with 1548 nodes and 7906 interactions. We added 208 novel interactions

identified in PPI screening [25] to this superpathway and annotated them for future refer-

ence. We used mutations and copy number alterations from CCLE datasets [22] to remove

lost nodes and build 206 cell line context specific networks. Achilles shRNA data was then

integrated with each network to produce a gene-essentiality layered superpathway for

each cell line. Pathway nodes that did not have corresponding shRNA measurements were

excised from the network model. The final set of 7906 PPI essentialities across 206 cell lines

is available in S1 Table. All datasets used in the analysis are available for download at the

Cancer Target Discovery and Development (CTD2) Data Portal (https://ctd2.nci.nih.gov/

dataPortal/). We have also conveniently packaged the data necessary for reproducing the

analysis on Synapse. We are currently developing a PPI Portal website where PPI essential-

ity data, as well as data from our OncoPPi screening study [25], can be mined and viewed

(A. Ivanov, B. Revennaugh, et al, manuscript in preparation). This website will allow users

to export data for analysis in excel or in Cytoscape, or to capture network images as png

files.

Modeling PPI network topologies

Biological networks consist of proteins (as nodes) and interactions (as edges) between them.

For this research, we analyze the interactions between proteins with consideration of all other

interactions and proteins in the network. To begin, we first consider a PPI between two pro-

teins. These two proteins are typically also involved in interactions with other nodes. If a PPI is

essential, then it’s more likely that other interactions of those two proteins are essential. Fur-

thermore, one would expect the interactions happening in proximity of that interaction are

also essential. In other words, there is a locality of essentiality for PPIs.

To proceed we make the locality of PPIs more formal by inverting the pathway network

and representing each of the PPIs as nodes, and each of the proteins as edges. Two PPIs are

connected in the network if they share a protein, i.e., each edge in the new graph corre-

sponds to a protein. We thus generate a new graph encoding the proximity for PPIs (Fig 1).
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Because we expect that PPIs that are connected with more essential proteins would have

higher correlation in essentiality, we choose the edge weights in the dual network to be pro-

portional to the essentiality of the corresponding protein derived from the shRNA screening

data.

Once we have constructed our model with the dual graph, we infer the essentiality of PPIs

in an unsupervised manner. Following the well-known PageRank algorithm [26], in order to

promote the locality of essentiality, we employ an iterative update of essentialities. At each

step, the essentiality of each node (or PPI) is updated to be the average of the localities of its

neighbors. This is consistent with our intuition of the locality of the essentiality score. If an

interaction is essential, it is likely that the interactions nearby are also vital. Furthermore, a less

essential interaction is usually close to less important ones. In other words nearby interactions

are correlated and the amount of this correlation is proportional to the essentiality of nodes in

between and the structure of the network. More interestingly, these updates are structurally

motivated, i.e., the scores derived reflect the structural importance of the PPIs in the whole

interaction network.

Calculate PPI essentialities and ranking

A dual network is constructed from the given network, i.e., the network is transformed so that

each PPI/edge is represented by a node. Two nodes in the dual graph are connected if and only

if their corresponding edges (in the original graph) have a shared end-point. Inspired by the

locality of the essentiality, an iterative method is proposed in which the essentiality of a node

in the dual graph is averaged over the essentiality of its direct neighbors. Specifically, we define

the essentiality of node i (in the dual graph) at tth step by eðtÞi . Also let eð0Þi be a random initiali-

zation between 0 and 1. At step (t + 1) the score of each node is the weighted average of the

score of its neighbors smoothed by its value in previous step with 0< α� 1.0. Intuitively, the

significance of each node propagates to its neighbors.

Fig 1. Details of the computational framework of MEDICI. Curated pathway descriptions are integrated with novel interactions discovered by PPI

screening to generate an interaction superpathway. Gene essentiality measurements are layered onto the nodes of the superpathway, and the network

topology is transformed to the dual graph where the genes become network edges and the gene-interactions become network nodes. Gene essentialities

are then diffused over their interactions to infer interaction essentiality weights.

doi:10.1371/journal.pone.0170339.g001
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For, example in the network given by Fig 1 the essentiality for node 1 and 2 of the dual

graph (edges e1 and e2 in the original network) are updated as follows:

eðtþ1Þ

1 ¼ ð1 � aÞ eðtÞ1 þ a
p1 eðtÞ2 þ p2 eðtÞ3

p1 þ p2

 !

eðtþ1Þ

2 ¼ ð1 � aÞ eðtÞ2 þ a
p1 eðtÞ1 þ p3 eðtÞ3 þ p3 eðtÞ4

p1 þ p2 þ p3

 !

The weight of each edge is influenced by the essentiality of the protein. i.e, we have an expo-

nential kernel exp(w � pi), where pi is the essentiality of protein i and w is the coefficient. By set-

ting different w we can incorporate our prior belief on the importance of the essentiality of the

protein in the essentiality of the edges.

eðtþ1Þ

1 ¼ ð1 � aÞ eðtÞ1 þ a
expðw � p1Þ eðtÞ2 þ expðw � p2Þ eðtÞ3

expðw � p1Þ þ expðw � p2Þ

 !

eðtþ1Þ

2 ¼ ð1 � aÞ eðtÞ2 þ a
expðw � p1Þ eðtÞ1 þ expðw � p3Þ eðtÞ3 þ expðw � p3Þ eðtÞ4

expðw � p1Þ þ expðw � p2Þ þ expðw � p3Þ

 !

After sufficiently large number of steps the scores converge and the final score is indepen-

dent of the initialization. It can be easily seen that the stationary values (when the essentiality

computation converges) can be simply computed by Eigenvalue decomposition of a variant of

the adjacency matrix of the dual graph.

Smoothing

The above updates are subject to overfitting and are sensitive to noise. Consequently, at each

step the new essentiality value may change dramatically because of the changes in the neigh-

boring PPIs. To control this undesirable behavior, we introduce a smoothing step to the model

in order to regularize the solution. At each step, the new value is a weighted sum of the previ-

ous value and the value inspired by the neighbors. The smoothing parameter, 0< α� 1, con-

trols this tradeoff between the locality and the regularization. The new value is (1 - α) times the

previous value plus α times the values computed from the neighbors.

We analyzed α = 0.9, 0.5, 0.1 and we observed that the smoothing parameter doesn’t have a

significant effect on the ranking of essentialities. It only changes the values but won’t affect the

ordering. A lower α will damp out the essentialities and make them close to each other. For

example α = 0 will result in a uniform essentialities (all equal). The low values of αmake the

update rule reluctant to change the essentialities in iterations and the values change smoothly

hence, the final values will be close to each other. On the other hand, as we increase α the effect

of neighbors will increase, the changes have higher magnitudes, and the difference is more

apparent. The smoothing will make the computed values numerically more stable. The eigen-

vector computation is pruned to degenerate results when the smallest eigenvalue is close to 0.

The smoothing will increase the lowest eigenvalue and therefore the convergence computation

will not be affected by degenerate cases. Also, the smoothing can be seen as a denoising

approach. If the data is noisy the smoothing will remove the fine-tuning due to the noise.

Therefore, variations due to the noise will not affect the model.

We determined that a value of α = 0.5 was optimal for the analyses in this study. A second

parameter w represents how much the essentiality of proteins affects the essentiality of
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interactions in between. In other words, larger values of w show that an interaction is essential

if the corresponding proteins are essential, and smaller values of w show that no matter how

essential the corresponding proteins are the interaction is important, e.g., because of its cen-

trality role in the PPI network. Examining different values we set w to 0.5. See S1 Methods,

where we demonstrate that this iterative update is guaranteed to converge and has a closed

form answer. Furthermore the final value is independent of the initialization. The final essenti-

ality score ranges from 0 (not essential) to 1 (completely essential to cell survival). All MEDICI

software is available for public download at https://github.com/cooperlab/MEDICI.

Data mining and statistical tests

We applied MEDICI to shRNA gene-essentiality profiles from 206 cell lines in the Achilles

database [8]. A context specific PPI network was created for each cell line by using mutational

and CNV events to re-wire the topology of a prior-knowledge superpathway [23] containing

2,186 proteins and 11,488 PPIs. This superpathway was a subset of the NCI Pathway Interac-

tion Database[23] that is now hosted by the public network data exchange [27] (http://www.

ndexbio.org/). Gene essentiality measurements were integrated with the re-wired networks,

and then deconvolved by constructing a dual-graph to predict unknown PPI essentialities

from the measured gene essentialities and the PPI network topology (Fig 1). To evaluate these

PPIs in patient samples, we used mutational, CNV and mRNA expression profiles to infer

which PPIs are absent in each patient. A Cox proportional hazards analysis was then used to

measure the prognostic significance of these groups. PPIs from lung adenocarcinoma derived

lines were ranked to identify the most essential PPIs, KS statistics were computed for ranks

across these lines, and a positive KS statistic > 0.5 was used as a threshold for significant PPIs

in LUAD cell lines.

Results

PPI essentiality rankings

We used the context-specific networks to compute the essentialities of 7906 PPIs in 206 cell

lines from the project Achilles dataset and have reported these in S1 Table. Context specific

networks were based on a superpathway that was constructed by combining 196 curated path-

way models from the NCI Pathway Interaction Database with 208 novel interactions identified

in PPI screening [25] and mutations and copy number alterations from CCLE datasets [22].

Examination of PPIs with the highest average essentialities determined that the top 20 were

dominated by interactions of CTNNB1 and AKT1. Ten of the top 20 PPIs involved CTNNB1,

while 8 of 20 involved AKT1. The other two top 20 PPIs were SOS1-SRC and MYC-SMAD4.

Highly essential interactions of CTNNB1 in descending order were those with SRC, RAC1,

JUN, PTPN11, HDAC1, EGFR, RHOA, CTNNA1, CDC42, and AR. The top interactions of

AKT1 were with SRC, RAC1, SOS1, PIK3CA, PTPN11, PIK3R1, JAK1, and MTOR. SRC was a

component of 3 of the top 20 PPIs, and the top two PPIs across all cell lines were CTNNB1-

SRC and SRC-AKT1, suggesting that the SRC-AKT1-CTNNB1 pathway is of potentially gen-

eral interest for targeting PPIs. Previous studies have shown synergistic effects using combina-

tions of SRC and AKT inhibitors [28] in small cell lung cancers.

Clustering analysis

Data were filtered to remove cell lines with large numbers of missing nodes (> 20% missing due

to gene mutation or deletion) and PPIs with uniform essentiality across cell lines, resulting in a

final matrix of 165 cell lines by 5798 PPIs for PPI essentiality clustering analysis. Unsupervised

MEDICI Software for Protein Interaction Essentiality Inference
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hierarchical clustering revealed strong clusters of some subsets of PPIs (S1 Fig). In general, the

PPIs within these clusters shared a single dominant oncogene (e.g. AKT1 or CTNNB1) or

tumor suppressor (e.g. TP53) as one of the interacting partners.

To delve further into those PPIs with therapeutic potential, we analyzed the subset of the

360 most essential PPIs with an average essentiality > 0.5 across all cell lines. An essentiality

score of 0 is a non-essential PPI, whereas a score of 1 is a completely essential PPI for cell sur-

vival. Clustering of these 360 PPIs across the 165 cell lines identified 12 major PPI clusters.

Each of these clusters was strongly associated with either a single protein or a single pathway

(Fig 2A). Of particular interest, the PPIs among the top 20 most essential often those linked

proteins that dominated particular PPI clusters such as AKT1-SRC, AKT1-MTOR, and

CTNNB1-SRC. Interestingly, the cell lines did not cluster primarily by tissue of origin, with

the exception of colon-derived cell lines that were driven by the large CTNNB1 cluster.

Instead, cell line clustering was likely driven by shared activation of oncogenic pathways.

In contrast, when we clustered the 165 cell lines by protein nodes using the gene-centric

Achilles shRNA sensitivity data across 5711 genes, the cell lines clustered primarily by tissue of

origin (S2 Fig). A few strong clusters were apparent in the unsupervised clustering of Achilles

shRNA data, which included sets of transcription factors, ribosomal proteins, or genes of

unknown function. To compare the supervised clustering of edges from Fig 2 using shRNA

node data, we extracted the 343 proteins with the top average shRNA sensitivity across all cell

lines (<-0.05), and performed identical hierarchical clustering (S3 Fig). Cell lines continued to

be clustered by tissue of origin, and there were few distinct clusters, with the exception of one

small cluster containing MHC class I receptors.

To compare protein and PPI essentiality, we ranked each interaction by its PPI essentiality,

and then compared this to the maximum protein essentiality of the interaction source and tar-

get. Interactions with a high PPI essentiality but a low source/target essentiality are especially

interesting, since these represent vulnerabilities that will not be revealed in single-gene knock-

downs. We further computed the ratios of the PPI essentialities to the maximum essentiality of

either interacting protein and performed hierarchical clustering of the PPI/maxProteinEssenti-

ality ratio (PPI-MPER) data (Fig 2B). We observed that 2294 (29%) PPIs had a PPI-MPER that

was> 1 in over half of the 165 cell lines (S3 Table). Of the 7814 PPIs examined, 6503 (83%)

had a PPI-MPER > 1 in at least one cell line. Importantly, 2562 (33%) PPIs had a median

PPI-MPER < 0.5, indicating that the max Protein essentiality was 2-fold or more higher than

the PPI essentiality in at least half of the cell lines. These data suggest that the MEDICI software

is differentiating crucial PPIs from unimportant PPIs, even when they occur between essential

proteins. Among the PPIs with consistently high PPI-MPER values were CDK2_RB1 [30],

PIK3R1_YWHAZ [31], JAK3_MAPK14, CREBBP_CTNNB1 [32], and HIF1A_SMAD4 [33].

Some of these interactions are well documented as key interactions in critical signal transduc-

tion pathways, while others less so, suggesting that they may warrant further investigation.

Crosstalk of signal transduction pathways

Other PPIs such as YAP1_CTNNB1 [34], AR_CTNNB1 [35, 36], and SMAD7_CTNNB1 [37]

were much more essential than either protein (S4 Fig), but in only a subset of cell lines. For

example, the AR_CTNNB1 PPI essentiality rank percentile was very high in a number of cell

lines including COLO704 ovarian (99%ile), and BT20 (98%ile) and MDA-MB-453 (97%ile)

triple-negative breast cancer cell lines. Both Wnt [38] and androgen signaling [39] have been

shown to be important in subsets of ovarian and triple-negative breast cancers [40–42].

Another example of signaling crosstalk identified by this analysis is that of YAP1_CTNNB1

interactions in L363 myeloma cells (94%ile), CADO-ES1 Ewing’s sarcoma cells (96%ile), and

MEDICI Software for Protein Interaction Essentiality Inference
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Fig 2. Clustering of most essential PPIs in the superpathway. (A) Unsupervised Hierarchical Clustering of the 360 most essential PPIs across the

165 cell lines identifies 12 major clusters. The 360 PPIs with an average essentiality score > 0.5 were used to cluster 165 cell lines used in the Achilles

shRNA screening study using Cluster and Java Treeview software [29]. PPI essentiality data was median centered and clustered by average correlation.

Red indicates higher essentiality and blue indicates lower essentiality. Major hubs for each cluster are indicated on the right. (B) Clustering of 5798

PPI-MPER values across 165 cell lines. Red indicates PPI essentiality is greater than the max protein essentiality, and blue indicates the PPI essentiality

is less than the max protein essentiality.

doi:10.1371/journal.pone.0170339.g002
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A204 rhabdomyosarcoma cells (96%ile). Wnt and Hippo signaling are important in myelomas,

bone, and soft tissue cancers [43–47]. We also observed potential crosstalk of TGFβ and Wnt

signals in colorectal RKO cells (95%ile), KP4 pancreatic cells (97%ile), and 22RV1 prostate

cancer cells (99%ile). SMAD7 has been implicated in colon cancer development [48, 49], and

in interactions with β-catenin in pancreatic cancer [50] and prostate cancer [37].

Drug sensitivity

The lack of even low-throughput technology to produce PPI essentiality measurements makes

validation of targets difficult. This fact motivated us to evaluate our PPI essentiality predictions

through joint analysis of PPI essentialities and drug sensitivity data. We leveraged drug sensi-

tivity data on over 200 cell lines from the Cancer Cell Line Encyclopedia (CCLE) [22] and

examined the correlations of PPI essentialities and sensitivity to 19 different compounds. We

thus performed a context specific PPI analysis, removing any PPI from a cell-line specific net-

work if either the source or target protein was deleted, had an inactivating mutation, or was

not expressed at the RNA level. Because of our context-specific approach that uses genetic

alterations and gene-regulation to alter PPI network topology for each cell line, the specific

number of PPIs varied from cell line to cell line, but included on average 104 cell lines per PPI.

We then computed the statistical significance of correlations of PPI essentiality to drug sensi-

tivity (as defined by AUC in CCLE analysis). Interestingly, the most significant correlation

(p = 4.63E-07) was that of the BRAF-KRAS interaction to PLX4720, a compound that targets

BRAF. The highest absolute correlation (r = 0.71, p = 0.0013) was between the PRKDC-TP53

PPI and sensitivity to AZD6244, an inhibitor of MAPK1 (Fig 3). This strong correlation is sup-

ported by multiple studies that indicate that MAPK signaling is critical for cell cycle arrest in

response to DNA damage [51, 52] and that inhibition of p38-MAPK sensitizes lung cancer

cells to DNA damaging agents [53].

Fig 3. Correlating interaction essentialities with drug sensitivity measures provides insights into

mechanisms of action. We correlated drug sensitivity measures from CCLE with interaction essentiality

scores to identify critical interactions that predict therapeutic sensitivity. Sensitivity to the MAPK inhibitor

AZD6244 is highly correlated with PRKDC-TP53 interaction essentiality, which is consistent with the well

established role of p38-MAPK in cell cycle arrest in response to DNA damage [51–53].

doi:10.1371/journal.pone.0170339.g003
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Comprehensive analysis of drug sensitivity correlations was performed by comparing the

strength of correlations for two sets of drug/PPI pairs: 1) drug/PPIs pairs where the PPI

involves a protein targeted by that drug and 2) PPIs involving no known target protein. Exam-

ining 19 CCLE compounds for which PPI essentiality data was available, we observed that

target PPIs were significantly more essential than non-target PPIs by Wilcoxon Rank Sum

analysis for 14 of the 19 compounds (Table 1). Random permutation analysis was performed

for each set of target vs non-target protein sets to compute false discovery rates and correct for

multiple hypothesis testing. Correlations of PPI essentialities for each of the 14 significant

drug/PPI pairs were significant by FDR < 0.05 (Table 1).

Genetic alterations

To further verify MEDICI essentiality predictions, we investigated the associations between

known genetic alterations and PPI essentialities. We divided the PPI essentiality data from the

165 cell lines analyzed in Fig 2 based on the presence or absence of wild type PTEN or APC

tumor suppressor genes. We hypothesized that cell lines with mutant PTEN would have

increased dependence on PPIs in the PI3K-AKT pathway, while those with mutant APC

would exhibit increased dependence on β-catenin (CTNNB1). Indeed, when we analyzed PPI

essentiality data for cell lines with PTEN mutations (n = 25) relative to those with wild-type

PTEN (n = 140), we observed that the most essential PPIs were related to PI3K-AKT signaling

(Fig 4A). Top PPIs included JAK1-AKT, JAK1-PIK3R1, SRC-AKT1, and PIK3R1-AKT1 (FDR

(BH) = 2.13e-4)). Examining cell lines with mutant APC (n = 14) compared to those with

Table 1. Correlations of PPI essentiality with drug sensitivities for 19 CCLE compounds with PPI essentiality data for their respective targets.

Compound Targets WilcoxonRankSum p-val FDR

PF2341066 MET;ALK 9.86E-18 <0.001

Lapatinib EGFR;ERBB2 2.16E-17 <0.001

Erlotinib EGFR;ERBB2 3.60E-12 <0.001

ZD-6474 VEGFR;EGFR 2.19E-11 <0.001

L-685458 APH1A;NCSTN;PSEN1;PSENEN 2.90E-11 <0.001

Sorafenib BRAF;FLT3;KDR;RAF1 3.47E-11 <0.001

PLX4720 BRAF 7.05E-07 <0.001

PD-0332991 CDK4;CDK6 1.01E-05 <0.001

AZD6244 MEK 7.65E-04 0.002

PD-0325901 MEK 4.54E-04 0.003

Nutlin-3 MDM2 9.59E-03 0.006

RAF265 BRAF;KDR 8.53E-03 0.007

LBW242 XIAP 1.46E-02 0.009

17-AAG HSP90 3.20E-02 0.030

AEW541 IGF1R n.s. 0.161

AZD0530 SRC;YES;FYN;LYN;BLK,FGR;LCK n.s. 0.234

Nilotinib ABL1;BCR;KIT n.s. 0.286

TKI258 FLT3;FGFR1/3;VEGFR1-4 n.s. 0.540

PHA-665752 MET n.s. 0.718

Drug sensitivities were derived from CCLE AUC data. Significance of enrichment for drug target PPI essentialities vs. non-target PPI essentialities was

computed by the Wilcoxon Rank Sum test, and was significant for 14 of 19 compounds. Target and non-target gene sets were randomly permuted 1000

times to compute FDR and correct for multiple hypothesis testing.

doi:10.1371/journal.pone.0170339.t001
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wild-type APC (n = 151), the 95 most significant PPIs all involved interactions with β-catenin

(FDR(BH) = 2.13e-4)). The top 20 PPIs from this analysis are shown in Fig 4B.

Clinical outcome analysis

We next wanted to address whether loss of a particular PPI might confer a survival advantage

to lung cancer patients. To test whether this was the case, we analyzed genomic data from the

lung adenocarcinoma (LUAD) [56] datasets from The Cancer Genome Atlas (TCGA) Net-

work. We separated patients into those with or without each of the PPIs in our superpathway

network based on the presence or absence of nonsense mutations, frameshift mutations, or

homozygous deletions for each of the partner proteins. We then computed log rank p-values

for survival based on whether each of the PPIs was present or absent. QQ plots of observed vs

Fig 4. PPI networks associated with genetic mutations. (A) Networks of PPIs most increased in

essentiality in cells with mutation or loss of the PTEN tumor suppressor gene. The 14 most significant PPIs

are shown. Significant differences in PPI essentiality were computed in GenePattern [54]. Networks were

visualized with Cytoscape [55]. (B) Networks of PPIs most increased in essentiality in cell lines with mutation

or loss of the APC tumor suppressor gene. The 20 most significant PPIs are shown.

doi:10.1371/journal.pone.0170339.g004
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expected log-rank p-values for LUAD patients (Fig 5A) indicate a strong trend of more signifi-

cant p-values than those expected by chance. However, log rank p-values corrected for multi-

ple tests using Benjamini-Yekutieli correction [57] did not achieve statistical significance, and

should therefore be interepreted with caution. We then examined the set of PPIs with nominal

log rank p-value < 0.05 that were also essential in lung adenocarcinoma cell lines based on our

analysis of Achilles data. For LUAD patients, 15 PPIs were met this criterion (S2 Table, Fig

5B). Of those 15 PPIs, six included JAK1 as a binding partner, two included JAK2, and one

was the JAK1-JAK2 interaction. It has recently been shown that inhibition of JAKs attenuates

growth of small cell lung cancers in vitro and in vivo [58], and that activation of JAK signaling

induces resistance to EGFR mutations in non-small cell lung cancers [59]. Also of potential

interest is an ATM-NBN interaction that is involved in double-strand DNA break repair and

PI3KR1 interactions involved in activation of the PI3K pathway.

Discussion

While most cancer drugs either cause DNA damage or target the active sites of enzymes such

as protein kinases, a growing number of new compounds interfere with critical protein-pro-

tein interactions (PPIs). Although the pharmaceutical industry has been reluctant to develop

compounds that target PPIs, it is becoming clear that these types of drugs can provide lethal

and specific targeting of cancer cells. Examples of these compounds include Navitoclax (ABT-

263) [60], which inhibits BCL2-BAX interactions; Nutlin-3 [61], which blocks MDM2-TP53

interactions; PRI-724 [62], which interferes with β-catenin-CBP interactions; and JQ-1 [13]

and I-BET726 [63], which prevent BRD4 binding to acetylated histones. These new com-

pounds are showing promise for treatment of previously difficult to target pathways, including

the p53 tumor suppressor [12], Wnt pathway [62], and Myc oncogene [64].

Nevertheless, while there may be on average approximately 10,000–15,000 proteins

expressed in any given cell type, there are likely an order of magnitude more PPIs, or over

600,000 PPIs in mammalian cells [65]. Thus, prioritizing which PPIs may be important for

drug development is an even greater challenge than identifying individual proteins as potential

drug targets. The network topology of cancer drug targets has been shown to be more hub-like

than non-drug targets, suggesting that PPIs can be useful in identification of drug target pro-

teins for cancer [66] and neurological diseases [67]. Thus, combinations of computational and

experimental methods will be critical to enable identification of the most promising PPIs that

are essential to the survival of cancer cells.

In this study we have described a novel approach to computationally infer the essentiality of

PPIs based on a combination of network topology and high-throughput screening gene knock-

out studies. This study represents our first attempt to provide a framework to predict and pri-

oritize PPIs as potential targets for therapeutic discovery, which is expected to mature with the

incorporation of additional datasets and biological insights. While this approach is quite gen-

eral, here we have applied it to only a single large dataset from Project Achilles [8], which by

definition, when integrated with our superpathway, limited our analyses to include only 7906

PPIs. Future studies integrating additional high throughput datasets from siRNA, shRNA,

and/or CRISPR/Cas9 screens would integrate multiple complementary datasets that may pro-

vide more robust PPI essentiality predictions. Another limitation of our current study is that

shRNA screens can have off-target effects. For this reason, we limited our analysis to only

those Achilles shRNA targets that were validated by multiple shRNAs that targeted the same

genes.

Our analysis is further limited by our understanding and knowledge of the complete PPI

network within cancer cells. A variety of approaches including mass spectrometry, yeast two-
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Fig 5. PPI Essentiality association with patient survival. (A) QQ plot of observed vs. expected log-rank p-

values for LUAD patients split based on 5798 PPIs. (B) Network of PPIs with significant log-rank p-value for

discriminating survival for TCGA LUAD patients that is centered on JAK1. (C) Kaplan-Meier curve of TCGA

LUAD patients separated based on the presence or absence of the JAK1-PIK3R1 PPI. Patients without the

JAK1-PIK3R1 PPI have improved survival compared to patients who retain this PPI.

doi:10.1371/journal.pone.0170339.g005
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hybrid, and TR-FRET methodologies are continually expanding and improving our under-

standing of PPI networks. As our grasp on the topology of these PPI networks improves, the

potential accuracy, breadth, and utility of inferences regarding PPI essentiality using our meth-

ods described here will naturally improve as a result.

Here, we have developed cell-line specific network topologies by removing PPIs in which

one partner gene is deleted, mutated, or not expressed. However, other than this, we do not

account for differences in gene expression or abundance of various PPI partner proteins. Addi-

tional ways to potentially refine our approach would involve analysis of the transcriptional

profile of cell lines to deduce which subset of PPIs that are possible within a cell are actually

taking place. Currently, our approach assumes that two proteins will interact within a cell line

if they are known to interact, are expressed and are not mutated. However, signal transduction

pathways can greatly modify the constellation of potential PPIs within a cell, and thus layering

pathway activation data onto our current network topologies could improve our approach.

Even so, the analyses presented here indicate that the sets of PPI essentialities that we have

computed have strong biological relevance. The correlations of essentialities to drug sensitivi-

ties and genetic mutations validate our overall approach and provide new insights into poten-

tially important PPIs that could be used for guiding cancer drug target development.

Supporting Information

S1 Fig. Unsupervised hierarchical clustering of all non-zero 5798 PPIs across 165 cell lines.

PPI essentiality data was median centered and clustered by average correlation. Red indicates

higher essentiality and blue indicates lower essentiality.

(TIF)

S2 Fig. Unsupervised hierarchical clustering of 5711 genes across 165 cell lines based on

Achilles direct shRNA sensitivity data. Cell lines cluster primarily by tissue of origin. The

main strong gene clusters were driven by sets of transcription factors, ribosomal proteins, or

genes of unknown function.

(TIF)

S3 Fig. Unsupervised hierarchical clustering of the 343 proteins with the top average

shRNA sensitivity across all cell lines (<-0.05). Cell lines cluster primarily by tissue of origin.

Few distinct gene-based clusters are present, with the exception of one small cluster containing

MHC class I receptors.

(TIF)

S4 Fig. Comparison of protein and protein-interaction essentialities. To evaluate the utility

of MEDICI, we compared estimated PPI essentiality values to the experimentally measured

essentialities for individual proteins. Each point in the scatter plots of panels (A-D) represents

the essentiality rank of a single PPI versus and the max protein essentiality rank of the constit-

uent proteins in that interaction. Color indicates density of points. Plots for four cell lines (A)

A549 lung cancer, (B) BXPC3 pancreatic cancer, (C) MKN7 stomach cancer, and (D) U87MG

glioma cell lines are shown. The EGFR-ERBB3 PPI is indicated in each plot with an arrow. A

large number of PPIs appear in the upper-left of each panel in which PPI essentiality signifi-

cantly exceeds max constituent protein essentiality. These entries provide insights into interac-

tion-specific sensitivity that cannot be readily observed in the measure protein essentiality

data. Ranks/percentiles were used to generate these plots to avoid any consistent biases in the

magnitude of PPI versus protein essentialities.

(TIF)
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S1 Table. Essentiality values for 7906 PPIs across 206 cancer cell lines. NaN indicates that

one of the proteins in the interaction is deleted, mutated, or not expressed in that cell line.

(XLS)

S2 Table. PPIs with nominally significant log-rank p-values for LUAD patient survival PPI

and KS.

(XLSX)

S3 Table. PPI-MPER are provided for 7906 PPIs and 206 cell lines. Also shown are PPI

rank percentiles and maximum protein essentiality rank percentiles.

(TXT)

S1 Methods. Detailed supplementary methods and convergence proof.

(DOCX)
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